1
|
Brooks ER, Islam MT, Anderson KV, Zallen JA. Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure. eLife 2020; 9:60234. [PMID: 33103996 PMCID: PMC7655103 DOI: 10.7554/elife.60234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here, we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are flat with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.
Collapse
Affiliation(s)
- Eric R Brooks
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Mohammed Tarek Islam
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
2
|
Affiliation(s)
- John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Commentary and tribute to Antone Jacobson: The pioneer of morphodynamics. Dev Biol 2019; 451:97-133. [DOI: 10.1016/j.ydbio.2019.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Patel A, Bains A, Millet R, Elul T. Visualizing Morphogenesis with the Processing Programming Language. THE JOURNAL OF BIOCOMMUNICATION 2017; 41:e4. [PMID: 36405413 PMCID: PMC9138804 DOI: 10.5210/jbc.v41i1.7314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We used Processing, a visual artists' programming language developed at MIT Media Lab, to simulate cellular mechanisms of morphogenesis - the generation of form and shape in embryonic tissues. Based on observations of in vivo time-lapse image sequences, we created animations of neural cell motility responsible for elongating the spinal cord, and of optic axon branching dynamics that establish primary visual connectivity. These visual models underscore the significance of the computational decomposition of cellular dynamics underlying morphogenesis.
Collapse
|
5
|
D. S. V, L. A. D. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res 2017; 109:153-168. [PMID: 27620928 PMCID: PMC9972508 DOI: 10.1002/bdra.23557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vijayraghavan D. S.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Davidson L. A.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260,Department of Developmental Biology, School of Medicine, University of Pittsburgh Pittsburgh, PA 15213,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
6
|
Reece EA, Pinter E, Homko C, Wu YK, Naftolin F. Review Article : The Yolk Sac Theory. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769400100103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- E. Albert Reece
- Departments of Obstetrics and Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania Yale University School of Medicine, New Haven, Connecticut
| | - Emese Pinter
- Departments of Obstetrics and Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania Yale University School of Medicine, New Haven, Connecticut
| | - Carol Homko
- Departments of Obstetrics and Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania Yale University School of Medicine, New Haven, Connecticut
| | - Ying-King Wu
- Departments of Obstetrics and Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania Yale University School of Medicine, New Haven, Connecticut
| | - Frederick Naftolin
- Departments of Obstetrics and Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Sutherland AE. Tissue morphodynamics shaping the early mouse embryo. Semin Cell Dev Biol 2016; 55:89-98. [PMID: 26820524 DOI: 10.1016/j.semcdb.2016.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo.
Collapse
Affiliation(s)
- Ann E Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, United States.
| |
Collapse
|
8
|
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin Cell Dev Biol 2015; 42:78-85. [PMID: 25986055 PMCID: PMC4562884 DOI: 10.1016/j.semcdb.2015.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
Abstract
Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Ossipova O, Kim K, Sokol SY. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol Open 2015; 4:722-30. [PMID: 25910938 PMCID: PMC4467192 DOI: 10.1242/bio.201511676] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP) proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP) of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Gordon R. Google Embryo for Building Quantitative Understanding of an Embryo As It Builds Itself. II. Progress Toward an Embryo Surface Microscope. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot_a_00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WYI. Response to comment on "the geometric structure of the brain fiber pathways". Science 2012; 337:1605. [PMID: 23019633 DOI: 10.1126/science.1223493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In response to Catani et al., we show that corticospinal pathways adhere via sharp turns to two local grid orientations; that our studies have three times the diffusion resolution of those compared; and that the noted technical concerns, including crossing angles, do not challenge the evidence of mathematically specific geometric structure. Thus, the geometric thesis gives the best account of the available evidence.
Collapse
Affiliation(s)
- Van J Wedeen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School and the Martinos Center for Biomedical Imaging, Building 129 13th Street, 2nd floor, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol 2012; 11:1137-47. [DOI: 10.1007/s10237-012-0411-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
13
|
Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WYI. The geometric structure of the brain fiber pathways. Science 2012; 335:1628-34. [PMID: 22461612 PMCID: PMC3773464 DOI: 10.1126/science.1215280] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Collapse
Affiliation(s)
- Van J Wedeen
- Department of Radiology, Massachusetts General Hospital (MGH), Harvard Medical School and the MGH/Massachussetts Institute of Technology, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 2010; 137:1339-49. [PMID: 20332151 DOI: 10.1242/dev.044610] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Individual cell shape changes are essential for epithelial morphogenesis. A transcriptional network for epithelial cell shape change is emerging in Drosophila, but this area remains largely unexplored in vertebrates. The distinction is important as so far, key downstream effectors of cell shape change in Drosophila appear not to be conserved. Rather, Shroom3 has emerged as a central effector of epithelial morphogenesis in vertebrates, driving both actin- and microtubule-based cell shape changes. To date, the morphogenetic role of Shroom3 has been explored only in the neural epithelium, so the broad expression of this gene raises two important questions: what are the requirements for Shroom3 in non-neural tissues and what factors control Shroom3 transcription? Here, we show in Xenopus that Shroom3 is essential for cell shape changes and morphogenesis in the developing vertebrate gut and that Shroom3 transcription in the gut requires the Pitx1 transcription factor. Moreover, we show that Pitx proteins directly activate Shroom3 transcription, and we identify Pitx-responsive regulatory elements in the genomic DNA upstream of Shroom3. Finally, we show that ectopic expression of Pitx proteins is sufficient to induce Shroom3-dependent cytoskeletal reorganization and epithelial cell shape change. These data demonstrate new breadth to the requirements for Shroom3 in morphogenesis, and they also provide a cell-biological basis for the role of Pitx transcription factors in morphogenesis. More generally, these results provide a foundation for deciphering the transcriptional network that underlies epithelial cell shape change in developing vertebrates.
