1
|
Bagga AD, Johnson BP, Zhang Q. Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins. Pflugers Arch 2025; 477:453-478. [PMID: 39751918 DOI: 10.1007/s00424-024-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Brian P Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Ritsch I, Dyson HJ, Wright PE. Aggregation of Transthyretin by Fluid Agitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622726. [PMID: 39605681 PMCID: PMC11601261 DOI: 10.1101/2024.11.08.622726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The transthyretin (TTR) tetramer, assembled as a dimer of dimers, transports thyroxine and retinol binding protein in blood plasma and cerebrospinal fluid. Aggregation of wild type or pathogenic variant TTR leads to transthyretin amyloidosis (ATTR), which is associated with neurodegenerative and cardiac disease. The trigger for TTR aggregation under physiological conditions is unknown. The tetramer is extremely stable at neutral pH, but aggregation via tetramer dissociation and monomer misfolding can be induced in vitro by lowering the pH. To elucidate factors that may cause TTR aggregation at neutral pH, we examined the effect of shear forces such as arise from fluid flow in the vascular system. Fluid shear forces were generated by rapidly stirring TTR solutions in conical microcentrifuge tubes. Under agitation, TTR formed β-rich aggregates and fibrils at a rate that was dependent upon protein concentration. The lag time before the onset of agitation-induced aggregation increases as the total TTR concentration is increased, consistent with a mechanism in which the tetramer first dissociates to form monomer that either partially unfolds to enter the aggregation pathway or reassociates to form tetramer. NMR spectra recorded at various time points during the lag phase revealed growth of an aggregation-prone intermediate trapped as a dynamically perturbed tetramer. Enhanced conformational fluctuations in the weak dimer-dimer interface suggests loosening of critical inter-subunit contacts which likely destabilizes the agitated tetramer and predisposes it towards dissociation. These studies provide new insights into the mechanism of aggregation of wild type human TTR under near physiological conditions.
Collapse
Affiliation(s)
- Irina Ritsch
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
3
|
Almeida ZL, Vaz DC, Brito RMM. Transthyretin mutagenesis: impact on amyloidogenesis and disease. Crit Rev Clin Lab Sci 2024; 61:616-640. [PMID: 38850014 DOI: 10.1080/10408363.2024.2350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Transthyretin (TTR), a homotetrameric protein found in plasma, cerebrospinal fluid, and the eye, plays a pivotal role in the onset of several amyloid diseases with high morbidity and mortality. Protein aggregation and fibril formation by wild-type TTR and its natural more amyloidogenic variants are hallmarks of ATTRwt and ATTRv amyloidosis, respectively. The formation of soluble amyloid aggregates and the accumulation of insoluble amyloid fibrils and deposits in multiple tissues can lead to organ dysfunction and cell death. The most frequent manifestations of ATTR are polyneuropathies and cardiomyopathies. However, clinical manifestations such as carpal tunnel syndrome, leptomeningeal, and ocular amyloidosis, among several others may also occur. This review provides an up-to-date listing of all single amino-acid mutations in TTR known to date. Of approximately 220 single-point mutations, 93% are considered pathogenic. Aspartic acid is the residue mutated with the highest frequency, whereas tryptophan is highly conserved. "Hot spot" mutation regions are mainly assigned to β-strands B, C, and D. This manuscript also reviews the protein aggregation models that have been proposed for TTR amyloid fibril formation and the transient conformational states that convert native TTR into aggregation-prone molecular species. Finally, it compiles the various in vitro TTR aggregation protocols currently in use for research and drug development purposes. In short, this article reviews and discusses TTR mutagenesis and amyloidogenesis, and their implications in disease onset.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
- LSRE-LCM - Leiria, Portugal & ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Bagga AD, Johnson BP, Zhang Q. Spatially Dependent Tissue Distribution of Thyroid Hormones by Plasma Thyroid Hormone Binding Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572629. [PMID: 38187691 PMCID: PMC10769377 DOI: 10.1101/2023.12.20.572629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| |
Collapse
|
5
|
Mizuguchi M, Nakagawa Y, Inui K, Katayama W, Sawai Y, Shimane A, Kitakami R, Okada T, Nabeshima Y, Yokoyama T, Kanamitsu K, Nakagawa S, Toyooka N. Chlorinated Naringenin Analogues as Potential Inhibitors of Transthyretin Amyloidogenesis. J Med Chem 2022; 65:16218-16233. [PMID: 36472374 DOI: 10.1021/acs.jmedchem.2c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Misfolding and aggregation of transthyretin are implicated in the fatal systemic disease known as transthyretin amyloidosis. Here, we report the development of a naringenin derivative bearing two chlorine atoms that will be efficacious for preventing aggregation of transthyretin in the eye. The amyloid inhibitory activity of the naringenin derivative was as strong as that of tafamidis, which is the first therapeutic agent targeting transthyretin in the plasma. X-ray crystal structures of the compounds in complex with transthyretin demonstrated that the naringenin derivative with one chlorine bound to the thyroxine-binding site of transthyretin in the forward mode and that the derivative with two chlorines bound to it in the reverse mode. An ex vivo competitive binding assay showed that naringenin derivatives exhibited more potent binding than tafamidis in the plasma. Furthermore, an in vivo pharmacokinetic study demonstrated that the dichlorinated derivative was significantly delivered to the eye.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Kishin Inui
