1
|
Norris MJ, Husby ML, Kiosses WB, Yin J, Saxena R, Rennick LJ, Heiner A, Harkins SS, Pokhrel R, Schendel SL, Hastie KM, Landeras-Bueno S, Salie ZL, Lee B, Chapagain PP, Maisner A, Duprex WP, Stahelin RV, Saphire EO. Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization. SCIENCE ADVANCES 2022; 8:eabn1440. [PMID: 35857835 PMCID: PMC9299542 DOI: 10.1126/sciadv.abn1440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 05/03/2023]
Abstract
Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.
Collapse
Affiliation(s)
- Michael J. Norris
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Monica L. Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - William B. Kiosses
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roopashi Saxena
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephanie S. Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhe Li Salie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Du R, Li X, Ma YH, Luo Y, Wang C, Ma Q, Lu X. Exploring Interfacial Hydrolysis of Artificial Neutral Lipid Monolayer and Bilayer Catalyzed by Phospholipase C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8104-8113. [PMID: 35749224 DOI: 10.1021/acs.langmuir.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phospholipase C (PLC) represents an important type of enzymes with the feature of hydrolyzing phospholipids at the position of the glycerophosphate bond, among which PLC extracted from Bacillus cereus (BC-PLC) has been extensively studied owing to its similarity to hitherto poorly characterized mammalian analogues. This study focuses on investigating the interfacial hydrolysis mechanism of phosphatidylcholine (PC) monolayer and bilayer membranes catalyzed by BC-PLC using sum frequency generation vibrational spectroscopy (SFG-VS) and laser scanning confocal microscopy (LSCM). We found that, upon interfacial hydrolysis, BC-PLC was adsorbed onto the lipid interface and catalyzed the lipolysis with no net orientation, as evidenced by the silent amide I band, indicating that ordered PLC alignment was not a prerequisite for the enzyme activity, which is very different from what we have reported for phospholipase A1 (PLA1) and phospholipase A2 (PLA2) [Kai, S. Phys. Chem. Chem. Phys. 2018, 20(1), 63-67; Wang, F. Langmuir 2019, 35(39), 12831-12838; Zhang, F. Langmuir 2020, 36(11), 2946-2953]. For the PC monolayer, one of the two hydrolysates, phosphocholine, desorbed from the interface into the aqueous phase, while the other one, diacylglycerol (DG), stayed well packed with high order at the interface. For the PC bilayer, phosphocholine dispersed into the aqueous phase too, similar to the monolayer case; however, DG, presumably formed clusters with the unreacted lipid substrates and desorbed from the interface. With respect to both the monolayer and bilayer cases, mechanistic schematics were presented to illustrate the different interfacial hydrolysis processes. Therefore, this model experimental study in vitro provides significant molecular-level insights and contributes necessary knowledge to reveal the lipolysis kinetics with respect to PLC and lipid membranes with monolayer and bilayer structures.
Collapse
Affiliation(s)
- Rongrong Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Chu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
3
|
Nagakubo T, Nomura N, Toyofuku M. Cracking Open Bacterial Membrane Vesicles. Front Microbiol 2020; 10:3026. [PMID: 32038523 PMCID: PMC6988826 DOI: 10.3389/fmicb.2019.03026] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Membrane vesicles (MVs) are nanoparticles composed of lipid membranes that are produced by both Gram-negative and Gram-positive bacteria. MVs have been assigned diverse biological functions, and they show great potential for applications in various fields. However, the mechanisms underlying their functions and biogenesis are not completely understood. Accumulating evidence shows that MVs are heterogenous, and different types of MVs with different compositions are released from the same species. To understand the origin and function of these MVs, determining the biochemical properties of MVs is important. In this review, we will discuss recent progress in understanding the biochemical composition and properties of MVs.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Metabolic and Vascular Effect of the Mediterranean Diet. Int J Mol Sci 2019; 20:ijms20194716. [PMID: 31547615 PMCID: PMC6801699 DOI: 10.3390/ijms20194716] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies indicated how dietary patterns that were obtained from nutritional cluster analysis can predict disease risk or mortality. Low-grade chronic inflammation represents a background pathogenetic mechanism linking metabolic risk factors to increased risk of chronic degenerative diseases. A Mediterranean diet (MeDi) style has been reported as associated with a lower degree of inflammation biomarkers and with a protective role on cardiovascular and cerebrovascular events. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. Recently, it has been reported a novel positive association between baseline plasma ceramide concentrations and cardiovascular events and how adherence to a Mediterranean Diet-style may influence the potential negative relationship between elevated plasma ceramide concentrations and cardiovascular diseases (CVD). Several randomized controlled trials (RCTs) showed the positive effects of the MeDi diet style on several cardiovascular risk factors, such as body mass index, waist circumference, blood lipids, blood pressure, inflammatory markers and adhesion molecules, and diabetes and how these advantages of the MeDi are maintained in comparison of a low-fat diet. Some studies reported a positive effect of adherence to a Mediterranean Diet and heart failure incidence, whereas some recent studies, such as the PREDIMED study, showed that the incidence of major cardiovascular events was lower among those assigned to MeDi supplemented with extra-virgin olive oil or nuts than among those assigned to a reduced-fat diet. New studies are needed to better understand the molecular mechanisms, whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases, but also discussing other related diseases. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a review of the clinical effects of this dietary style underlying the biochemical and molecular effects of the Mediterranean diet. Our purpose is to review the main features of the Mediterranean diet in particular its benefits on human health, underling the anti-inflammatory, anti-oxidant and anti-atherosclerotic effects to which new knowledge about epigenetic and gut-microbiota relationship is recently added.
