1
|
Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci 2017; 7:brainsci7080104. [PMID: 28805746 PMCID: PMC5575624 DOI: 10.3390/brainsci7080104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
The melanocortins and their receptors have been extensively investigated for their roles in the hypothalamo-pituitary-adrenal axis, but to a lesser extent in immune cells and in the nervous system outside the hypothalamic axis. This review discusses corticosteroid dependent and independent effects of melanocortins on the peripheral immune system, central nervous system (CNS) effects mediated through neuronal regulation of immune system function, and direct effects on endogenous cells in the CNS. We have focused on the expression and function of melanocortin receptors in oligodendroglia (OL), the myelin producing cells of the CNS, with the goal of identifying new therapeutic approaches to decrease CNS damage in multiple sclerosis as well as to promote repair. It is clear that melanocortin signaling through their receptors in the CNS has potential for neuroprotection and repair in diseases like MS. Effects of melanocortins on the immune system by direct effects on the circulating cells (lymphocytes and monocytes) and by signaling through CNS cells in regions lacking a mature blood brain barrier are clear. However, additional studies are needed to develop highly effective MCR targeted therapies that directly affect endogenous cells of the CNS, particularly OL, their progenitors and neurons.
Collapse
|
2
|
Váradi J, Harazin A, Fenyvesi F, Réti-Nagy K, Gogolák P, Vámosi G, Bácskay I, Fehér P, Ujhelyi Z, Vasvári G, Róka E, Haines D, Deli MA, Vecsernyés M. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers. PLoS One 2017; 12:e0170537. [PMID: 28103316 PMCID: PMC5245816 DOI: 10.1371/journal.pone.0170537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.
Collapse
Affiliation(s)
- Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Katalin Réti-Nagy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - David Haines
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Lisak RP, Nedelkoska L, Bealmear B, Benjamins JA. Melanocortin receptor agonist ACTH 1-39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage. Exp Neurol 2015; 273:161-7. [PMID: 26300474 DOI: 10.1016/j.expneurol.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
Abstract
Patients with relapsing-remitting multiple sclerosis (RRMS) are commonly treated with high doses of intravenous corticosteroids (CS). ACTH 1-39, a member of the melanocortin family, stimulates production of CS by the adrenals, but melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have direct protective effects on glia and neurons independent of CS. We previously reported that ACTH 1-39 protected oligodendroglia (OL) and their progenitors (OPC) from a panel of excitotoxic and inflammation-related agents. Neurons are the most vulnerable cells in the CNS. They are terminally differentiated, and sensitive to inflammatory and excitotoxic insults. For potential therapeutic protection of gray matter, it is important to investigate the direct effects of ACTH on neurons. Cultures highly enriched in neurons were isolated from 2-3 day old rat brain. After 4-7 days in culture, the neurons were treated for 24h with selected toxic agents with or without ACTH 1-39. ACTH 1-39 protected neurons from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, reactive oxygen species and, to a modest extent, from rapidly released NO, but did not protect against kynurenic acid or slowly released nitric oxide. Our results show that ACTH 1-39 protects neurons in vitro from several apoptotic, excitotoxic and inflammation-related insults.
Collapse
Affiliation(s)
- Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St. Antoine St., Detroit, MI 48201, USA.
| | - Liljana Nedelkoska
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St. Antoine St., Detroit, MI 48201, USA
| | - Beverly Bealmear
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St. Antoine St., Detroit, MI 48201, USA
| | - Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St. Antoine St., Detroit, MI 48201, USA
| |
Collapse
|
4
|
Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner. Neuropharmacology 2014; 85:357-66. [PMID: 24923239 DOI: 10.1016/j.neuropharm.2014.05.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 02/03/2023]
Abstract
The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships.