Collapse
Affiliation(s)
- Mei-I Chung
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
15
|
Brodland GW, Chen X, Lee P, Marsden M. From genes to neural tube defects (NTDs): insights from multiscale computational modeling. HFSP JOURNAL 2010; 4:142-52. [PMID: 21119766 DOI: 10.2976/1.3338713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/05/2010] [Indexed: 12/21/2022]
Abstract
The morphogenetic movements, and the embryonic phenotypes they ultimately produce, are the consequence of a series of events that involve signaling pathways, cytoskeletal components, and cell- and tissue-level mechanical interactions. In order to better understand how these events work together in the context of amphibian neurulation, an existing multiscale computational model was augmented. Geometric data for this finite element-based mechanical model were obtained from 3D surface reconstructions of live axolotl embryos and serial sections of fixed specimens. Tissue mechanical properties were modeled using cell-based constitutive equations that include internal force generation and cell rearrangement, and equation parameters were adjusted manually to reflect biochemical changes including alterations in Shroom or the planar-cell-polarity pathway. The model indicates that neural tube defects can arise when convergent extension of the neural plate is reduced by as little as 20%, when it is eliminated on one side of the embryo, when neural ridge elevation is disrupted, when tension in the non-neural ectoderm is increased, or when the ectoderm thickness is increased. Where comparable conditions could be induced in Xenopus embryos, good agreement was found, an important step in model validation. The model reveals the neurulating embryo to be a finely tuned biomechanical system.
Collapse
|
16
|
Detecting mitoses in time-lapse images of embryonic epithelia using intensity analysis. Ann Biomed Eng 2009; 37:2646-55. [PMID: 19757061 DOI: 10.1007/s10439-009-9790-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Although the frequency and orientation of mitoses can significantly affect the mechanics of early embryo development, these data have not been available due to a shortage of suitable automated techniques. Fluorescence imaging, though popular, requires biochemical intervention and is not always possible or desirable. Here, a new technique that takes advantage of a localized intensity change that occurs in bright field images is used to identify mitoses. The algorithm involves mapping a deformable, sub-cellular triangular mesh from one time-lapse image to the next so that corresponding regions can be identified. Triangles in the mesh that undergo darkening of a sufficient degree over a period consistent with mitosis are flagged. Mitoses are assumed to occur along the short axis of elliptical areas fit to suitably sized clusters of flagged triangles. The algorithm is less complex than previous approaches and it has strong discrimination characteristics. When applied to 15 image sets from neurulation-stage axolotl (Ambystoma mexicanum) embryos, it was able to correctly detect 86% of the manually identified mitoses, had less than 5% false positives and produced average angular errors of only 15 degrees . The new algorithm is simpler to implement than those previously available, is substantially more accurate, and provides data that is important for understanding the mechanics of morphogenetic movements.
Collapse
|
17
|
Rolo A, Skoglund P, Keller R. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev Biol 2008; 327:327-38. [PMID: 19121300 DOI: 10.1016/j.ydbio.2008.12.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/06/2008] [Accepted: 12/10/2008] [Indexed: 01/16/2023]
Abstract
Vertebrate neural tube formation involves two distinct morphogenetic events--convergent extension (CE) driven by mediolateral cell intercalation, and bending of the neural plate driven largely by cellular apical constriction. However, the cellular and molecular biomechanics of these processes are not understood. Here, using tissue-targeting techniques, we show that the myosin IIB motor protein complex is essential for both these processes, as well as for conferring resistance to deformation to the neural plate tissue. We show that myosin IIB is required for actin-cytoskeletal organization in both superficial and deep layers of the Xenopus neural plate. In the superficial layer, myosin IIB is needed for apical actin accumulation, which underlies constriction of the neuroepithelial cells, and that ultimately drive neural plate bending, whereas in the deep neural cells myosin IIB organizes a cortical actin cytoskeleton, which we describe for the first time, and that is necessary for both normal neural cell cortical tension and shape and for autonomous CE of the neural tissue. We also show that myosin IIB is required for resistance to deformation ("stiffness") in the neural plate, indicating that the cytoskeleton-organizing roles of this protein translate in regulation of the biomechanical properties of the neural plate at the tissue-level.