Collapse
|
5
|
Konduru NV, Damiani F, Stoilova-McPhie S, Tresback JS, Pyrgiotakis G, Donaghey TC, Demokritou P, Brain JD, Molina RM. Nanoparticle Wettability Influences Nanoparticle-Phospholipid Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6454-6461. [PMID: 29754486 PMCID: PMC6507429 DOI: 10.1021/acs.langmuir.7b03741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We explored the influence of nanoparticle (NP) surface charge and hydrophobicity on NP-biomolecule interactions by measuring the composition of adsorbed phospholipids on four NPs, namely, positively charged CeO2 and ZnO and negatively charged BaSO4 and silica-coated CeO2, after exposure to bronchoalveolar lavage fluid (BALf) obtained from rats, and to a mixture of neutral dipalmitoyl phosphatidylcholine (DPPC) and negatively charged dipalmitoyl phosphatidic acid (DPPA). The resulting NP-lipid interactions were examined by cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). Our data show that the amount of adsorbed lipids on NPs after incubation in BALf and the DPPC/DPPA mixture was higher in CeO2 than in the other NPs, qualitatively consistent with their relative hydrophobicity. The relative concentrations of specific adsorbed phospholipids on NP surfaces were different from their relative concentrations in the BALf. Sphingomyelin was not detected in the extracted lipids from the NPs despite its >20% concentration in the BALf. AFM showed that the more hydrophobic CeO2 NPs tended to be located inside lipid vesicles, whereas less hydrophobic BaSO4 NPs appeared to be outside. In addition, cryo-TEM analysis showed that CeO2 NPs were associated with the formation of multilamellar lipid bilayers, whereas BaSO4 NPs with unilamellar lipid bilayers. These data suggest that the NP surface hydrophobicity predominantly controls the amounts and types of lipids adsorbed, as well as the nature of their interaction with phospholipids.
Collapse
Affiliation(s)
- Nagarjun V. Konduru
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Flavia Damiani
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Svetla Stoilova-McPhie
- Center for Nanoscale Systems, Faculty of Art and Sciences, Harvard University, 11 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jason S. Tresback
- Center for Nanoscale Systems, Faculty of Art and Sciences, Harvard University, 11 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Georgios Pyrgiotakis
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Thomas C. Donaghey
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Philip Demokritou
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Joseph D. Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ramon M. Molina
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Probing the extended lipid anchorage with cytochrome c and liposomes containing diacylphosphatidylglycerol lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1187-1192. [PMID: 29432713 DOI: 10.1016/j.bbamem.2018.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 11/21/2022]
Abstract
Experiments investigating the adsorption and desorption of cytochrome c onto and from liposomes containing 50 mol% 1,2-diacylphosphatidylglycerol lipids [10:0, 12:0, 14:0, 16:0, 18:1(Δ9 cis)] with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) in pH 7.4 buffered solutions of low to moderate ionic strength are reported. Fluorescence experiments show that cytochrome c has a similar adsorption affinity for the five labeled 50 mol% PG liposome systems investigated. Fluorescence recovery experiments reveal the extent of cytochrome c desorption upon the addition of >10× excess of unlabeled 100% 1,2-dioleoyl-sn-glycero-3-phosphatidylglycerol (DOPG) liposomes is dependent on the lipid's acyl chain length. The extent of desorption is also shown to be independent of temperature, albeit over a narrow range. The differences in the extent of cytochrome c desorption from liposomes containing PG lipids with different acyl chain lengths is attributed to the varying contribution of the binding motif involving the extended lipid anchorage in response to lipid packing stress.
Collapse
|
7
|
Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:491-504. [DOI: 10.1016/j.bbamem.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
|
8
|
Mercredi PY, Bucca N, Loeliger B, Gaines CR, Mehta M, Bhargava P, Tedbury PR, Charlier L, Floquet N, Muriaux D, Favard C, Sanders CR, Freed EO, Marchant J, Summers MF. Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. J Mol Biol 2016; 428:1637-55. [PMID: 26992353 DOI: 10.1016/j.jmb.2016.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Assembly of HIV-1 particles is initiated by the trafficking of viral Gag polyproteins from the cytoplasm to the plasma membrane, where they co-localize and bud to form immature particles. Membrane targeting is mediated by the N-terminally myristoylated matrix (MA) domain of Gag and is dependent on the plasma membrane marker phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Recent studies revealed that PI(4,5)P2 molecules containing truncated acyl chains [tr-PI(4,5)P2] are capable of binding MA in an "extended lipid" conformation and promoting myristoyl exposure. Here we report that tr-PI(4,5)P2 molecules also readily bind to non-membrane proteins, including HIV-1 capsid, which prompted us to re-examine MA-PI(4,5)P2 interactions using native lipids and membrane mimetic liposomes and bicelles. Liposome binding trends observed using a recently developed NMR approach paralleled results of flotation assays, although the affinities measured under the equilibrium conditions of NMR experiments were significantly higher. Native PI(4,5)P2 enhanced MA binding to liposomes designed to mimic non-raft-like regions of the membrane, suggesting the possibility that binding of the protein to disordered domains may precede Gag association with, or nucleation of, rafts. Studies with bicelles revealed a subset of surface and myr-associated MA residues that are sensitive to native PI(4,5)P2, but cleft residues that interact with the 2'-acyl chains of tr-PI(4,5)P2 molecules in aqueous solution were insensitive to native PI(4,5)P2 in bicelles. Our findings call to question extended-lipid MA:membrane binding models, and instead support a model put forward from coarse-grained simulations indicating that binding is mediated predominantly by dynamic, electrostatic interactions between conserved basic residues of MA and multiple PI(4,5)P2 and phosphatidylserine molecules.
Collapse
Affiliation(s)
- Peter Y Mercredi
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Nadine Bucca
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Burk Loeliger
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Christy R Gaines
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Mansi Mehta
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Pallavi Bhargava
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Philip R Tedbury
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Landry Charlier
- Institut des Biomolécules Max Mousseron, CNRS UMR5247, Université Montpellier, Faculté de Pharmacie, Montpellier Cedex 05, France
| | - Nicolas Floquet
- Institut des Biomolécules Max Mousseron, CNRS UMR5247, Université Montpellier, Faculté de Pharmacie, Montpellier Cedex 05, France
| | - Delphine Muriaux
- Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé CNRS-UMR 5236, Université Montpellier, Montpellier Cedex 5, France
| | - Cyril Favard
- Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé CNRS-UMR 5236, Université Montpellier, Montpellier Cedex 5, France
| | - Charles R Sanders
- Department of Biochemistry, Center for Structural Biology, and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA.