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Wakana Katayama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yurika Sawai
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ayaka Shimane
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Ryota Kitakami
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Kayoko Kanamitsu
- Drug Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsaku Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
6
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Multifunctional self-driven origami paper-based integrated microfluidic chip to detect CRP and PAB in whole blood. Biosens Bioelectron 2022; 208:114225. [DOI: 10.1016/j.bios.2022.114225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
8
|
Chen J, Cao D, Fortmann SD, Curcio CA, Feist RM, Crosson JN. Transthyretin proteoforms of intraocular origin in human subretinal fluid. Exp Eye Res 2022; 222:109163. [PMID: 35760119 DOI: 10.1016/j.exer.2022.109163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Understanding the molecular composition of ocular tissues and fluids could inform new approaches to prevalent causes of blindness. Subretinal fluid accumulating between the photoreceptor outer segments and retinal pigment epithelium (RPE) is potentially a rich source of proteins and lipids normally cycling among outer retinal cells and choroid. Herein, intact post-translationally modified proteins (proteoforms) were extracted from subretinal fluids of five patients with rhegmatogenous retinal detachment (RRD), analyzed by tandem mass spectrometry, and compared to published data on these same proteins as synthesized by other organs. Single-nuclei transcriptomic data from non-diseased human retina/RPE were used to identify whether proteins in subretinal fluid were of potential ocular origin. Two human donor eyes with normal maculas were immunoprobed for transthyretin (TTR) with appropriate controls. The three most abundant proteins detected in subretinal fluid were albumin, TTR, and apolipoprotein A-I. Remarkably, TTR relative to the other proteins was more abundant than its serum counterpart, suggestive of TTR being synthesized predominantly locally. Six post-translationally modified protein forms (proteoforms) of TTR were detected, with the relative amount of glutathionylated TTR being much higher in the subretinal fluid (12-43%) than values reported for serum (<5%) and cerebrospinal fluid (0.4-13%). Moreover, a putative glycosylated TTR dimer of 32,428 Da was detected as the fourth most abundant protein. The high abundance of TTR and putative TTR dimer in subretinal fluid was supported by analysis of available single-nuclei transcriptomic data, which showed strong and specific signal for TTR in RPE. Immunohistochemistry further showed strong diffuse TTR immunoreactivity in choroidal stroma that contrasted with vertically aligned signal in the outer segment zone of the subretinal space and negligible signal in RPE cell bodies. These results suggest that TTR in the retina is synthesized intraocularly, and glutathionylation is crucial for its normal function. Further studies on the composition, function, and quantities of TTR and other proteoforms in subretinal fluid could inform mechanisms, diagnostic methods, and treatment strategies for age-related macular degeneration, familial amyloidosis, and other retinal diseases involving dysregulation of physiologic lipid transfer and oxidative stress.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Richard M Feist
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Inhibitory activities of anthraquinone and xanthone derivatives against transthyretin amyloidogenesis. Bioorg Med Chem 2021; 44:116292. [PMID: 34225167 DOI: 10.1016/j.bmc.2021.116292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Transthyretin is a tetrameric protein which functions as a transporter of thyroxine and retinol-binding protein. Misfolding and amyloid aggregation of transthyretin are known to cause wild-type and hereditary transthyretin amyloidosis. Stabilization of the transthyretin tetramer by low molecular weight compounds is an efficacious strategy to inhibit the aggregation pathway in the amyloidosis. Here, we investigated the inhibitory activities of anthraquinone and xanthone derivatives against amyloid aggregation, and found that xanthone-2-carboxylic acid with one chlorine or methyl group has strong inhibitory activity comparable with that of diflunisal, which is one of the best known stabilizers of transthyretin. X-ray crystallographic structures of transthyretin in complex with the compounds revealed that the introduction of chlorine, which is buried in a hydrophobic region, is important for the strong inhibitory effect of the stabilizer against amyloidogenesis. An in vitro absorption, distribution, metabolism and elimination (ADME) study and in vivo pharmacokinetic study demonstrated that the compounds have drug-like features, suggesting that they have potential as therapeutic agents to stabilize transthyretin.