Collapse
Affiliation(s)
- Ana Rolo
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
18
|
Steinberg MS. Cell movement in confluent monolayers: a re-evaluation of the causes of 'contact inhibition'. CIBA FOUNDATION SYMPOSIUM 2008; 14:333-55. [PMID: 4591636 DOI: 10.1002/9780470719978.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Chen X, Wayne Brodland G. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys Biol 2008; 5:015003. [DOI: 10.1088/1478-3975/5/1/015003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Keller R, Shook D, Skoglund P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 2008; 5:015007. [PMID: 18403829 DOI: 10.1088/1478-3975/5/1/015007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
21
|
Jessell TM, Bovolenta P, Placzek M, Tessier-Lavigne M, Dodd J. Polarity and patterning in the neural tube: the origin and function of the floor plate. CIBA FOUNDATION SYMPOSIUM 2007; 144:255-76; discussion 276-80, 290-5. [PMID: 2673681 DOI: 10.1002/9780470513798.ch15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Little is known about the cellular and molecular mechanisms that determine neuronal cell fate and the patterning of neuronal connections in the vertebrate central nervous system. In this paper we summarize evidence which indicates that some aspects of neuronal differentiation and axon guidance are regulated by specialized epithelial cells that occupy the medial region of the neural plate and, later, the ventral midline of the spinal cord. This cell group, termed the notoplate/floor plate appears to constitute a distinct compartment within the neural plate that is more closely related in lineage and perhaps also in function to axial mesodermal cells of the underlying notochord than to other neural plate cells. Cells of the notoplate exhibit specialized mechanical and adhesive properties that may contribute to neurulation. At later stages of development, the floor plate appears to guide developing axons in the embryonic spinal cord by releasing a diffusible chemoattractant factor and by virtue of its specialized cell surface properties. The floor plate may also play a role in the determination of cell identity and patterning at earlier stages of neural tube development.
Collapse
Affiliation(s)
- T M Jessell
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | | | | | | | | |
Collapse
|
22
|
Abstract
How does cell behaviour accomplish neurulation in amphibian embryos? During neurulation, the neural plate (while preserving the same volume) doubles its length, triples its thickness, narrows 10-fold, greatly decreases its surface and rolls into a tube. Cells that compose the neural plate produce these changes in three ways. They change shape, change neighbours and attempt to crawl beneath the contiguous epidermis. Plate width, length and area are decreased and the plate thickens when apical surfaces of plate cells contract radially, but plate length increases and width is further decreased when cells reposition themselves and collect along plate boundaries. Contraction of the apical surfaces of plate cells also helps roll the plate into a tube. Poisson buckling resulting from elongation of plate borders may contribute bending forces that help tube formation. The main folding force in tube formation is a rolling moment toward the midline produced by neural plate cells attempting to crawl beneath the contiguous epidermis. Experiments, observations and computer simulations support these assertions, reveal the organization of cell behaviour and implicate contraction of actin filaments as the main source of the necessary forces.
Collapse
Affiliation(s)
- A G Jacobson
- Department of Zoology, University of Texas at Austin 78712-1064
| |
Collapse
|
23
|
Benko R, Brodland GW. Measurement of in vivo stress resultants in neurulation-stage amphibian embryos. Ann Biomed Eng 2007; 35:672-81. [PMID: 17237990 DOI: 10.1007/s10439-006-9250-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
In order to obtain the first quantitative measurements of the in vivo stresses in early-stage amphibian embryos, we developed a novel instrument that uses a pair of parallel wires that are glued to the surface of an embryo normal to the direction in which the stress is to be determined. When a slit is made parallel to the wires and between them, tension in the surrounding tissue causes the slit to open. Under computer control, one of the wires is moved so as to restore the original wire spacing, and the steady-state closure force is determined from the degree of wire flexure. A cell-level finite element model is used to convert the wire bending force to an in-plane stress since the wire force is not proportional to the slit length. The device was used to measure stress resultants (force carried per unit of slit length) on the dorsal, ventral and lateral aspects of neurulation-stage axolotl (Ambystoma mexicanum) embryos. The resultants were anisotropic and varied with location and developmental stage, with values ranging from -0.17 mN/m to 1.92 mN/m. In general, the resultants could be decomposed into patterns associated with internal pressure in the embryo, bending of the embryo along its mid-sagittal plane and neural tube closure. The patterns of stress revealed by the experiments support a number of current theories about the mechanics of neurulation.