| | - Jan Marchant
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Michael F Summers
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
9
|
Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication. J Virol 2014; 88:12311-25. [PMID: 25122791 DOI: 10.1128/jvi.01678-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The hepatitis C virus (HCV) life cycle is tightly regulated by lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have recently screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet formation using cell culture-grown HCV (HCVcc)-infected cells. We selected and characterized the gene encoding stearoyl coenzyme A (CoA) desaturase 1 (SCD1). siRNA-mediated knockdown or pharmacological inhibition of SCD1 abrogated HCV replication in both subgenomic replicon and Jc1-infected cells, while exogenous supplementation of either oleate or palmitoleate, products of SCD1 activity, resurrected HCV replication in SCD1 knockdown cells. SCD1 was coimmunoprecipitated with HCV nonstructural proteins and colocalized with both double-stranded RNA (dsRNA) and HCV nonstructural proteins, indicating that SCD1 is associated with HCV replication complex. Moreover, SCD1 was fractionated and enriched with HCV nonstructural proteins at detergent-resistant membrane. Electron microscopy data showed that SCD1 is required for NS4B-mediated intracellular membrane rearrangement. These data further support the idea that SCD1 is associated with HCV replication complex and that its products may contribute to the proper formation and maintenance of membranous web structures in HCV replication complex. Collectively, these data suggest that manipulation of SCD1 activity may represent a novel host-targeted antiviral strategy for the treatment of HCV infection. IMPORTANCE Stearoyl coenzyme A (CoA) desaturase 1 (SCD1), a liver-specific enzyme, regulates hepatitis C virus (HCV) replication through its enzyme activity. HCV nonstructural proteins are associated with SCD1 at detergent-resistant membranes, and SCD1 is enriched on the lipid raft by HCV infection. Therein, SCD1 supports NS4B-mediated membrane rearrangement to provide a suitable microenvironment for HCV replication. We demonstrated that either genetic or chemical knockdown of SCD1 abrogated HCV replication in both replicon cells and HCV-infected cells. These findings provide novel mechanistic insights into the roles of SCD1 in HCV replication.
Collapse
|
10
|
Mohn ES, Lee JM, Beaver C, Tobbe G, McCarthy SM, O’Neil E, Smith BD, Breen JJ. Interactions of Cytochrome c with N-Acylated Phosphatidylethanolamine Lipids. J Phys Chem A 2014; 118:8287-92. [DOI: 10.1021/jp502063e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emily S. Mohn
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| | - Jung-Min Lee
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| | - Christopher Beaver
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| | - Gerri Tobbe
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| | - Sean M. McCarthy
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| | - Edward O’Neil
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Bradley D. Smith
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - John J. Breen
- Department
of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
| |
Collapse
|
11
|
Mahalka AK, Kirkegaard T, Jukola LT, Jäättelä M, Kinnunen PK. Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1344-61. [DOI: 10.1016/j.bbamem.2014.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/28/2022]
|
12
|
Pomorski TG, Nylander T, Cárdenas M. Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interface Sci 2014; 205:207-20. [PMID: 24268587 DOI: 10.1016/j.cis.2013.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/01/2023]
Abstract
The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes controlled by membrane structure, permeability and curvature as well as membrane proteins by using a wide range of biochemical, biophysical and microscopic techniques. This review gives an overview of some currently used model biomembrane systems. We will also discuss some key membrane protein properties that are relevant for protein-membrane interactions in terms of protein structure and how it is affected by membrane composition, phase behavior and curvature.
Collapse
Affiliation(s)
- Thomas Günther Pomorski
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tommy Nylander
- Department of Chemistry, Division of Physical Chemistry, Lund University, Gettingevägen 60, SE-22100 Lund, Sweden
| | - Marité Cárdenas
- Department of Chemistry/Nano-Science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Perhirin A, Kraffe E, Marty Y, Quentel F, Elies P, Gloaguen F. Electrochemistry of cytochrome c immobilized on cardiolipin-modified electrodes: a probe for protein-lipid interactions. Biochim Biophys Acta Gen Subj 2013; 1830:2798-803. [PMID: 23266496 DOI: 10.1016/j.bbagen.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/10/2012] [Indexed: 11/26/2022]
Abstract
Electrochemistry of cytochrome c (cyt c) immobilized on a cardiolipin (CL)/phosphatidylcholine (PC) film supported on a glassy carbon electrode was investigated using variable-frequency AC voltammetry. At low ionic strength, we observed two redox-active subpopulations characterized by distinct values of potential (E1/2) and electron transfer rate constant (k(ET)). At high ionic strength, only one subpopulation was detected, consistent with the existence of very stable cyt c-CL adducts, most probably formed by hydrophobic interactions between the protein and the fatty acid (FA) chains carried by CL. This subpopulation exhibits a comparatively high k(ET) value (> 300 s(-1)) apparently changing with the structure of the FA chains of CL, i.e. 18:2(n - 6) or 14:0. Our study suggests that electrochemistry can be a useful technique for probing protein-lipid interactions, and more particularly the role played by the specific structure of the FA chains of CL on cyt c binding.
Collapse
Affiliation(s)
- Antoine Perhirin
- CEMCA, UMR 6521, CNRS, Université de Bretagne Occidentale, Brest, France
| | | | | | | | | | | |
Collapse
|
14
|
Volinsky R, Kinnunen PKJ. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J 2013; 280:2806-16. [PMID: 23506295 DOI: 10.1111/febs.12247] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes.
Collapse
Affiliation(s)
- Roman Volinsky
- Helsinki Biophysics & Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | |
Collapse
|
15
|
Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC BIOPHYSICS 2011; 4:11. [PMID: 21595868 PMCID: PMC3116483 DOI: 10.1186/2046-1682-4-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (HII) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions. RESULTS Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to HII transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group. CONCLUSIONS This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
16
|
Mondal Roy S, Sarkar M. Membrane fusion induced by small molecules and ions. J Lipids 2011; 2011:528784. [PMID: 21660306 PMCID: PMC3108104 DOI: 10.1155/2011/528784] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/28/2011] [Accepted: 02/25/2011] [Indexed: 01/11/2023] Open
Abstract
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes.