Collapse
|
10
|
Murakami T, Yokoyama T, Mizuguchi M, Toné S, Takaku S, Sango K, Nishimura H, Watabe K, Sunada Y. A low amyloidogenic E61K transthyretin mutation may cause familial amyloid polyneuropathy. J Neurochem 2020; 156:957-966. [PMID: 32852783 DOI: 10.1111/jnc.15162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/09/2020] [Accepted: 08/14/2020] [Indexed: 12/01/2022]
Abstract
Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late-onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild-type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin-T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild-type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non-myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood-nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.
Collapse
Affiliation(s)
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | - Shigenobu Toné
- Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Kazuhiko Watabe
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
11
|
Ranasinghe RN, Biswas M, Vincent RP. Prealbumin: The clinical utility and analytical methodologies. Ann Clin Biochem 2020; 59:7-14. [PMID: 32429677 DOI: 10.1177/0004563220931885] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prealbumin is a small protein which has been widely evaluated as a nutritional and a prognostic marker. The small size and concentration of prealbumin in blood proposes challenges on measuring it with high sensitivity and specificity. Over the years, a number of analytical methodologies have been developed, which may help establish prealbumin as a useful biomarker in routine clinical practice. The aim of the short review was to explore the current literature on the clinical utility of prealbumin and the advances made in the analytical methodologies of prealbumin. We searched MEDLINE, EMBASE and the Cochrane Library for articles published between January 1980 and July 2019, with the general search terms of 'prealbumin', 'prognostic marker', 'nutritional marker', 'analytical methodologies' and 'malnutrition'. Additionally, we selected relevant articles and comprehensive overviews from reference lists of identified studies. The routine use of prealbumin in clinical practice remains debatable; however; it can complement clinical history, anthropometric assessment and physical examination to assess malnutrition with more certainty. Consensus on the clinical applications of prealbumin in the management of malnutrition is warranted.
Collapse
Affiliation(s)
- Ruvini Nk Ranasinghe
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, , UK
| | - Milly Biswas
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, , UK
| | - Royce P Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, , UK
| |
Collapse
|
12
|
Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, Cascella R, Dobson CM, Vendruscolo M, Knowles TPJ, Chiti F. Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules 2020; 21:1112-1125. [PMID: 32011129 PMCID: PMC7997117 DOI: 10.1021/acs.biomac.9b01475] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Alzheimer’s
disease is associated with the deposition of
the amyloid-β peptide (Aβ) into extracellular senile plaques
in the brain. In vitro and in vivo observations have indicated that
transthyretin (TTR) acts as an Aβ scavenger in the brain, but
the mechanism has not been fully resolved. We have monitored the aggregation
process of Aβ40 by thioflavin T fluorescence, in
the presence or absence of different concentrations of preformed seed
aggregates of Aβ40, of wild-type tetrameric TTR (WT-TTR),
and of a variant engineered to be stable as a monomer (M-TTR). Both
WT-TTR and M-TTR were found to inhibit specific steps of the process
of Aβ40 fibril formation, which are primary and secondary
nucleations, without affecting the elongation of the resulting fibrils.
Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aβ40 oligomers formed in the aggregation reaction and inhibit
their conversion into the shortest fibrils able to elongate. Using
biophysical methods, TTR was found to change some aspects of its overall
structure following such interactions with Aβ40 oligomers,
as well as with oligomers of Aβ42, while maintaining
its overall topology. Hence, it is likely that the predominant mechanism
by which TTR exerts its protective role lies in the binding of TTR
to the Aβ oligomers and in inhibiting primary and secondary
nucleation processes, which limits both the toxicity of Aβ oligomers
and the ability of the fibrils to proliferate.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Sean Chia
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Simone Ruggeri
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Georg Meisl
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Johnny Habchi
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
13
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Chen R, Chen CP, Preston JE. Effects of transthyretin on thyroxine and β-amyloid removal from cerebrospinal fluid in mice. Clin Exp Pharmacol Physiol 2017; 43:844-50. [PMID: 27220110 DOI: 10.1111/1440-1681.12598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) is a binding protein for the thyroid hormone thyroxine (T4 ), retinol and β-amyloid peptide. TTR aids the transfer of T4 from the blood to the cerebrospinal fluid (CSF), but also prevents T4 loss from the blood-CSF barrier. It is, however, unclear whether TTR affects the clearance of β-amyloid from the CSF. This study aimed to investigate roles of TTR in β-amyloid and T4 efflux from the CSF. Eight-week-old 129sv male mice were anaesthetized and their lateral ventricles were cannulated. Mice were infused with artificial CSF containing (125) I-T4 /(3) H-mannitol, or (125) I-Aβ40/(3) H-inulin, in the presence or absence of TTR. Mice were decapitated at 2, 4, 8, 16, 24 minutes after injection. The whole brain was then removed and divided into different regions. The radioactivities in the brain were determined by liquid scintillation counting. At baseline, the net uptake of (125) I-T4 into the brain was significantly higher than that of (125) I-Aβ40, and the half time for efflux was shorter ((125) I-T4 , 5.16; (3) H-mannitol, 7.44; (125) I-Aβ40, 8.34; (3) H-inulin, 10.78 minutes). The presence of TTR increased the half time for efflux of (125) I-T4 efflux, and caused a noticeable increase in the uptake of (125) I-T4 and (125) I-Aβ40 in the choroid plexus, whilst uptakes of (3) H-mannitol and (3) H-inulin remained similar to control experiments. This study indicates that thyroxine and amyloid peptide effuse from the CSF using different transporters. TTR binds to thyroxine and amyloid peptide to prevent the loss of thyroxine from the brain and redistribute amyloid peptide to the choroid plexus.