Collapse
|
5
|
|
6
|
Tanabe K, Gamo K, Aoki S, Wada K, Kiyama H. Melanocortin receptor 4 is induced in nerve‐injured motor and sensory neurons of mouse. J Neurochem 2007; 101:1145-52. [PMID: 17286587 DOI: 10.1111/j.1471-4159.2006.04432.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously identified melanocortin receptor 4 (MC4R) in a search for genes associated with hypoglossal nerve regeneration. As melanocortins promote nerve regeneration after axonal injury, we investigated whether MC4R functions as a key receptor for peripheral nerve regeneration. In situ hybridization revealed that MC4R mRNA is induced in mouse hypoglossal motor neurons after axonal injury, whereas mRNAs for MC1R, MC2R, MC3R, and MC5R are not expressed either before or after nerve injury. This result was confirmed by RT-PCR. The level of MC4R mRNA expression increased significantly from day 3 after axotomy, reached a peak on day 5, and decreased to the control level on day 14. Similar induction of MC4R was observed in axotomized mouse dorsal root ganglia (DRGs). MC4R mRNA expression was induced exclusively among the MCR family in the L4-6 DRG after sciatic nerve injury. We further examined whether alpha-melanocortin stimulating hormone (alpha-MSH) promotes neurite elongation via MC4R. In mouse DRG neuron culture, alpha-MSH significantly promoted neurite outgrowth at a concentration of 10(-8) mol/L. This neurite-elongation effect was entirely inhibited by the addition of a selective MC4R blocker, JKC-363. Therefore, it is concluded that alpha-MSH could stimulate neurite elongation via MC4R in DRG neurons. The present results suggest that induction of MC4R is crucial for motor and sensory neurons to regenerate after axonal injury.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dose-Response Relationship, Drug
- Ganglia, Spinal/pathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Hypoglossal Nerve Diseases/metabolism
- Hypoglossal Nerve Diseases/pathology
- In Situ Hybridization/methods
- Male
- Melanocyte-Stimulating Hormones/pharmacology
- Mice
- Mice, Inbred C57BL
- Motor Neurons/cytology
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Nerve Growth Factor/pharmacology
- Neurites/drug effects
- Neurites/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peptides, Cyclic/pharmacology
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
- beta-MSH/pharmacology
Collapse
Affiliation(s)
- Katsuhisa Tanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | |
Collapse
|
7
|
Glazkova EN, Inyushkin AN. Respiratory reactions to microinjection of bombesin into the solitary tract nucleus and their mechanisms. ACTA ACUST UNITED AC 2006; 36:403-8. [PMID: 16583168 DOI: 10.1007/s11055-006-0031-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/21/2004] [Indexed: 10/24/2022]
Abstract
Acute experiments were performed on urethane-anesthetized adult laboratory rats to investigate the effects of microinjections of 10(-13)-10(-4) M bombesin into the solitary tract nucleus on measures of respiration. Bombesin microinjections were found to stimulate respiration, inducing significant increases in the level of pulmonary ventilation, increases in respiratory volume, and increases in the bioelectrical activity of the inspiratory muscles. The most marked respiratory reactions were seen after intermediate peptide doses (10(-10)-10(-7) M). These respiratory effects of bombesin were found to result from its ability to suppress the inspiration-inhibiting Hering-Breuer reflex at the level of the solitary tract nucleus. The fact that ultralow doses of bombesin were active, along with the distribution of endogenous bombesin and its specific receptors in the solitary tract nucleus, and the ability of this peptide to modulate the Hering-Breuer reflex all provide evidence that bombesin is involved in controlling respiration at the level of the dorsal structures of the respiratory center.