Collapse
Affiliation(s)
- Sutapa Mondal Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
17
|
Glomm WR, Volden S, Ese MHG, Halskau Ø. Interactions of α-Lactalbumin and Cytochromecwith Langmuir Monolayers of Glycerophospholipids. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932690903543287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Cordomí A, Prades J, Frau J, Vögler O, Funari SS, Perez JJ, Escribá PV, Barceló F. Interactions of fatty acids with phosphatidylethanolamine membranes: X-ray diffraction and molecular dynamics studies. J Lipid Res 2009; 51:1113-24. [PMID: 19965616 DOI: 10.1194/jlr.m003012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experimental and theoretical study on 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes containing fatty acids (FAs) was performed by means of X-ray diffraction analysis and molecular dynamics (MD) simulations. The study was aimed at understanding the interactions of several structurally related FAs with biomembranes, which is necessary for further rational lipid drug design in membrane-lipid therapy. The main effect of FAs was to promote the formation of a H(II) phase, despite a stabilization of the coexisting L(alpha) + H(II) phases. Derivatives of OA exhibited a specific density profile in the direction perpendicular to the bilayer that reflects differences in the relative localization of the carboxylate group within the polar region of the membrane as well as in the degree of membrane penetration of the FA acyl chain. Hydroxyl and methyl substituents at carbon-2 in the FA acyl chain were identified as effective modulators of the position of carboxylate group in the lipid bilayer. Our data highlight the specific potential of each FA in modulating the membrane structure properties.
Collapse
Affiliation(s)
- Arnau Cordomí
- Department d'Enginyeria Química, Technical University of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barceló F, Perona JS, Prades J, Funari SS, Gomez-Gracia E, Conde M, Estruch R, Ruiz-Gutiérrez V. Mediterranean-Style Diet Effect on the Structural Properties of the Erythrocyte Cell Membrane of Hypertensive Patients. Hypertension 2009; 54:1143-50. [DOI: 10.1161/hypertensionaha.109.137471] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francisca Barceló
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Javier S. Perona
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Jesús Prades
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Sérgio S. Funari
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Enrique Gomez-Gracia
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Manuel Conde
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Ramon Estruch
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| | - Valentina Ruiz-Gutiérrez
- From the Departamento de Biología Fundamental y Ciencias de la Salut (F.B., J.P.), University of the Balearic Islands, Palma de Mallorca, Spain; Nutrition and Lipid Metabolism (J.S.P., V.R.-G.), Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain; Hamburger Synchrotronstrahlungslabor (S.S.F.), Hamburg, Germany; Nutrición y Salud Pública (E.G.-G.), Facultad de Medicina, Universidad de Malaga, Malaga, Spain; Departamento de Medicina Preventiva (M.C.), Hospitales
| |
Collapse
|
20
|
Zhang Y, Cheng X, Wang J, Zhou F. Bi- and tetra-layered dipalmitoyl phosphatidylserine (DPPS) patterns produced by hydration of Langmuir–Blodgett monolayers and the subsequent enzymatic digestion. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2008.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A 2008; 105:13811-6. [PMID: 18772370 DOI: 10.1073/pnas.0807500105] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.
Collapse
|
22
|
Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2806-13. [PMID: 18706388 DOI: 10.1016/j.bbamem.2008.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/16/2022]
Abstract
Trehalose lipids are an important group of glycolipid biosurfasctants mainly produced by rhodococci. Beside their known industrial applications, there is an increasing interest in the use of these biosurfactants as therapeutic agents. We have purified a trehalose lipid from Rhodococcus sp. and made a detailed study of the effect of the glycolipid on the thermotropic and structural properties of phosphatidylethanolamine membranes of different chain length and saturation, using differential scanning calorimetry, small and wide angle X-ray diffraction and infrared spectroscopy. It has been found that trehalose lipid affects the gel to liquid crystalline phase transition of phosphatidylethanolamines, broadening and shifting the transition to lower temperatures. Trehalose lipid does not modify the macroscopic bilayer organization of saturated phosphatidylethanolamines and presents good miscibility both in the gel and the liquid crystalline phases. Infrared experiments evidenced an increase of the hydrocarbon chain conformational disorder and an important dehydrating effect of the interfacial region of the saturated phosphatidylethanolamines. Trehalose lipid, when incorporated into dielaidoylphosphatidylethanolamine, greatly promotes the formation of the inverted hexagonal HII phase. These results support the idea that trehalose lipid incorporates into the phosphatidylethanolamine bilayers and produces structural perturbations which might affect the function of the membrane.
Collapse
Affiliation(s)
- Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Prades J, Alemany R, Perona JS, Funari SS, Vögler O, Ruiz-Gutiérrez V, Escribá PV, Barceló F. Effects of 2-hydroxyoleic acid on the structural properties of biological and model plasma membranes. Mol Membr Biol 2008; 25:46-57. [PMID: 17852735 DOI: 10.1080/09687680701510042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Galphaq/11 protein and hence, signal transduction.
Collapse
Affiliation(s)
- Jesús Prades
- Molecular and Cellular Biomedicine, Health Sciences Research Institute, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 2008; 44:739-64. [PMID: 18160049 DOI: 10.1016/j.freeradbiomed.2007.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022]
Abstract
The familiar role of tocols (tocopherols and tocotrienols) as lipid-soluble chain-terminating inhibitors of lipid peroxidation is currently in the midst of a reinterpretation. New biological activities have been described for tocols that apparently are not dependent on their well-established antioxidant behaviour. These activities could well be real, but there remain large gaps in our understanding of the behaviour of tocols in membranes, especially when it comes to the alpha-, beta-, gamma-, delta-chroman methylation patterns and the seemingly special nature of tocotrienols. It is inappropriate to make conclusions and develop models based on in vivo (or cell culture) results with reference to in vitro measurements of antioxidant activity. When present in biological membranes, tocols will experience a large variation in the local composition of phospholipids and the presence of neutral lipids such as cholesterol, both of which would be expected to change the efficiency of antioxidant action. It is likely that tocols are not homogeneously dispersed in a membrane, but it is still not known whether any specific combination of lipid head group and acyl chains are conferred special protection from peroxidation, nor do we currently appreciate the structural role that tocols play in membranes. Tocols may enhance curvature stress or counteract similar stresses generated by other lipids such as lysolipids. This review will outline what is known about the location and behaviour of tocols in phospholipid bilayers. We will draw mainly from the biophysical literature, but will attempt to extend the discussion to biologically relevant phenomena when appropriate. We hope that it will assist researchers when designing new experiments and when critically assessing the results, in turn providing a more thorough understanding of the biochemistry of tocols.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada.