Collapse
Affiliation(s)
- Ruoli Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Institute of Science and Technology of Medicine, School of Pharmacy, Keele University, Staffordshire, UK
| | - Carl P Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan County, Taiwan, China
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
15
|
Jesus CSH, Almeida ZL, Vaz DC, Faria TQ, Brito RMM. A New Folding Kinetic Mechanism for Human Transthyretin and the Influence of the Amyloidogenic V30M Mutation. Int J Mol Sci 2016; 17:E1428. [PMID: 27589730 PMCID: PMC5037707 DOI: 10.3390/ijms17091428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/04/2023] Open
Abstract
Protein aggregation into insoluble amyloid fibrils is the hallmark of several neurodegenerative diseases, chief among them Alzheimer's and Parkinson's. Although caused by different proteins, these pathologies share some basic molecular mechanisms with familial amyloidotic polyneuropathy (FAP), a rare hereditary neuropathy caused by amyloid formation and deposition by transthyretin (TTR) in the peripheral and autonomic nervous systems. Among the amyloidogenic TTR mutations known, V30M-TTR is the most common in FAP. TTR amyloidogenesis (ATTR) is triggered by tetramer dissociation, followed by partial unfolding and aggregation of the low conformational stability monomers formed. Thus, tetramer dissociation kinetics, monomer conformational stability and competition between refolding and aggregation pathways do play a critical role in ATTR. Here, we propose a new model to analyze the refolding kinetics of WT-TTR and V30M-TTR, showing that at pH and protein concentrations close to physiological, a two-step mechanism with a unimolecular first step followed by a second-order second step adjusts well to the experimental data. Interestingly, although sharing the same kinetic mechanism, V30M-TTR refolds at a much slower rate than WT-TTR, a feature that may favor the formation of transient species leading to kinetic partition into amyloidogenic pathways and, thus, significantly increasing the probability of amyloid formation in vivo.
Collapse
Affiliation(s)
- Catarina S H Jesus
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Health Research Unit, School of Health Sciences, Leiria 2411-901, Portugal.
| | - Tiago Q Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
16
|
Yan J, Li G, Hu Y, Ou W, Wan Y. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med 2014; 12:343. [PMID: 25496223 PMCID: PMC4269866 DOI: 10.1186/s12967-014-0343-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 04/12/2023] Open
Abstract
Background Nanobodies (Nbs) have proved their great value as therapeutic molecules and clinical diagnostic tools. Although the routine procedure to obtain Nbs is to immunize camels with antigens, it is unavailable to immunize a camel when the antigens are highly toxic, pathogenic or nonimmunogenic. A synthetic phage display library is an alternative to generate Nbs against such targets, besides all the other ones. Methods We constructed a large and diverse synthetic phage display Nanobody (Nb) library based on the conserved camel single-domain antibody fragment (VHH) framework of cAbBCII10. Diversity was introduced in the complementarity-determining region 3 (CDR3) by means of randomization of synthetic oligonucleotides. Then human prealbumin (PA) and neutrophil gelatinase-associated lipocalin (NGAL) were used to select specific Nbs from this library. Furthermore, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed to detect PA based on horseradish peroxidase (HRP)-conjugated anti-PA Nb isolated from this study and another biotinylated anti-PA Nb obtained from an immune library, in our previous study. Results A large and diverse synthetic phage display Nb library with CDR3 regions randomized by trinucleotide cassettes was constructed. The library size was 1.65 × 109 CFU/mL and the correct insertion ratio was nearly 100%. A Nb against human PA and against NGAL was successfully isolated from the synthetic library. The obtained anti-PA Nb was effectively used to develop a sandwich ELISA for PA detection and it demonstrated a working range from 50 to 1000 ng/mL, with a limit of detection (LOD) of 27.1 ng/mL. Conclusion This proposed novel synthetic library was a good source for obtaining some antigen-specific Nbs. This approach could provide crucial support to an immune library and a naïve library in the acquisition of specific Nbs, potentially functioning as a great resource for medical diagnostic applications. In addition, we have successfully developed a novel sandwich ELISA to detect PA, which could provide great assistance for clinical PA detection.