Collapse
Affiliation(s)
- Richard Benko
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | | |
Collapse
|
24
|
Brodland GW, Veldhuis JH. Lamellipodium-driven tissue reshaping: A parametric study. Comput Methods Biomech Biomed Engin 2006; 9:17-23. [PMID: 16880153 DOI: 10.1080/10255840600554703] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We recently showed that lamellipodia are able to generate forces of the right type to drive convergent extension (CE), an important class of tissue reshaping, in early stage embryos. The purpose of the present work is to quantify the mechanics of this process using parametric analyses. We use finite elements to implement a gamma-mu model in which a net interfacial tension gamma acts along each cell boundary and the cytoplasm exhibits an effective viscosity mu. The stress-strain characteristics of a rectangular patch of model tissue are investigated in terms of the rate r at which lamellipodia form and the relative strength q of their contractions. In tissues that are not constrained in-plane by adjacent tissues, the rate of tissue reshaping is proportional to r the rate of lamellipodium formation and its dependence on q is nonlinear and, near its expected value of 2 highly sensitive to q. Cell elongation, a central characteristic of CE, and stress is found to vary linearly with e the degree of kinematic restraint. Relevant "mechanical pathways" are also identified.
Collapse
Affiliation(s)
- G W Brodland
- Department of Civil Engineering, University of Waterloo, Waterloo, Ont, Canada, N2L 3G1.
| | | |
Collapse
|
25
|
Veldhuis JH, Brodland GW, Wiebe CJ, Bootsma GJ. Multiview Robotic Microscope Reveals the In-plane Kinematics of Amphibian Neurulation. Ann Biomed Eng 2005; 33:821-8. [PMID: 16078621 DOI: 10.1007/s10439-005-3309-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new robotic microscope system, called the Frogatron 3000, was developed to collect time-lapse images from arbitrary viewing angles over the surface of live embryos. Embryos are mounted at the center of a horizontal, fluid-filled, cylindrical glass chamber around which a camera with special optics traverses. To hold them at the center of the chamber and revolve them about a vertical axis, the embryos are placed on the end of a small vertical glass tube that is rotated under computer control. To demonstrate operation of the system, it was used to capture time-lapse images of developing axolotl (amphibian) embryos from 63 viewing angles during the process of neurulation and the in-plane kinematics of the epithelia visible at the center of each view was calculated. The motions of points on the surface of the embryo were determined by digital tracking of their natural surface texture, and a least-squares algorithm was developed to calculate the deformation-rate tensor from the motions of these surface points. Principal strain rates and directions were extracted from this tensor using decomposition and eigenvector techniques. The highest observed principal true strain rate was 28 +/- 5% per hour, along the midline of the neural plate during developmental stage 14, while the greatest contractile true strain rate was--35 +/- 5% per hour, normal to the embryo midline during stage 15.
Collapse
Affiliation(s)
- Jim H Veldhuis
- Department of Civil Engineering, University of Waterloo, Waterloo, Ontario
| | | | | | | |
Collapse
|
26
|
Abstract
Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA.
| | | | | |
Collapse
|
27
|
Ezin AM, Skoglund P, Keller R. The midline (notochord and notoplate) patterns the cell motility underlying convergence and extension of the Xenopus neural plate. Dev Biol 2003; 256:100-14. [PMID: 12654295 DOI: 10.1016/s0012-1606(02)00130-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the role of the dorsal midline structures, the notochord and notoplate, in patterning the cell motilities that underlie convergent extension of the Xenopus neural plate. In explants of deep neural plate with underlying dorsal mesoderm, lateral neural plate cells show a monopolar, medially directed protrusive activity. In contrast, neural plate explants lacking the underlying dorsal mesoderm show a bipolar, mediolaterally directed protrusive activity. Here, we report that "midlineless" explants consisting of the deep neural plate and underlying somitic mesoderm, but lacking a midline, show bipolar, mediolaterally oriented protrusive activity. Adding an ectopic midline to the lateral edge of these explants restores the monopolar protrusive activity over the entire extent of the midlineless explant. Monopolarized cells near the ectopic midline orient toward it, whereas those located near the original, removed midline orient toward this midline. This behavior can be explained by two signals emanating from the midline. We postulate that one signal polarizes neural plate deep cells and is labile and short-lived and that the second signal orients any polarized cells toward the midline and is persistent.
Collapse
Affiliation(s)
- Akouavi M Ezin
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
28
|
Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 2002; 129:5815-25. [PMID: 12421719 DOI: 10.1242/dev.00123] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Xenopus, Dishevelled (Xdsh) signaling is required for both neural tube closure and neural convergent extension, but the connection between these two morphogenetic processes remains unclear. Indeed normal neurulation requires several different cell polarity decisions, any of which may require Xdsh signaling. In this paper we address two issues: (1) which aspects of normal neurulation require Xdsh function; and (2) what role convergent extension plays in the closure of the neural tube. We show that Xdsh signaling is not required for neural fold elevation, medial movement or fusion. Disruption of Xdsh signaling therefore provides a specific tool for uncoupling convergent extension from other processes of neurulation. Using disruption of Xdsh signaling, we demonstrate that convergent extension is crucial to tube closure. Targeted injection revealed that Xdsh function was required specifically in the midline for normal neural tube closure. We suggest that the inherent movement of the neural folds can accomplish only a finite amount of medial progress and that convergent extension of the midline is necessary to reduce the distance between the nascent neural folds, allowing them to meet and fuse. Similar results with Xenopus strabismus implicate the planar cell polarity (PCP) signaling cascade in neural convergent extension and tube closure. Together, these data demonstrate that PCP-mediated convergent extension movements are crucial to proper vertebrate neurulation.