| | | | | |
Collapse
|
25
|
Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008; 12:829-75. [PMID: 18266954 PMCID: PMC4401130 DOI: 10.1111/j.1582-4934.2008.00281.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Dept of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Membrane-induced folding and structure of membrane-bound annexin A1 N-terminal peptides: implications for annexin-induced membrane aggregation. Biophys J 2007; 94:1773-81. [PMID: 17993484 DOI: 10.1529/biophysj.107.119685] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Annexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an alpha-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1. This study used circular dichroism spectroscopy to show that a rat annexin A1 N-terminal peptide possesses random coil structure in aqueous buffer but an alpha-helical structure in the presence of small unilamellar vesicles. The binding of peptides to membranes was confirmed by surface pressure (Langmuir film balance) measurements using phosphatidylcholine/phosphatidylserine monolayers, which show a significant increase after injection of rat annexin A1 N-terminal peptides. Lamellar neutron diffraction with human and rat annexin A1 N-terminal peptides reveals an intercalation of the helical peptides with the phospholipid bilayer, with the helix axis lying parallel to the surface of membrane. Our findings confirm that phospholipid membranes assist the folding of the N-terminal peptides into alpha-helical structures and that this conformation enables favorable direct interactions with the membrane. The results are consistent with the hypothesis that the N-terminal domain of annexin A1 can serve as a secondary membrane binding site in the process of membrane aggregation by providing a peripheral membrane anchor.
Collapse
|
27
|
Howe J, von Minden M, Gutsmann T, Koch MHJ, Wulf M, Gerber S, Milkereit G, Vill V, Brandenburg K. Structural preferences of dioleoyl glycolipids with mono- and disaccharide head groups. Chem Phys Lipids 2007; 149:52-8. [PMID: 17658504 DOI: 10.1016/j.chemphyslip.2007.06.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 05/24/2007] [Accepted: 06/05/2007] [Indexed: 11/16/2022]
Abstract
The structural preferences of 1,2-dioleoyl-sn-glycerol glycolipids with glucose, galactose, maltose, and cellobiose as sugar head group were investigated under near physiological conditions with Fourier-transform infrared spectroscopy (FT-IR) and synchrotron radiation small-angle X-ray scattering (SAXS). Whereas all glycolipids have a very high fluidity at temperatures above 0 degrees C, the mono- and disaccharide compounds differ considerably in their aggregate structures. The monosaccharide compounds adopt only inverted hexagonal (H(II)) structures in the temperature range 5-70 degrees C, while the disaccharide compounds adopt only multilamellar structures. Since these and similar glycolipids are frequently found in nature, these data should be of relevance for the function of their host cell membranes.
Collapse
Affiliation(s)
- Jörg Howe
- Forschungszentrum Borstel, LG Biophysik, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Domènech O, Redondo L, Montero MT, Hernandez-Borrell J. Specific adsorption of cytochrome C on cardiolipin-glycerophospholipid monolayers and bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5651-6. [PMID: 17419653 DOI: 10.1021/la0634241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).
Collapse
Affiliation(s)
- Oscar Domènech
- Departament de Química-Física, Facultat de Química, and Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
29
|
Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 2006; 103:11364-9. [PMID: 16840558 PMCID: PMC1544092 DOI: 10.1073/pnas.0602818103] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Although exposure is known to promote membrane binding, the mechanism by which Gag is targeted to specific membranes has yet to be established. Recent studies have shown that phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P(2)], a factor that regulates localization of cellular proteins to the plasma membrane, also regulates Gag localization and assembly. Here we show that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure. Related phosphatidylinositides PI, PI(3)P, PI(4)P, PI(5)P, and PI(3,5)P(2) do not bind MA with significant affinity or trigger myristate exposure. Structural studies reveal that PI(4,5)P(2) adopts an "extended lipid" conformation, in which the inositol head group and 2'-fatty acid chain bind to a hydrophobic cleft, and the 1'-fatty acid and exposed myristyl group bracket a conserved basic surface patch previously implicated in membrane binding. Our findings indicate that PI(4,5)P(2) acts as both a trigger of the myristyl switch and a membrane anchor and suggest a potential mechanism for targeting Gag to membrane rafts.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Ruba H. Ghanam
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Minetti CASA, Remeta DP. Energetics of membrane protein folding and stability. Arch Biochem Biophys 2006; 453:32-53. [PMID: 16712771 DOI: 10.1016/j.abb.2006.03.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 11/24/2022]
Abstract
The critical role of membrane proteins in a myriad of biological and physiological functions has spawned numerous investigations over the past several decades with the long-term goal of identifying the molecular origins and energetic forces that stabilize these proteins within the membrane. Parallel structural and thermodynamics studies on several systems have provided significant insight regarding the driving forces governing folding, assembly, insertion, and translocation of membrane proteins. The present review surveys families of membrane-associated proteins including alpha-helical and beta-barrel structures, viral surface receptors, and pore-forming toxins, citing representative proteins within each of these classes for further scrutiny in terms of structure-function relationships and global conformational stability. This overview presents seminal findings from pioneering studies on the energetics of membrane protein folding and stability to modern techniques that are exploiting the use of molecular genetics and single molecule studies. An overall consensus regarding the molecular origins of membrane protein stability is that a number of intrinsic properties resemble features of soluble proteins, yet there are distinct energetic differences arising from specific intra- and intermolecular interactions within the membrane. The combined efforts from structural, energetics, and dynamics approaches offer unique insights and improve our fundamental understanding of the driving forces dictating membrane protein folding and stability.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Rutgers-The State University of New Jersey, Department of Chemistry and Chemical Biology, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
31
|
Sabatini K, Mattila JP, Megli FM, Kinnunen PKJ. Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. Biophys J 2006; 90:4488-99. [PMID: 16581831 PMCID: PMC1471873 DOI: 10.1529/biophysj.105.080176] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The properties of two oxidatively modified phospholipids viz. 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), were investigated using a Langmuir balance, recording force-area (pi-A) isotherms and surface potential psi. In mixed monolayers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) a progressive disappearance of the liquid expanded-liquid condensed transition and film expansion was observed with increasing content of the oxidized phospholipids. The above is in agreement with fluorescence microscopy of the monolayers, which revealed an increase in the liquid expanded region of DPPC monolayers. At a critical pressure pi(s) approximately 42 mN/m both Poxo- and PazePC induced a deflection in the pi-A isotherms, which could be rationalized in terms of reorientation of the oxidatively modified acyl chains into aqueous phase (adaptation of the so-called extended conformation), followed upon further film compression by solubilization of the oxidized phospholipids into the aqueous phase. Surface potential displayed a discontinuity at the same value of area/molecule, corresponding to the loss of the oxidized phospholipids from the monolayers. Our data support the view that lipid oxidation modifies both the small-scale structural dynamics of biological membranes as well as their more macroscopic lateral organization. Accordingly, oxidatively modified lipids can be expected to influence the organization and functions of membrane associated proteins.