Collapse
Affiliation(s)
- Junrong Yan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Guanghui Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Yonghong Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Weijun Ou
- Jiangsu Nanobody Engineering and Research Center, Nantong, 226010, PR China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China. .,Jiangsu Nanobody Engineering and Research Center, Nantong, 226010, PR China.
| |
Collapse
|
17
|
The V30M Amyloidogenic Mutation Decreases the Rate of Refolding Kinetics of the Tetrameric Protein Transthyretin. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/502497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transthyretin (TTR) is a homotetrameric protein implicated in several amyloid diseases. The mechanism by which TTR is converted into elongated fibrillar assemblies has been extensively investigated, and numerous studies showed that dissociation of the native tetrameric structure into partially unfolded monomeric species precedes amyloid formation. The small differences observed in the crystal structures of different TTR variants, as well as the thermodynamics and kinetics of tetramer dissociation, do not seem to completely justify the amyloidogenic potential of different TTR variants. With this in mind, we have studied the refolding kinetics of WT-TTR and its most common amyloidogenic variant V30M-TTR, monitoring changes in intrinsic tryptophan fluorescence at different urea and protein concentrations. Our results demonstrate that thein vitrorefolding mechanisms of WT- and V30M-TTR are similar, involving a dimeric intermediate. However, there are large differences in the refolding rate constants for the two variants, specially close to physiological conditions. Interestingly, tetramer formation occurs at a much slower rate in the amyloidogenic variant V30M-TTR than in WT-TTR, which in thein vivosetting may promote the accumulation of monomeric species in the extracellular environment, resulting in higher susceptibility for aggregation and amyloid formation instead of spontaneous refolding.
Collapse
|
18
|
Li X, Buxbaum JN. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 2011; 6:79. [PMID: 22112803 PMCID: PMC3267701 DOI: 10.1186/1750-1326-6-79] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Since the mid-1990's a trickle of publications from scattered independent laboratories have presented data suggesting that the systemic amyloid precursor transthyretin (TTR) could interact with the amyloidogenic β-amyloid (Aβ) peptide of Alzheimer's disease (AD). The notion that one amyloid precursor could actually inhibit amyloid fibril formation by another seemed quite far-fetched. Further it seemed clear that within the CNS, TTR was only produced in choroid plexus epithelial cells, not in neurons. The most enthusiastic of the authors proclaimed that TTR sequestered Aβ in vivo resulting in a lowered TTR level in the cerebrospinal fluid (CSF) of AD patients and that the relationship was salutary. More circumspect investigators merely showed in vitro interaction between the two molecules. A single in vivo study in Caenorhabditis elegans suggested that wild type human TTR could suppress the abnormalities seen when Aβ was expressed in the muscle cells of the worm. Subsequent studies in human Aβ transgenic mice, including those from our laboratory, also suggested that the interaction reduced the Aβ deposition phenotype. We have reviewed the literature analyzing the relationship including recent data examining potential mechanisms that could explain the effect. We have proposed a model which is consistent with most of the published data and current notions of AD pathogenesis and can serve as a hypothesis which can be tested.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd,, MEM-230, La Jolla, CA 92037, USA
| | | |
Collapse
|
19
|
Liu L, Hou J, Du J, Chumanov RS, Xu Q, Ge Y, Johnson JA, Murphy RM. Differential modification of Cys10 alters transthyretin's effect on beta-amyloid aggregation and toxicity. Protein Eng Des Sel 2009; 22:479-88. [PMID: 19549717 PMCID: PMC2719498 DOI: 10.1093/protein/gzp025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 05/20/2009] [Accepted: 05/23/2009] [Indexed: 12/21/2022] Open
Abstract
Tg2576 mice produce high levels of beta-amyloid (Abeta) and develop amyloid deposits, but lack neurofibrillary tangles and do not suffer the extensive neuronal cell loss characteristic of Alzheimer's disease. Protection from Abeta toxicity has been attributed to up-regulation of transthyretin (TTR), a normal component of plasma and cerebrospinal fluid. We compared the effect of TTR purified from human plasma (pTTR) with that produced recombinantly (rTTR) on Abeta aggregation and toxicity. pTTR slowed Abeta aggregation but failed to protect primary cortical neurons from Abeta toxicity. In contrast, rTTR accelerated aggregation, while effectively protecting neurons. This inverse correlation between Abeta aggregation kinetics and toxicity is consistent with the hypothesis that soluble intermediates rather than insoluble fibrils are the most toxic Abeta species. We carried out a detailed comparison of pTTR with rTTR to ascertain the probable cause of these different effects. No differences in secondary, tertiary or quaternary structure were detected. However, pTTR differed from rTTR in the extent and nature of modification at Cys10. We hypothesize that differential modification at Cys10 regulates TTR's effect on Abeta aggregation and toxicity.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Jie Hou