Collapse
|
8
|
Kim K, Li C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 2004; 475:540-50. [PMID: 15236235 DOI: 10.1002/cne.20189] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides (FaRPs) have been found throughout the animal kingdom, where they are involved in many behaviors. We previously identified 22 genes comprising the flp gene family that encodes FaRPs in Caenorhabditis elegans; in this paper we report the identification of another flp gene, flp-23. As a first step toward determining their functional roles in C. elegans, we examined the cell-specific expression pattern of the flp gene family. Of the 19 flp genes examined, each gene is expressed in a distinct set of cells; these cells include interneurons, motor neurons, and sensory neurons that are involved in multiple behaviors, as well as supporting cells, muscle cells, and epidermal cells. Several flp genes show sex-specific expression patterns. Furthermore, we find that expression of two flp genes changes in response to the developmental state of the animal. Many neurons express multiple flp genes. To investigate how flp genes are regulated in different neuronal subtypes, we examined flp expression in a small, well-defined subset of neurons, the mechanosensory neurons. Mutations in the unc-86 and mec-3 genes, which are necessary for the production and differentiation of the mechanosensory neurons, result in the complete loss of flp-4, flp-8, and flp-20 expression in mechanosensory neurons. Collectively, these data indicate that members of the flp gene family are likely to influence multiple behaviors and that their regulation can be dependent on the developmental state of the organism.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
9
|
Naveh N. Melanocortins applied intravitreally delay retinal dystrophy in Royal College of Surgeons rats. Graefes Arch Clin Exp Ophthalmol 2003; 241:1044-50. [PMID: 14586589 DOI: 10.1007/s00417-003-0781-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/02/2003] [Accepted: 09/03/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Alpha-melanocyte-stimulating hormone (MSH) is a neurotrophic agent. In Royal College of Surgeons (RCS) rats, the effects of an MSH analog (MA) were investigated on: (1) the preservation of photoreceptors in vivo following MA intravitreal injection; (2) whether MA is a mitogenic factor. METHODS The study comprised five RCS rat groups, two injected with different doses of MA, one injected with PBS, and two non-injected groups. A single injection of MA or PBS was applied intravitreally to RCS rats on postnatal day 20 (20p). Photoreceptor preservation on 40p was studied using light microscopy. Considering the mitogenic effect of MA, it was studied whether cell proliferation was induced by MA in cultured retinal pigment epithelium (RPE) using the thymidine uptake technique. RESULTS In degenerating untreated RCS retinae the number of photoreceptor rows on 40p was 60-70% lower than on 20p. Retinae treated with higher doses of MA revealed on 40p a localized significant photoreceptor rescue in the retinal hemisphere which had been injected. However, only a small area of photoreceptor preservation was noted in the injected hemisphere in retinae treated with the lower MA dose. MA showed no mitogenic effect in endothelial or RPE cell culture in vitro. CONCLUSIONS This study is the first to demonstrate that: (1) intravitreally injected MA promotes a dose-related localized rescue of photoreceptors in RCS retinae which may be related to the hormone's neurotrophic activity; (2) MA has no mitogenic or angiogenic properties; (3) MA, as a neuroprotective agent, might be considered for future treatment of retinal dystrophy.
Collapse
Affiliation(s)
- Nava Naveh
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Steveson TC, Ciccotosto GD, Ma XM, Mueller GP, Mains RE, Eipper BA. Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 2003; 144:188-200. [PMID: 12488345 DOI: 10.1210/en.2002-220716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Menkes protein (ATP7A) is a P-type ATPase involved in copper uptake and homeostasis. Disturbed copper homeostasis occurs in patients with Menkes disease, an X-linked disorder characterized by mental retardation, neurodegeneration, connective tissue disorders, and early childhood death. Mutations in ATP7A result in malfunction of copper-requiring enzymes, such as tyrosinase and copper/zinc superoxide dismutase. The first step of the two-step amidation reaction carried out by peptidylglycine alpha-amidating monooxygenase (PAM) also requires copper. We used tissue from wild-type rats and mice and an ATP7A-specific antibody to determine that ATP7A is expressed at high levels in tissues expressing high levels of PAM. ATP7A is largely localized to the trans Golgi network in pituitary endocrine cells. The Atp7a mouse, bearing a mutation in the Atp7a gene, is an excellent model system for examining the consequences of ATP7A malfunction. Despite normal levels of PAM protein, levels of several amidated peptides were reduced in pituitary and brain extracts of Atp7a mice, demonstrating that PAM function is compromised when ATP7A is inactive. Based on these results, we conclude that a reduction in the ability of PAM to produce bioactive end-products involved in neuronal growth and development could contribute to many of the biological effects associated with Menkes disease.