Collapse
Affiliation(s)
- Karen Sabatini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Centro di Studio sui Mitocondri e Metabolismo Energetico--CNR, Bari, Italy
| | | | | | | |
Collapse
|
32
|
Escribá PV. Membrane-lipid therapy: a new approach in molecular medicine. Trends Mol Med 2006; 12:34-43. [PMID: 16325472 DOI: 10.1016/j.molmed.2005.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/27/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
Although most drugs bind to proteins and regulate their activity, some drugs act through a new therapeutic approach called membrane-lipid therapy and bind to lipids, thus modulating the structure of membranes. Most cellular functions are highly dependent on the lipid environment because they are controlled by proteins in or around membranes. The wide variety of cell and organelle membranes and the existence of special lipid regions (e.g. microvilli) and domains (e.g. lipid rafts) support the possibility of designing specific lipid therapies. Indeed, recent evidence suggests that lipid therapy might have potential for the treatment of cancer, cardiovascular pathologies, neurodegenerative processes, obesity, metabolic disorders, inflammation, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Pablo V Escribá
- Molecular and Cellular Biomedicine, Associate Unit of the Consejo Superior de Investigaciones Científicas, IUNICS, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
33
|
Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 2005; 44:303-44. [PMID: 16214218 DOI: 10.1016/j.plipres.2005.08.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have implications during stress and in relation to certain human diseases. A particular stress is that of temperature which may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins. This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone (heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods have been shown to have benefit. In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational methods advance they will have more application by revealing the very subtle interactions that take place between the lipid and protein components of membranes - and which are so essential to their function.
Collapse
Affiliation(s)
- Làszló Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang Q, Alemany R, Casas J, Kitajka K, Lanier SM, Escribá PV. Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors. Mol Pharmacol 2005; 68:210-7. [PMID: 15837842 DOI: 10.1124/mol.105.011692] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently reported that lipid structure regulates the interaction with membranes, recruitment to membranes, and distribution to membrane domains of heterotrimeric Galphabetagamma proteins, Galpha subunits, and Gbetagamma dimers (J Biol Chem 279:36540-36545, 2004). Here, we demonstrate that modulation of the membrane structure not only determines G protein localization but also regulates the function of G proteins and related signaling proteins. In this context, the antitumor drug daunorubicin (daunomycin) and oleic acid changed the membrane structure and inhibited G protein activity in biological membranes. They also induced marked changes in the activity of the alpha(2A/D)-adrenergic receptor and adenylyl cyclase. In contrast, elaidic and stearic acid did not change the activity of the above-mentioned proteins. These fatty acids are chemical but not structural analogs of oleic acid, supporting the structural basis of the modulation of membrane lipid organization and subsequent regulation of G protein-coupled receptor signaling. In addition, oleic acid (and also daunorubicin) did not alter G protein activity in a membrane-free system, further demonstrating the involvement of membrane structure in this signal modulation. The present work also unravels in part the molecular bases involved in the antihypertensive (Hypertension 43:249-254, 2004) and anticancer (Mol Pharmacol 67:531-540, 2005) activities of synthetic oleic acid derivatives (e.g., 2-hydroxyoleic acid) as well as the molecular bases of the effects of diet fats on human health.
Collapse
Affiliation(s)
- Qing Yang
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
35
|
Holopainen JM, Söderlund T, Alakoskela JM, Säily M, Eriksson O, Kinnunen PKJ. Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers. Chem Phys Lipids 2005; 133:51-67. [PMID: 15589226 DOI: 10.1016/j.chemphyslip.2004.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 11/28/2022]
Abstract
Lysobisphosphatidic acid (LBPA) can be regarded to represent a unique derivative of phosphatidylglycerol. This lipid is highly enriched in late endosomes where it can comprise up to 10-15 mol% of all lipids and in these membranes, LBPA appears to be segregated into microdomains. We studied the thermotropic behavior of pure dioleoyl-LBPA mono- and bilayers using Langmuir-lipid monolayers, electron microscopy, differential scanning calorimetry (DSC), and fluorescence spectroscopy. LBPA formed metastable, liquid-expanded monolayers at an air/buffer interface, and its compression isotherms lacked any indication for structural phase transitions. Neat LBPA formed multilamellar vesicles with no structural transitions or phase transitions between 10 and 80 degrees C at a pH range of 3.0-7.4. We then proceeded to study mixed LBPA/dipalmitoylphosphatidylcholine (DPPC) bilayers by DSC and fluorescence spectroscopy. Incorporating increasing amounts of LBPA (up to X(LBPA) (molar fraction)=0.10) decreased the co-operativity of the main transition for DPPC, and a decrease in the main phase transition as well as pretransition temperature of DPPC was observed yet with no effect on the enthalpy of this transition. In keeping with the DSC data for DPPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/LBPA mixed bilayers were more fluid, and no evidence for lateral phase segregation was observed. These results were confirmed using fluorescence microscopy of Langmuir-lipid films composed of POPC and LBPA up to X(LBPA)=0.50 with no evidence for lateral phase separation. As late endosomes are eminently acidic, we examined the effect of lowering pH on lateral organization of mixed PC/LBPA bilayers by DSC and fluorescence spectroscopy. Even at pH 3.0, we find no evidence of LBPA-induced microdomain formation at LBPA contents found in cellular organelles.