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Jiali Du
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Robert S. Chumanov
- Cellular and Molecular Biology Program and McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Ave., Madison, WI 53706
| | - Qingge Xu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706
| | - Jeffrey A. Johnson
- Cellular and Molecular Biology Program and McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Ave., Madison, WI 53706
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, WI 53705, USA
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| |
Collapse
|
20
|
Sousa MM, Saraiva MJ. Transthyretin is not expressed by dorsal root ganglia cells. Exp Neurol 2008; 214:362-5. [PMID: 18835560 DOI: 10.1016/j.expneurol.2008.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/12/2008] [Accepted: 08/21/2008] [Indexed: 11/25/2022]
Abstract
Several mutations in transthyretin (TTR) are related to familial amyloidotic polyneuropathy (FAP), a neurodegenerative disorder caused by extracellular deposition of TTR fibrils, particularly in the peripheral nervous system (PNS). TTR is mainly synthesized by the liver and choroid plexus of the brain that contribute to the plasma and cerebrospinal fluid (CSF) pools of the protein, respectively. It has recently been reported that TTR is additionally expressed in the PNS, namely by peripheral glial cells of dorsal root ganglia (DRG). This lead to the hypothesis that TTR synthesis in the DRG might contribute to the PNS involvement in FAP. In this report we clarify this issue by showing that TTR synthesis is absent in both human and mouse DRG. Moreover, by using TTR KO mouse DRG as controls, we demonstrate that TTR-like immunoreactivity in the perineurium is an artifact. As such, and similarly to what has been previously shown in the central nervous system (CNS), TTR amplification by RT-PCR in the DRG most probably results from contamination by the meninges. In conclusion, TTR deposited in the PNS of FAP patients should still be regarded as having blood and/or CSF origin.
Collapse
Affiliation(s)
- Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular- IBMC, Portugal
| | | |
Collapse
|
21
|
Abstract
We have compiled from literature and other sources a list of 1261 proteins believed to be differentially expressed in human cancer. These proteins, only some of which have been detected in plasma to date, represent a population of candidate plasma biomarkers that could be useful in early cancer detection and monitoring given sufficiently sensitive specific assays. We have begun to prioritize these markers for future validation by frequency of literature citations, both total and as a function of time. The candidates include proteins involved in oncogenesis, angiogenesis, development, differentiation, proliferation, apoptosis, hematopoiesis, immune and hormonal responses, cell signaling, nucleotide function, hydrolysis, cellular homing, cell cycle and structure, the acute phase response and hormonal control. Many have been detected in studies of tissue or nuclear components; nevertheless we hypothesize that most if not all should be present in plasma at some level. Of the 1261 candidates only 9 have been approved as "tumor associated antigens" by the FDA. We propose that systematic collection and large-scale validation of candidate biomarkers would fill the gap currently existing between basic research and clinical use of advanced diagnostics.
Collapse
Affiliation(s)
- Malu Polanski
- The Plasma Proteome Institute, P.O. Box: 53450, Washington DC, 20009-3450, USA
| | | |
Collapse
|
22
|
Sullivan GM, Mann JJ, Oquendo MA, Lo ES, Cooper TB, Gorman JM. Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol Psychiatry 2006; 60:500-6. [PMID: 16487493 DOI: 10.1016/j.biopsych.2005.11.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 10/17/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a thyroid hormone binding protein synthesized by choroid plexus and secreted into cerebrospinal fluid (CSF). We sought to replicate and extend our previous findings of lower CSF TTR in depression. METHODS Cerebrospinal fluid TTR concentrations of 17 medication-free patients with major depressive disorder (MDD) and 15 healthy individuals were determined by a sensitive, specific radioimmunoassay newly developed in our laboratory (ESL, TBC). RESULTS Cerebrospinal fluid TTR was lower in the MDD patients compared with healthy volunteers (mean +/- SD, 19.7 +/- 1.6 vs. 21.8 +/- 2.2 mg/L, p = .005). Age correlated positively with CSF TTR (r = .38, p < .05). The group difference remained significant (p < .005) after covariance for age. Within the MDD group, Scale for Suicide Ideation total score correlated inversely with CSF TTR (beta = -.58, p < .05). In the entire sample of depressed and healthy individuals, CSF 5-hydroxyindoleacetic acid (5-HIAA) correlated positively (beta = .34, p < .05) with CSF TTR. CONCLUSIONS We replicated our finding of low CSF TTR levels in depression and newly identified two relationships that may explain reports linking thyroid axis dysfunction and suicidal behaviors. Serotonergic hypofunction in depression, reflected by low CSF 5-HIAA, may result in decreased choroid plexus TTR production, alterations in central thyroid hormone kinetics, and increased vulnerability to suicidal ideation and perhaps suicide.