Collapse
Affiliation(s)
- Tami C Steveson
- Department of Neuroscience,, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | |
Collapse
|
11
|
Van Westerlaak MG, Joosten EA, Gribnau AA, Cools AR, Bär PR. Chronic mitochondrial inhibition induces glutamate-mediated corticomotoneuron death in an organotypic culture model. Exp Neurol 2001; 167:393-400. [PMID: 11161628 DOI: 10.1006/exnr.2000.7570] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing evidence that mitochondrial dysfunction is an important factor in a cascade of neurotoxic events as observed during pathogenesis of various neurodegenerative diseases. In the neurodegenerative disease amyotrophic lateral sclerosis (ALS) both spinal and cortical motoneurons degenerate, but in experimental studies most attention so far has been focussed on the spinal motoneurons. In order to study the role of mitochondrial dysfunction in the pathways leading to cortical (upper) motoneuron (CMN) death, a long-term culture system of rat cortical explants was used. CMNs were visualized by immunocytochemical labeling with antibodies directed against nonphosphorylated neurofilament, SMI-32, and for their identification we also used their location in layer V of the explant, their size, and their morphological appearance. In this model the effect of mitochondrial inhibition was studied through chronic malonate treatment. For 2 weeks, low doses of complex II inhibitor malonate were added to the cultures twice a week. The malonate-induced chronic mitochondrial inhibition resulted in a dose-dependent increase of CMN death in the slices. Neuroprotection was achieved with the NMDA antagonist MK-801 and the non-NMDA antagonist CNQX indicating the involvement of glutamate in the malonate-induced CMN death. Furthermore, our data indicate that chronic mitochondrial inhibition results in CMN death, which is mediated by glutamate excitotoxicity via both non-NMDA and NMDA receptors. In this respect the present in vitro approach may act as a model for understanding mechanisms underlying CMN death in ALS.
Collapse
Affiliation(s)
- M G Van Westerlaak
- Department of Experimental Neurology, RMI for Neurosciences, UMC Utrecht, 3508 GA, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Langouche L, Roudbaraki M, Pals K, Denef C. Stimulation of intracellular free calcium in GH3 cells by gamma3-melanocyte-stimulating hormone. Involvement of a novel melanocortin receptor? Endocrinology 2001; 142:257-66. [PMID: 11145589 DOI: 10.1210/endo.142.1.7878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin (MC) gamma3MSH is a peptide that can be generated from the N-terminal domain of POMC and is believed to signal through the MC3 receptor. We recently showed that it induces a sustained rise in intracellular free calcium levels ([Ca(2+)](i)) in a subpopulation of pituitary cells, particularly in the lactosomatotroph lineage. In the present study we report that gamma3MSH and some analogs increase [Ca(2+)](i) in the GH- and PRL-secreting GH3 cell line and evaluate on the basis of pharmacological experiments and gene expression studies which MC receptor may be involved. A dose as low as 1 pM gamma3MSH induced an oscillating [Ca(2+)](i) increase in a significant percentage of GH3 cells. Increasing the dose recruited an increasing number of responding cells; a maximum was reached at 0.1 nM. gamma2MSH, alphaMSH, and NDP-alphaMSH displayed a similar effect. SHU9119, an MC3 and MC4 receptor antagonist, and an MC5 receptor agonist, did not affect the number of cells showing a [Ca(2+)](i) rise in response to gamma3MSH. SHU9119 had also no effect when added alone. MTII, a potent synthetic agonist of the MC3, MC4, and MC5 receptor as well as an N-terminally extended recombinant analog of gamma3MSH showed low potency in increasing [Ca(2+)](i) in GH3 cells, but high potency in stimulating cAMP accumulation in HEK 293 cells stably transfected with the MC3 receptor. In contrast, a peptide corresponding to the gamma2MSH sequence of POMC-A of Acipenser transmontanus increased [Ca(2+)](i) in GH3 cells, but was about 50 times less potent than gamma2- or gamma3MSH in stimulating cAMP accumulation in the MC3 receptor expressing HEK 293 cells. By means of RT-PCR performed on a RNA extract from GH3 cells, the messenger RNA of the MC2, MC3, and MC4 receptor was undetectable, but messenger RNA of the MC5 receptor was clearly present. These data suggest that the GH3 cell line does not mediate the effect of gamma3MSH through the MC3 receptor. The involvement of the MC5 receptor is unlikely, but cannot definitely be excluded. The findings animate the hypothesis that there exists a second, hitherto unidentified, MC receptor that displays high affinity for gamma3MSH.
Collapse
Affiliation(s)
- L Langouche
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Abstract
It has long been known that a large number of POMC-related peptides are found in skin. In this introduction I describe the formation of POMC-derived peptides in various tissues to indicate that processing is largely tissue-dependent. I focus on the peptides from the N-terminal fragment, such as gamma-MSH, ACTH and alpha-MSH, and beta-lipopropin as well as beta-endorphin. I touch on the factors that control the synthesis of the various peptides, which are now numerous and varied, and again are tissue specific. The biologic activity of the peptides generated from POMC are described in relation to their possible action in skin. In addition, I describe a new class of peptides induced in skin following injury and which are of great interest.