Collapse
Affiliation(s)
- John B Wallingford
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
29
|
Brodland GW, Veldhuis JH. Computer simulations of mitosis and interdependencies between mitosis orientation, cell shape and epithelia reshaping. J Biomech 2002; 35:673-81. [PMID: 11955507 DOI: 10.1016/s0021-9290(02)00006-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Finite element-based computer simulations are used to investigate mitosis and how mitosis, cell shape, and epithelium reshaping depend on each other. Frame- and cell-oriented patterns of mitosis with growing and non-growing daughter cells are considered. Previous simulations have shown that applied stresses or strains can reshape cells so that their long axes are aligned in the principal stretch direction. The simulations reported here show that this can produce global alignment of the mitosis cleavage planes. Other simulations reported here show that mitoses with suitably aligned cleavage planes can drive epithelium reshaping. Formulas that quantify these and other dependencies are derived. These formulas provide quantitative relationships against which current hypotheses regarding epithelia reshaping in real biological systems can be evaluated.
Collapse
Affiliation(s)
- G Wayne Brodland
- Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | |
Collapse
|
30
|
Kinebrew GM, Hilfer SR. Cellular dynamics during evagination of the thyroid primordium in the chick embryo. THE ANATOMICAL RECORD 2001; 264:146-56. [PMID: 11590592 DOI: 10.1002/ar.1140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thyroid forms as an outpouching of the ventral pharynx. Evidence supports the conclusion that formation of the thyroid pit is mediated by changes in the cytoskeleton that cause constriction of cell apices. However, it seems unlikely that a relatively flat epithelial sheet can be converted into a pit without either distortions of the surface or considerable rearrangement of cells to reduce surface area. Possible cellular rearrangements were investigated by tracing the movements of individual cells by using time-lapse video microscopy. Changes in shape of the primordium were investigated by marking with carbon and DiI and by scanning electron microscopy. Cell movements occurred only over short distances, mostly shifts relative to a neighbor, especially at the edge of the pit. Instead, cells rearranged into clusters that piled up at the edge of the pit and then tilted inside. Adjacent rings of pharyngeal cells were annexed by the growing thyroid, undergoing rearrangement into clusters, piling up at the edge, and moving inside the pit. The consequence was the formation of a series of shelf-like extensions within the cavity, representing successive generations of cell rings moving inside. These results have implications for the formation of other organs by evagination.
Collapse
Affiliation(s)
- G M Kinebrew
- Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
| | | |
Collapse
|
31
|
Wallingford JB, Harland RM. XenopusDishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 2001; 128:2581-92. [PMID: 11493574 DOI: 10.1242/dev.128.13.2581] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.
Collapse
Affiliation(s)
- J B Wallingford
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
32
|
Li Z, Hu M, Ochocinska MJ, Joseph NM, Easter SS. Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev Dyn 2000; 219:391-401. [PMID: 11066095 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1063>3.0.co;2-g] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe light-microscopically the development of the embryonic zebrafish eye with particular attention to cell number, cell proliferation, and cell death. The period from 16 to 36 hr post fertilization (hpf) comprises two phases; during the first (16-27 hpf) the optic vesicle becomes the eye cup, and during the second (27-36 hpf) the eye cup begins to differentiate into the neural retina and pigmented epithelium. All cells in the eye primordium are proliferative prior to 28 hpf, and the length of the cell cycle has been estimated to be 10 hr at 24-28 hpf (Nawrocki, 1985). Our cell counts are consistent with that estimate at that age, but not at earlier ages. A 10-hr cell cycle predicts that the cell number should increase by 7% per hr, but during 16-24 hpf the cell number increased by only 1.5% per hr. Despite the low rate of increase, all cells labeled with bromo-deoxyuridine, so all were proliferative. We considered three possible explanations for the nearly-constant cell number in the first phase: proliferation balanced by cell emigration from the eye, proliferation balanced by cell death, and low proliferation caused by a transient prolongation of the cell cycle. We excluded the first two, and found direct support for the third. Previous examinations of the cell cycle length in vertebrate central nervous system have concluded that it increases monotonically, in contrast to the modulation that we have shown. Modulation of the cell cycle length is well-known in flies, but it is generally effected by a prolonged arrest at one phase, in contrast to the general deceleration that we have shown.