Collapse
Affiliation(s)
- Gregory M Sullivan
- Division of Neuroscience, Department of Psychiatry, Columbia University, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Giunta S, Valli MB, Galeazzi R, Fattoretti P, Corder EH, Galeazzi L. Transthyretin inhibition of amyloid beta aggregation and toxicity. Clin Biochem 2005; 38:1112-9. [PMID: 16183049 DOI: 10.1016/j.clinbiochem.2005.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/29/2005] [Accepted: 08/16/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of this study was to investigate transthyretin (prealbumin) effects on Abeta25-35-induced cytotoxicity. DESIGN AND METHODS In view of the well-recognized literature data demonstrating that Abeta25-35 fibrillar aggregates cause in vitro cytotoxicity to human red blood cells and apoptotic changes to SK-N-BE neuroblastoma cells in cultures (ultrastructural evidence), we tested transthyretin effects on these two experimental models. RESULTS Incubation of Abeta25-35 with transthyretin (at transthyretin concentrations equal to CSF physiological levels) demonstrated both inhibition of red blood cells lysis and neutralization of SK-N-BE neuroblastoma cells ultrastructural apoptotic changes. Moreover, transthyretin was shown to be able to inhibit the formation of fibrillar macroaggregates of Abeta25-35. CONCLUSIONS The findings imply that experimental systems investigating Abeta-induced cytotoxicity consider the protective interaction of transthyretin with Abeta; an interaction to be considered also in vivo in view of the fact that transthyretin immunoreactivity has been previously demonstrated in amyloid plaques of brains from Alzheimer's disease patients.
Collapse
Affiliation(s)
- S Giunta
- Laboratorio Analisi Chimico-Cliniche, Microbiologiche e Diagnostica Molecolare, Ospedale Geriatrico INRCA (IRCCS), Via della Montagnola 81, 60100 Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging. Curr Top Dev Biol 2005; 71:1-52. [PMID: 16344101 DOI: 10.1016/s0070-2153(05)71001-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Shinohara Y, Mizuguchi M, Matsubara K, Takeuchi M, Matsuura A, Aoki T, Igarashi K, Nagadome H, Terada Y, Kawano K. Biophysical Analyses of the Transthyretin Variants, Tyr114His and Tyr116Ser, Associated with Familial Amyloidotic Polyneuropathy. Biochemistry 2003; 42:15053-60. [PMID: 14690414 DOI: 10.1021/bi0353528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The familial amyloidotic polyneuropathy is strictly associated with point mutations in the coding region of the transthyretin gene. Here, we focused on the mutations in the monomer-monomer and dimer-dimer interaction site of the transthyretin tetramer. The naturally occurring amyloidogenic Tyr114His (Y114H) and Tyr116Ser (Y116S) variants formed more amyloid fibrils than the wild-type transthyretin, nonamyloidogenic Tyr116Val (Y116V) variant, and other amyloidogenic variants in previous studies. The secondary, tertiary, and quaternary structural stabilities of the Y114H and Y116S variants were compared with those of the wild-type transthyretin and nonamyloidogenic Y116V variant. The unfolding data indicated that the amyloidogenic Y114H and Y116S mutations reduced the stability of the secondary, tertiary, and quaternary structure. Our results also indicated that the unfolding of Y114H and Y116S is less cooperative than that of the wild-type transthyretin. Moreover, the tetramer of the amyloidogenic variants dissociated to the monomer even at pH 7.0, indicating the importance of Tyr114 and Tyr116 in strengthening the contacts between monomers and/or dimers of the transthyretin molecule.
Collapse
|
26
|
Abstract
The impact of ageing on the choroid plexus (CP)-CSF circulatory system has largely been un-investigated, or has been of interest only in relation to neurological disease. This paper reviews the evidence for age-related changes to the CP-CSF system and compares changes with disease states where appropriate. The changes discussed include reduced ion transport capabilities, evidence for oxidative stress, altered hormone interactions, decreased CSF secretion rates in animal models and the contradictory nature of human data, reduced clearance of protein from CSF, and slower fluid turnover. The potential impacts of these changes are highlighted, including the possibility of reduced resistance to stress insults and slow clearance of toxic compounds from CSF with specific reference to amyloid peptide. Other impacts may include the reduced ability of CSF to act as a circulating medium for hormone and growth factors to reach their brain targets, and reduced homeostasis of CSF nutrients (amino acids, vitamins), which might influence brain interstitial fluid homeostasis.