Collapse
Affiliation(s)
- S Solomon
- Department of Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Dijkstra S, Bär PR, Gispen WH, Joosten EA. Selective stimulation of dendrite outgrowth from identified corticospinal neurons by homotopic astrocytes. Neuroscience 1999; 92:1331-42. [PMID: 10426488 DOI: 10.1016/s0306-4522(99)00060-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Corticospinal neurons were identified in primary cultures of cortical neurons established from rats that had been injected with a fluorescent tracer to retrogradely label the corticospinal tract. We measured neurite outgrowth from corticospinal neurons after they had been co-cultured with astrocytes derived from either the cerebral cortex (homotopic region) or spinal cord (target region) of postnatal rats. The axon length of corticospinal neurons was increased when they were cultured on astroglial monolayers compared to a control monolayer (fibroblasts). However, no difference in axon length was noted on cortical versus spinal cord-derived astrocytes. On the other hand, total dendritic length was increased on cortical compared to spinal cord astrocytes. This increase in total dendrite length was not the result of differences in the length of primary dendrites, but primarily of a higher number of dendrites and increased branching on the cortical astroglia. If the corticospinal neurons were co-cultured without physical contact with the astrocytes, axonal and dendritic outgrowth were not stimulated when compared to the fibroblast control. The data indicate that dendritic growth from corticospinal neurons is preferentially promoted by astrocytes from the cerebral cortex, whereas axonal growth is not influenced by the anatomical origin of the astrocytes. The impact of these findings on our understanding of the role of astrocytes in the development and regeneration of the corticospinal tract is discussed.
Collapse
Affiliation(s)
- S Dijkstra
- Department of Experimental Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
15
|
Joosten EA, Majewska B, Houweling DA, Bär PR, Gispen WH. Alpha-melanocyte stimulating hormone promotes regrowth of injured axons in the adult rat spinal cord. J Neurotrauma 1999; 16:543-53. [PMID: 10391370 DOI: 10.1089/neu.1999.16.543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptides related to melanotropin (alphaMSH) and corticotropin (ACTH), collectively termed melanocortins, are known to improve the postlesion repair of injured peripheral nerves. In addition, melanocortins exert trophic effects on the outgrowth of neurites from central nervous system neurons in vitro. Here we report, for the first time, the stimulation by alpha-MSH of spinal neurite outgrowth in vivo after injury. In the in vivo model, spinal cord trauma was produced at lower thoracic spinal levels of adult rats. Under a surgical microscope a laminectomy was performed exposing the dorsum of the spinal cord. Then the dura was cut longitudinally and the dorsal columns were identified. Iridectomy scissors were used to transect the dorsal half of the spinal cord bilaterally, thereby completely lesioning the main corticospinal tract component. Then the lesion gap was immediately filled with a solid collagen matrix. Ingrowth of fibers was quantified using an advanced image analyser using a video image of sections transmitted by a camera. In the control situation virtually no ingrowth of sprouting injured fibers into the collagen implant in the lesion gap was seen. However, when the collagen matrix contained 10(-8) M alpha-MSH, a profound and significant stimulation of fiber ingrowth into the implant was observed (alpha-MSH, 21.5 +/- 2.9%; control, 1.4 +/- 0.6% p < 0.01). A small percentage of these ingrowing fibers was CGRP-immunoreactive (17.0 +/- 4%), whereas no serotonergic ingrowth was observed. Furthermore, we found that local application of alpha-MSH directs a substantial amount of lesioned anterogradely labelled corticospinal tract axons to regrow into the collagen implant (alpha-MSH, 15.2 +/- 5.2%; control, 0.5 +/- 0.3%, p < 0.01). The observed fiber ingrowth is not accompanied by an invasion of astroglial or reactive microglial cells into the implant. In conclusion, inclusion of alpha-MSH in the collagen implant stimulates the regrowth of injured axons in the adult rat spinal cord.