Collapse
Affiliation(s)
- Z Li
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
33
|
Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P. Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 2000; 355:897-922. [PMID: 11128984 PMCID: PMC1692795 DOI: 10.1098/rstb.2000.0626] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of many embryonic tissues actively narrow in one dimension (convergence) and lengthen in the perpendicular dimension (extension). Convergence and extension are ubiquitous and important tissue movements in metazoan morphogenesis. In vertebrates, the dorsal axial and paraxial mesodermal tissues, the notochordal and somitic mesoderm, converge and extend. In amphibians as well as a number of other organisms where these movements appear, they occur by mediolateral cell intercalation, the rearrangement of cells along the mediolateral axis to produce an array that is narrower in this axis and longer in the anteroposterior axis. In amphibians, mesodermal cell intercalation is driven by bipolar, mediolaterally directed protrusive activity, which appears to exert traction on adjacent cells and pulls the cells between one another. In addition, the notochordal-somitic boundary functions in convergence and extension by 'capturing' notochordal cells as they contact the boundary, thus elongating the boundary. The prospective neural tissue also actively converges and extends parallel with the mesoderm. In contrast to the mesoderm, cell intercalation in the neural plate normally occurs by monopolar protrusive activity directed medially, towards the midline notoplate-floor-plate region. In contrast, the notoplate-floor-plate region appears to converge and extend by adhering to and being towed by or perhaps migrating on the underlying notochord. Converging and extending mesoderm stiffens by a factor of three or four and exerts up to 0.6 microN force. Therefore, active, force-producing convergent extension, the mechanism of cell intercalation, requires a mechanism to actively pull cells between one another while maintaining a tissue stiffness sufficient to push with a substantial force. Based on the evidence thus far, a cell-cell traction model of intercalation is described. The essential elements of such a morphogenic machine appear to be (i) bipolar, mediolaterally orientated or monopolar, medially directed protrusive activity; (ii) this protrusive activity results in mediolaterally orientated or medially directed traction of cells on one another; (iii) tractive protrusions are confined to the ends of the cells; (iv) a mechanically stable cell cortex over the bulk of the cell body which serves as a movable substratum for the orientated or directed cell traction. The implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.
Collapse
Affiliation(s)
- R Keller
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
We have examined the morphogenesis of the zebrafish eye, from the flat optic vesicle at 16 hours post fertilization (hpf) to the functional hemispheric eye at 72 hpf. We have produced three-dimensional reconstructions from semithin sections, measured volumes and areas, and produced a fate map by labeling clusters of cells at 14-15 hpf and finding them in the 24 hpf eye cup. Both volume and area increased sevenfold, with different schedules. Initially (16-33 hpf), area increased but volume remained constant; later (33-72 hpf) both increased. When the volume remained constant, the presumptive pigmented epithelium (PE) shrank and the presumptive neural retina (NR) enlarged. The fate map revealed that during 14-24 hpf cells changed layers, moving from the PE into the NR, probably through involution around the margin of the eye. The transformation of the flat epithelial layers of the vesicle into their cup-shaped counterparts in the eye was also accompanied by cellular rearrangements; most cells in a cluster labeled in the vesicle remained neighbors in the eye cup, but occasionally they were separated widely. This description of normal zebrafish eye development provides explanations for some mutant phenotypes and for the effects of altered retinoic acid.
Collapse
Affiliation(s)
- Z Li
- Biology Department, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
35
|
Brodland GW, Veldhuis JH. Three-dimensional reconstruction of live embryos using robotic macroscope images. IEEE Trans Biomed Eng 1998; 45:1173-81. [PMID: 9735567 DOI: 10.1109/10.709561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the three-dimensional (3-D) shape of a live embryo is a technically challenging task. We show that reconstructions of live embryos can be done by collecting images from different viewing angles using a robotic macroscope, establishing point correspondences between these views by block matching, and using a new 3-D reconstruction algorithm that accommodates camera positioning errors. The algorithm assumes that the images are orthographic projections of the object and that the camera scaling factors are known. Point positions and camera errors are found simultaneously. Reconstructions of test objects and embryos show that meaningful reconstructions are possible only when camera positioning and alignment errors are accommodated since these errors can be substantial. Reconstructions of early-stage axolotl embryos were made from sets of 33 images. In a typical reconstruction, 781 points, each visible in at least three different views, were used to form 1511 triangles to represent the embryo surface. The resulting reconstruction had a mean radius of error of 0.27 pixels (1.1 microns). Mathematical properties of the reconstruction algorithm are identified and discussed.
Collapse
Affiliation(s)
- G W Brodland
- Department of Civil Engineering, University of Waterloo, Ont., Canada.