Collapse
Affiliation(s)
- Juha M Holopainen
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
Martínez J, Vögler O, Casas J, Barceló F, Alemany R, Prades J, Nagy T, Baamonde C, Kasprzyk PG, Terés S, Saus C, Escribá PV. Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval. Mol Pharmacol 2004; 67:531-40. [PMID: 15531732 DOI: 10.1124/mol.104.000778] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most drugs currently used for human therapy interact with proteins, altering their activity to modulate the pathological cell physiology. In contrast, 2-hydroxy-9-cis-octadecenoic acid (Minerval) was designed to modify the lipid organization of the membrane. Its structure was deduced following the guidelines of the mechanism of action previously proposed by us for certain antitumor drugs. The antiproliferative activity of Minerval supports the above-mentioned hypothesis. This molecule augments the propensity of membrane lipids to organize into nonlamellar (hexagonal H(II)) phases, promoting the subsequent recruitment of protein kinase C (PKC) to the cell membrane. The binding of the enzyme to membranes was marked and significantly elevated by Minerval in model (liposomes) and cell (A549) membranes and in heart membranes from animals treated with this drug. In addition, Minerval induced increased PKCalpha expression (mRNA and protein levels) in A549 cells. This drug also induced PKC activation, which led to a p53-independent increase in p21(CIP) expression, followed by a decrease in the cellular concentrations of cyclins A, B, and D3 and cdk2. These molecular changes impaired the cell cycle progression of A549 cells. At the cellular and physiological level, administration of Minerval inhibited the growth of cancer cells and exerted antitumor effects in animal models of cancer without apparent histological toxicity. The present results support the potential use of Minerval and related compounds in the treatment of tumor pathologies.
Collapse
Affiliation(s)
- Jordi Martínez
- Laboratory of Molecular and Cellular Biomedicine, Department of Biology, Institut Universitari d'Investigacions en Ciencies de la Salut, University of the Balearic Islands, Ctra. de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:275-88. [PMID: 15519321 DOI: 10.1016/j.bbamem.2004.06.010] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/16/2004] [Accepted: 06/24/2004] [Indexed: 11/23/2022]
Abstract
Nonbilayer lipids can be defined as cone-shaped lipids with a preference for nonbilayer structures with a negative curvature, such as the hexagonal phase. All membranes contain these lipids in large amounts. Yet, the lipids in biological membranes are organized in a bilayer. This leads to the question: what is the physiological role of nonbilayer lipids? Different models are discussed in this review, with a focus on the lateral pressure profile within the membrane. Based on this lateral pressure model, predictions can be made for the effect of nonbilayer lipids on peripheral and integral membrane proteins. Recent data on the catalytic domain of Leader Peptidase and the potassium channel KcsA are discussed in relation to these predictions and in relation to the different models on the function of nonbilayer lipids. The data suggest a general mechanism for the interaction between nonbilayer lipids and membrane proteins via the membrane lateral pressure.
Collapse
Affiliation(s)
- Els van den Brink-van der Laan
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
38
|
Söderlund T, Alakoskela JMI, Pakkanen AL, Kinnunen PKJ. Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer. Biophys J 2004; 85:2333-41. [PMID: 14507697 PMCID: PMC1303458 DOI: 10.1016/s0006-3495(03)74657-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of three so-called kosmotropic solutes, namely, betaine, sucrose, and choline chloride on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine large unilamellar vesicles, were studied by measuring the generalized polarization (GP) for the fluorescence emission of the membrane partitioning probe Laurdan. The latter has been shown to be sensitive to the depth of water penetration into phospholipid bilayers. At equal osmotic pressures the three solutes produced different increments in GP, with a qualitative positive correlation. However, the increments in GP correlated also quantitatively with the increase of air-water surface tension caused by the three kosmotropes. Our findings suggest surface tension to determine the impact of these solutes on the lateral packing of the lipid bilayer. Based on the changes in area/lipid at different surface tensions, the equilibrium lateral pressure for a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer at 25 degrees C was estimated to be approximately 34 mN/m.
Collapse
Affiliation(s)
- Tim Söderlund
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine/Biochemistry, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Lee WM, Ahlquist P. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J Virol 2004; 77:12819-28. [PMID: 14610203 PMCID: PMC262592 DOI: 10.1128/jvi.77.23.12819-12828.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Delta9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from approximately 2.5 to approximately 1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids.
Collapse
Affiliation(s)
- Wai-Ming Lee
- Howard Hughes Medical Institute and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
40
|
Peters GH, Svendsen A, Langberg H, Vind J, Patkar S, Kinnunen PK. Glycosylation of Thermomyces lanuginosa lipase enhances surface binding towards phospholipids, but does not significantly influence the catalytic activity. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(02)00030-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(02)00034-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00310-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Holopainen JM, Angelova MI, Söderlund T, Kinnunen PKJ. Macroscopic consequences of the action of phospholipase C on giant unilamellar liposomes. Biophys J 2002; 83:932-43. [PMID: 12124275 PMCID: PMC1302197 DOI: 10.1016/s0006-3495(02)75219-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Macroscopic consequences of the formation of diacylglycerol by phospholipase C (PC-PLC) in giant 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) unilamellar vesicles (GUVs, diameter 10-100 microm) were studied by phase contrast and fluorescence microscopy. PC-PLC caused a series of fast stepwise shrinkages of fluid SOPC GUVs, continuing until the vesicle disappeared beyond the optical resolution of the microscope. The presence of N-palmitoyl-sphingomyelin (mole fraction X = 0.25) in the GUVs did not affect the outcome of the PC-PLC reaction. In addition to hydrolysis, PC-PLC induced adhesion of vicinal vesicles. When multilamellar SOPC vesicles were used only a minor decrease in their diameter was evident suggesting that PC-PLC can exert its hydrolytic activity only in the outer monolayer. A series of stepwise shrinkages was observed also for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) GUVs above their main phase transition temperature, T(m), i.e., when the bilayer is in the liquid crystalline state. However, this process was not observed for DMPC GUVs in the gel state, below T(m). These results are supported by the enhanced activity of PC-PLC upon exceeding T(m) of DMPC large unilamellar vesicles (diameter approximately 0.1 microm) used as a substrate. Studies on SOPC monolayers revealed that PC-PLC can exert its hydrolytic activity only at surface pressures below approximately 30 mN/m. Accordingly, the lack of changes in the gel state DMPC GUVs could be explained by the equilibrium lateral pressure in these vesicles exceeding this critical value.