Collapse
Affiliation(s)
- E A Joosten
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Lankhorst AJ, Duis SE, ter Laak MP, Joosten EA, Hamers FP, Gispen WH. Functional recovery after central infusion of alpha-melanocyte-stimulating hormone in rats with spinal cord contusion injury. J Neurotrauma 1999; 16:323-31. [PMID: 10225218 DOI: 10.1089/neu.1999.16.323] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Melanocortins, peptides related to alpha-melanocortin-stimulating hormone (alpha MSH) and adrenocorticotropic hormone (ACTH), are known to improve axonal regeneration following peripheral nerve injury and stimulate neurite outgrowth from central nervous system (CNS) neurons both in vitro and in vivo. The neurite outgrowth promoting capacity of alpha MSH has prompted us to investigate the effects of intrathecal application of alpha MSH on functional and electrophysiological recovery in a well-characterized model of spinal cord contusion injury. Different doses of alpha MSH were applied via osmotic minipumps into the cisterna magna for 10 days, thereby delivering the peptide directly into the CNS. Functional recovery was monitored during 8 postoperative weeks by means of the Basso, Beattie, and Bresnahan locomotor rating scale, and the thoracolumbar height test. At the end of the study, electrophysiological analysis of rubrospinal motor evoked potentials as performed. Our data showed that application of 3.75 micrograms/kg/h alpha MSH resulted in a marked functional recovery, accompanied by a decrease in the latency of the rMEP. This study demonstrates that intrathecal application of alpha MSH results in functional recovery after spinal cord contusion injury. These findings may initiate new treatment strategies and/or the use of melanocortins in human spinal cord injury.
Collapse
Affiliation(s)
- A J Lankhorst
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Houweling DA, Bär PR, Gispen WH, Joosten EA. Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. PROGRESS IN BRAIN RESEARCH 1999; 117:455-71. [PMID: 9932425 DOI: 10.1016/s0079-6123(08)64032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D A Houweling
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
18
|
Egles C, René F, Varon S, Louis JC, Félix JM, Schimchowitsch S. Differentiation of rat hypothalamic dopaminergic neurons is stimulated in vitro by target cells: the melanotrophs. Eur J Neurosci 1998; 10:1270-81. [PMID: 9749781 DOI: 10.1046/j.1460-9568.1998.00138.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated in vitro the influence of pituitary intermediate lobe melanotrophs on the differentiation of their afferent hypothalamic dopaminergic neurons. The presence of melanotrophs in primary cultures of foetal hypothalamic neurons induces an increase of the number of dopaminergic neurons (while the total neuronal population remains unchanged) and induces a stimulation of their neuritic outgrowth. These effects are mediated by diffusible factors since they are reproduced by application of conditioned medium issued from co-cultures with intermediate lobe cells from newborn rats. Moreover, by immunoneutralization of alpha-melanocyte-stimulating hormone (alphaMSH) in the co-culture or conditioned medium, or by application of the peptide itself, we demonstrate that the neuritotrophic effect on dopaminergic neurons is mediated by alphaMSH, the main secretory product of melanotrophs, whereas the inductive effect on the number of dopaminergic neurons is attributable to another diffusible neurotrophic factor(s) present in foetal, but not adult, adenohypophysis. Similar effects are observed on cultures of newborn hypothalamic neurons. However, at this stage of neuronal development, alphaMSH also increases the number of dopaminergic neurons, which could be due to a change of neuronal receptivity. We show that the neuritotrophic influence of alphaMSH is restricted to the dopaminergic neurons connected to the melanotrophs, and that in addition, these neurons systematically co-express the tyrosine hydroxylase and glutamate decarboxylase as the neurons innervating the melanotrophs in situ. These findings indicate that the differentiation of dopaminergic hypothalamic neurons is influenced by the target cells, melanotrophs, and that this trophic influence implicates alphaMSH.