| | | |
Collapse
|
36
|
Elul T, Koehl MA, Keller R. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev Biol 1997; 191:243-58. [PMID: 9398438 DOI: 10.1006/dbio.1997.8711] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Convergent extension, the simultaneous narrowing and lengthening of a tissue, plays a major role in shaping and patterning the neural ectoderm in vertebrate embryos. In this paper, we characterize the cellular mechanism underlying convergent extension of the neural ectoderm in the Xenopus laevis late gastrula and neurula embryo. Neural ectoderm in X. laevis consists of two components, a superficial layer of epithelial cells overlying deep mesenchymal cells. To investigate the force contribution of the deep cells to convergent extension, we explanted single layers of neural deep cells from late gastrula stage embryos. These "neural deep cell explants" undergo active convergent extension autonomously, implying that these cells contribute force for neural convergent extension in vivo. Using time-lapse videorecording of these explants, we observed the neural deep cell behaviors (previously hidden behind an opaque epithelium) underlying convergent extension. We show that neural deep cells mediolaterally intercalate to form a longer, narrower tissue and that cell shape change and cell division contribute little to their convergent extension. Moreover, we characterize the neural deep cell motility driving mediolateral intercalation, also using time-lapse videorecordings. Analyses of these videos revealed that, on average, neural deep cells exhibit mediolaterally biased protrusive activity which is expressed in an episodic fashion. We propose that neural deep cells accomplish mediolateral intercalation by applying their protrusions upon one another, exerting traction, and pulling themselves between one another. This mechanism is similar to that previously described for convergent extension of the mesodermal cells. However, because the neural deep cells do not mediolaterally elongate during their convergent extension as the mesodermal cells do, we predict that a given intercalation will result in more extension for neural deep cells than for the mesodermal cells. Intercalation of neural cells also likely occurs in a more episodic manner than that of the mesodermal cells because the neural cells' mediolateral protrusive activity is episodic, whereas the protrusive activity of mesodermal cells is more continuous. These differences in protrusive activity and cell shape changes between the neural and mesodermal regions may reflect specializations of the same basic mechanism of mediolateral intercalation, tailored to accommodate other aspects of patterning and development of each tissue. These descriptions of the active cell motility underlying neural convergent extension in X. laevis are the first high-resolution video documentation of protrusive activity during neural convergent extension in any system. Our findings provide an important step in the investigation of neural convergent extension in X. laevis and further our understanding of convergent extension in general.
Collapse
Affiliation(s)
- T Elul
- Biophysics Graduate Group, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
37
|
Morphogenetic movements during axolotl neural tube formation tracked by digital imaging. ACTA ACUST UNITED AC 1996; 205:311-318. [DOI: 10.1007/bf00365809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1995] [Accepted: 08/30/1995] [Indexed: 11/25/2022]
|
38
|
Brodland GW, Clausi DA. Cytoskeletal mechanics of neurulation: insights obtained from computer simulations. Biochem Cell Biol 1995; 73:545-53. [PMID: 8703425 DOI: 10.1139/o95-060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The morphogenetic movements associated with the process of neurulation have been the subject of much investigation during the last one hundred years. A plethora of experimental evidence has been generated regarding the forces that drive this seemingly simple process, and many theories about the mechanics of the process have been proposed. Recent computer simulations have proved useful for evaluating these theories from a mechanical perspective. In this work, computer simulations are used to investigate several theories about the forces that drive neurulation. A simplified version of a formulation previously presented by the authors provides the mathematical foundation for these simulations. The simulations confirm that forces generated by circumferential microfilament bundles (CMB's) in conjunction with notochord forces can produce the rolling motions characteristic of amphibian neurulation. They also support the notion that redundancies exist in the systems of forces available to drive neurulation shape changes. The shape changes that occur following a variety of surgical and teratogenic interventions are also simulated. These simulations corroborate the role of circumferential microfilament bundles as a primary force generator.
Collapse
Affiliation(s)
- G W Brodland
- Department of Civil Engineering, University of Waterloo, Canada
| | | |
Collapse
|
39
|
Björklund NK, Gordon R. Surface contraction and expansion waves correlated with differentiation in axolotl embryos—I. Prolegomenon and differentiation during invagination through the blastopore, as shown by the fate map. ACTA ACUST UNITED AC 1994; 18:333-45. [PMID: 16649266 DOI: 10.1016/0097-8485(94)85027-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have discovered a series of expansion and contraction, solitary waves that correlate with discrete steps of differentiation in the urodele amphibian axolotl embryo (Ambystoma mexicanum). Here we examine in detail the proposition that the blastopore is a set of differentiation waves. We superimposed the image of the axolotl fate map onto our digitized video images of normal gastrulation and matched the fate map to pigmentation irregularities on the embryo. We were then able to track the invagination of the fate map by tracking the variegated pigmentation on several embryos as gastrulation proceeded. We show a particular expansion and contraction wave sequence for every tissue in the blastula stage fate map and can now explain precisely why the fate map has the shape it does and its relationship to the embryo at subsequent stages. Each tissue can be assigned a differentiation code and placed on a hierarchical, binary differentiation tree.