Collapse
Affiliation(s)
- Juha M Holopainen
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, 00290 Helsinki, Finland.
| | | | | | | |
Collapse
|
44
|
Wang Y, Botelho AV, Martinez GV, Brown MF. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 2002; 124:7690-701. [PMID: 12083922 DOI: 10.1021/ja0200488] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.
Collapse
Affiliation(s)
- Yin Wang
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
45
|
Kaasgaard T, Mouritsen OG, Jørgensen K. Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy. FEBS Lett 2002; 515:29-34. [PMID: 11943189 DOI: 10.1016/s0014-5793(02)02391-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid-supported lipid bilayer membrane. This leads to a height amplification of the lateral membrane organization that is large enough to be clearly imaged by scanning AFM. The power of the technique is demonstrated for a binary dipalmitoylphosphocholine-diarachidoylphosphocholine lipid mixture which is shown to exhibit a distinct lateral lipid domain formation. The new and simple ligand-receptor-based AFM approach opens up new ways to investigate lipid membrane microstructure in the nanometer range as well as the lateral distribution of ligand-lipid and receptor-protein complexes in supported membrane systems.
Collapse
Affiliation(s)
- Thomas Kaasgaard
- Department of Chemistry, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | | | | |
Collapse
|
46
|
Tuominen EKJ, Wallace CJA, Kinnunen PKJ. Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem 2002; 277:8822-6. [PMID: 11781329 DOI: 10.1074/jbc.m200056200] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of cytochrome c (cyt c) to fatty acids and acidic phospholipid membranes produces pronounced and essentially identical changes in the spectral properties of cyt c, revealing conformational changes in the protein. The exact mechanism of the interaction of fatty acids and acidic phospholipids with cyt c is unknown. Binding of cyt c to liposomes with high contents (mole fraction X > 0.7) of acidic phospholipids caused spectral changes identical to those due to binding of oleic acid. Fluorescence spectroscopy of a cyt c analog containing a Zn(2+) substituted heme moiety and brominated lipid derivatives (9,10)-dibromostearate and 1-palmitoyl-2-(9,10)-dibromo-sn-glycero-3-phospho-rac-glycerol demonstrated a direct contact between the fluorescent [Zn(2+)-heme] group and the brominated acyl chain. These data constitute direct evidence for interaction between an acyl chain of a membrane phospholipid and the inside of the protein containing the heme moiety and provide direct evidence for the so-called extended-lipid anchorage of cyt c to phospholipid membranes. In this mechanism, one of the phospholipid acyl chains protrudes out of the membrane and intercalates into a hydrophobic channel in cyt c while the other chain remains in the bilayer.
Collapse
Affiliation(s)
- Esa K J Tuominen
- Department of Biochemistry, Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, P. O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014 Finland
| | | | | |
Collapse
|
47
|
Dimitrova MN, Matsumura H, Terezova N, Neytchev V. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00248-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Chicano JJ, Ortiz A, Teruel JA, Aranda FJ. Organotin compounds promote the formation of non-lamellar phases in phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:70-81. [PMID: 11750266 DOI: 10.1016/s0005-2736(01)00426-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal H(II) structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane.
Collapse
Affiliation(s)
- José J Chicano
- Departamento de Bioquímica y Biología Molecular 'A', Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | | | | | | |
Collapse
|
49
|
Shaikh SR, Brzustowicz MR, Stillwell W, Wassall SR. Formation of inverted hexagonal phase in SDPE as observed by solid-state (31)P NMR. Biochem Biophys Res Commun 2001; 286:758-63. [PMID: 11520062 DOI: 10.1006/bbrc.2001.5454] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic acid (DHA), the longest and most unsaturated fatty acid commonly found in biological membranes, is known to affect various membrane properties. In a variety of cell membranes, DHA is primarily incorporated in phosphatidylethanolamines, where its function remains poorly understood. In order to understand the role of DHA in influencing membrane structure, we utilize (31)P NMR spectroscopy to study the phase behavior of 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE) in comparison to 1-palmitoyl-2-oleoyl-sn-glycerophosphoethanolamine (POPE) from 20 to 50 degrees C. Spectra of SDPE phospholipids show the formation of inverted hexagonal phase (H(II)) from 20 to 50 degrees C; in contrast, POPE mutilamellar dispersions exist in a lamellar liquid-crystalline phase (L(alpha)) at the same temperatures. The ability of SDPE to adopt nonbilayer phases at a physiological temperature may indicate its role in imparting negative curvature stress upon the membrane and may affect local molecular organization including the formation of lipid microdomains within biological membranes.
Collapse
Affiliation(s)
- S R Shaikh
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
50
|
Varnier Agasøster A, Holmsen H. Chlorpromazine associates with phosphatidylserines to cause an increase in the lipid's own interfacial molecular area--role of the fatty acyl composition. Biophys Chem 2001; 91:37-47. [PMID: 11403882 DOI: 10.1016/s0301-4622(01)00152-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Partition coefficients of the drug chlorpromazine were determined for five different molecular species of diacylglycerophosphatidylserine in a monolayer kept at constant surface pressure (20 mN/m). Two models of adsorption of chlorpromazine in phosphatidylserine monolayers were compared. The first model correlated the amount of inserted drug molecules with the induced increase in area. The second model introduced the effect of drug adsorption on the lipid's own area by comparing the effect of increasing temperature on the lipid's own interfacial area. From the second model, the extrapolated work of insertion of one drug molecule per lipid molecule in a monolayer kept at 20 mN/m was correlated to the partition of the drug in liposomes. The work of insertion of chlorpromazine was insignificant in the unsaturated dioleoylphosphatidylserine and was maximum in the saturated distearoylphosphatidylserine monolayers. The presence of one double bond in the acyl chains dramatically reduces the work of insertion of chlorpromazine between lipid molecules and also reduces the effect chlorpromazine induces on the lipids own interfacial area in monolayers.
Collapse
Affiliation(s)
- A Varnier Agasøster
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway.
| | | |
Collapse
|