Collapse
Affiliation(s)
- C Egles
- Laboratoire de Neurobiologie et de Neurophysiologie des Systèmes Endocrines, URA CNRS 1446, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
19
|
Kistler-Heer V, Lauber ME, Lichtensteiger W. Different developmental patterns of melanocortin MC3 and MC4 receptor mRNA: predominance of Mc4 in fetal rat nervous system. J Neuroendocrinol 1998; 10:133-46. [PMID: 9535059 DOI: 10.1046/j.1365-2826.1998.00180.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanocortins are thought to be involved in neuronal development and regeneration. Pro-opiomelanocortin (POMC), the precursor of alpha-melanocyte stimulating hormone (alpha-MSH), gamma-MSH, ACTH, and beta-endorphin, becomes detectable in rat hypothalamic neurons from gestational day (E) 12.5. We recently described stage- and region-specific ontogenetic patterns of binding sites for the alpha-MSH analogue [125I]-Nle4,D-Phe7-alpha-MSH ([125I]-NDP), with the first localizations in epithalamus and sympathetic chain at E13. [125I]-NDP binds to all known melanocortin receptors, including MC3-R and MC4-R, the predominant melanocortin receptors in nervous system. To identify the receptor type expressed during ontogeny, the developmental pattern of MC3-R and MC4-R mRNA was investigated by in situ hybridization in fetuses and offspring of time-pregnant Long Evans rats between E14 and postnatal day (P) 27. MC4-R mRNA was found to be the predominant species during the entire fetal period. It was localized in all fetal areas exhibiting distinct [125I]-NDP binding, starting with sympathetic ganglia and epithalamus (E14), and including sensory trigeminal nuclei (E16), dorsal motor nucleus of vagus (E16) and cranial nerve ganglia, inferior olive (E18) and cerebellum (E18), striatal regions (E16), and entorhinal cortex (E22). In contrast, MC3-R mRNA was detectable only in the postnatal period, with a fast increase in expression in the ventromedial and arcuate nuclei. The early presence of MC4-R mRNA in central and peripheral nervous system and transient regional peaks of mRNA expression, often concomitant with periods of neural network formation, suggest a role of this receptor type in early ontogeny. The MC3 receptor may be involved in analogous processes during postnatal development.
Collapse
Affiliation(s)
- V Kistler-Heer
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Kistler-Heer V, Schlumpf M, Lichtensteiger W. Melanocortin and MCH precursor-derived NEI effects on striatum-midbrain co-cultures. Peptides 1998; 19:1317-27. [PMID: 9809645 DOI: 10.1016/s0196-9781(98)00076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possibility of developmental effects of POMC-derived melanocortins and analogs on neurons of fetal rat brain regions exhibiting marked developmental melanocortin receptor expression, was studied in serum-free co-cultures of gestational day 18 striatal and mesencephalic cells, and compared with NEI and NGE. These two peptide fragments of the melanin concentrating hormone precursor, occurring in brain areas devoid of POMC terminals, cross-react with alpha-MSH antibodies; NEI elicits grooming similar to alpha-MSH. Neurofilament protein (NF), growth-associated protein (GAP-43) and synaptophysin of the synaptosomal fraction were determined by ELISA as markers for neuritogenesis, growth cones, and nerve terminal differentiation. Cell survival was analyzed by MTT assay, proportions of major cell types by immunocytochemistry. alpha-Melanocyte-stimulating hormone (alpha-MSH, effective concentration 250-2500 nM), the analog Nle4-, D-Phe7-alpha-MSH (NDP, 3.1-750 nM), and NEI (250 nM) increased NF in 3 day cultures by 11%, 17%, and 22%, respectively, whereas ACTH(1-24) and ACTH(1-39) (25 2500 nM) were ineffective. In 11 day cultures, alpha-MSH (250-750 nM), but not NDP, ACTH(1-24) or ACTH(1-39), increased synaptosomal synaptophysin by 11%. GAP-43 and cell survival remained unaffected. These data indicate that selected melanocortins as well as NEI can influence differentiation of neural processes in brain neurons.
Collapse
Affiliation(s)
- V Kistler-Heer
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Abstract
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-beta (TGF-beta 1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
22
|
Abstract
The natural ability of the adult central nervous system of higher vertebrates to recover from injury is highly limited. This limitation is most likely due to an inhospitable environment and/or intrinsic incapacities of the neurons to re-extend their neurites after injury or axotomy. The rat corticospinal tract is the largest tract leading from brain to spinal cord and is often used as a model in developmental and regeneration studies. The extensive know-how of factors involved in the development of the corticospinal tract did provide the foundation for many studies on corticospinal tract regrowth after injury in the adult spinal cord. The results of these experiments, as discussed in this review, have led to important contributions to the further understanding of central nervous system regeneration.
Collapse
Affiliation(s)
- E A Joosten
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| |
Collapse
|