Collapse
Affiliation(s)
- J E Preston
- Institute of Gerontology, King's College London, London SE1 8WA, United Kingdom.
| |
Collapse
|
27
|
Quintas A, Saraiva MJ, Brito RM. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J Biol Chem 1999; 274:32943-9. [PMID: 10551861 DOI: 10.1074/jbc.274.46.32943] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amyloidosis, normally innocuous soluble proteins polymerize to form insoluble fibrils. Amyloid fibril formation and deposition have been associated with a wide range of diseases, including spongiform encephalopathies, Alzheimer's disease, and familial amyloid polyneuropathies (FAP). In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein implicated in the transport of thyroxine and retinol. The most common amyloidogenic TTR variant is V30M-TTR, and L55P-TTR is the variant associated with the most aggressive form of FAP. Recently, we reported that TTR dissociates to a monomeric species at pH 7.0 and nearly physiological ionic strengths (Quintas, A., Saraiva, M. J., and Brito, R. M. (1997) FEBS Lett. 418, 297-300). Here, we show that the tetramer dissociation is apparently irreversible; and based on intrinsic tryptophan fluorescence and fluorescence quenching experiments, we show that the monomeric species formed upon tetramer dissociation is non-native. We also show, based on 1-anilino-8-naph-thalenesulfonate binding studies, that this monomeric species appears not to behave like a molten globule. These data allowed us to propose a model for TTR amyloidogenesis based on tetramer dissociation occurring naturally under commonly observed physiological solution conditions.
Collapse
Affiliation(s)
- A Quintas
- Centro de Neurociências de Coimbra, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
28
|
Bohrmann B, Tjernberg L, Kuner P, Poli S, Levet-Trafit B, Näslund J, Richards G, Huber W, Döbeli H, Nordstedt C. Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues. J Biol Chem 1999; 274:15990-5. [PMID: 10347147 DOI: 10.1074/jbc.274.23.15990] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report that certain plasma proteins, at physiological concentrations, are potent inhibitors of amyloid beta-peptide (Abeta) polymerization. These proteins are also present in cerebrospinal fluid, but at low concentrations having little or no effect on Abeta. Thirteen proteins representing more than 90% of the protein content in plasma and cerebrospinal fluid were studied. Quantitatively, albumin was the most important protein, representing 60% of the total amyloid inhibitory activity, followed by alpha1-antitrypsin and immunoglobulins A and G. Albumin suppressed amyloid formation by binding to the oligomeric or polymeric Abeta, blocking a further addition of peptide. This effect was also observed when the incorporation of labeled Abeta into genuine beta-amyloid in tissue section was studied. The Abeta and the anti-diabetic drug tolbutamide apparently bind to the same site on albumin. Tolbutamide displaces Abeta from albumin, increasing its free concentration and enhancing amyloid formation. The present results suggest that several endogenous proteins are negative regulators of amyloid formation. Plasma contains at least 300 times more amyloid inhibitory activity than cerebrospinal fluid. These findings may provide one explanation as to why beta-amyloid deposits are not found in peripheral tissues but are only found in the central nervous system. Moreover, the data suggest that some drugs that display an affinity for albumin may enhance beta-amyloid formation and promote the development of Alzheimer's disease.
Collapse
Affiliation(s)
- B Bohrmann
- F. Hoffmann-La Roche AG, Pharma Division, Preclinical Research, CH-4070, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bom VJ, Brügemann J, van der Schaaf W, van Wijk RT, van der Meer J. Rapid enzyme immunoassay of anti-streptokinase antibodies in human plasma. Clin Chim Acta 1993; 218:121-9. [PMID: 8306437 DOI: 10.1016/0009-8981(93)90176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A simple enzyme immunoassay for determination of anti-streptokinase antibodies (aSKa) in plasma is described. Commercially available reagents have been used for the assay, which is calibrated with a reference preparation of aSKa containing 100 AU/ml. The assay is specific and reproducible with a variation coefficient of 4.8%. In healthy individuals a broad range of values between 4 and 291 AU/ml was observed with a large difference between the mean and median value (55 AU/ml and 27 AU/ml, respectively). Data from a study on 21 patients with myocardial infarction treated with the streptokinase derivative antistreplase suggest that a high titre of aSKa before treatment is associated with failure of thrombolytic therapy. The assay procedure can be shortened to 0.5 h to screen patients for a high aSKa level. This assay allows a more routine assessment of aSKa in the clinic.
Collapse
Affiliation(s)
- V J Bom
- Department of Haemostasis, Thrombosis & Rheology, University Hospital Groningen, The Netherlands
| | | | | | | | | |
Collapse
|