Collapse
Affiliation(s)
- N K Björklund
- Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2
| | | |
Collapse
|
40
|
A useful approach for the screening of active neural-inducing factors. Dev Genes Evol 1994; 203:351-355. [PMID: 28305828 DOI: 10.1007/bf00457806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1993] [Accepted: 10/07/1993] [Indexed: 11/25/2022]
Abstract
The present study suggests that the membrane-binding molecules of mesodermal cells and/or the modulated extracellular matrix (ECM) with them play an important role in induction of the central nervous system. Artificially mesodermalized ectoderm (mE) or chordamesoderm (cM) was placed on a collagen and flbronectin (CF)-coated dish for 24 h. After mechanical removal of the mesoderm sheet, competent ectoderm of early gastrulae was placed on the same spot. Many melanocytes and neuronal cells were observed after 1 week, along with many cells which reacted specifically with a neuralspecific monoclonal antibody. However, when presumptive ectoderm (pE) instead of mE or cM was used as the control, only epidermal cells with cilia were observed in the competent ectoderm, except for a few melanocytes in rare cases. The proteins synthesized and remaining on the CF substrate during placement of the mE and pE were analysed by two-dimensional polyacrylamide gel electrophoresis (PAGE) fluorography. The fluorography indicated that there were significant differences between the polypeptides spots of mE and pE.
Collapse
|
41
|
Lane MC, Koehl MA, Wilt F, Keller R. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 1993; 117:1049-60. [PMID: 8325234 DOI: 10.1242/dev.117.3.1049] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial invagination, a basic morphogenetic process reiterated throughout embryonic development, generates tubular structures such as the neural tube, or pit-like structures such as the optic cup. The ‘purse-string’ hypothesis, which proposes that circumferential bands of actin microfilaments at the apical end of epithelial cells constrict to yield a curved epithelial sheet, has been widely invoked to explain invaginations during embryogenesis. We have reevaluated this hypothesis in two species of sea urchin by examining both natural invagination of the vegetal plate at the beginning of gastrulation and invagination induced precociously by Ca2+ ionophore. Neither type of invagination is prevented by cytochalasin D. In one species, treatment with A23187 three hours before the initiation of invagination resulted in the deposition of apical extracellular matrix at the vegetal plate, rather than invagination. This apical matrix contains chondroitin sulfate, as does the lumen of the archenteron in normal gastrulae. When the expansion of this secreted matrix was resisted by an agarose gel, the vegetal plate buckled inward, creating an archenteron that appeared 3–4 hours prematurely. Pretreatment with monensin, which blocks secretion, inhibits both Ca2+ ionophore-stimulated folding and natural invagination, demonstrating that secretion is probably required for this morphogenetic event. These results indicate that alternatives to the purse-string hypothesis must be considered, and that the directed deposition of extracellular matrix may be a key Ca(2+)-regulated event in some embryonic invaginations. A bending bilayer model for matrix-driven epithelial invagination is proposed in which the deposition of hygroscopic material into a complex, stratified extra-cellular matrix results in the folding of an epithelial sheet in a manner analagous to thermal bending in a bimetallic strip.
Collapse
Affiliation(s)
- M C Lane
- Department of Molecular, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
42
|
Alvarez IS, Schoenwolf GC. Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 261:340-8. [PMID: 1629665 DOI: 10.1002/jez.1402610313] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurulation, formation of the neural tube, requires both intrinsic forces (i.e., those generated within the neural plate) and extrinsic forces (i.e., those generated outside the neural plate in adjacent tissues), but the precise origin of these forces is unclear. In this study, we addressed the question of which tissue produces the major extrinsic force driving bending of the neural plate. We have previously shown that 1) extrinsic forces are required for bending and 2) such forces are generated lateral to the neural plate. Three tissues flank the neural plate prior to its bending: surface epithelium, mesoderm, and endoderm. In the present study, we removed two of these layers, namely, the endoderm and mesoderm, underlying and lateral to the neural plate; bending still occurred, often with complete formation of a neural tube, although the latter usually rotated toward the side of tissue depletion. These results suggest that the surface epithelium, the only tissue remaining after microsurgery, provides the major extrinsic force for bending of the neural plate and that the mesoderm (and perhaps endoderm) stabilizes the neuraxis, maintaining its proper orientation and position on the midline.
Collapse
Affiliation(s)
- I S Alvarez
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
43
|
Affiliation(s)
- G C Schoenwolf
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
44
|
Schoenwolf GC, Sheard P. Fate mapping the avian epiblast with focal injections of a fluorescent-histochemical marker: ectodermal derivatives. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1990; 255:323-39. [PMID: 2203877 DOI: 10.1002/jez.1402550309] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A microinjection technique is described for fate mapping the epiblast of avian embryos. It consists of injecting the epiblast of cultured blastoderms with a fluorescent-histochemical marker, examining rhodamine fluorescence at the time of injection in living blastoderms, and assaying for horseradish peroxidase activity in histological sections obtained from the same embryos collected 24 h postinjection. Our results demonstrate that this procedure routinely marks cells, allowing their fates to be determined and prospective fate maps to be constructed. Two such maps are presented for ectodermal derivatives of the epiblast: one for late stages of Hensen's node progression (stages 3c through 4) and one for early stages of node regression (stages 4 + through 5). These new maps have six significant features. First, they show that regardless of whether the node is progressing or regressing, the flat neural plate extends at least 300 microns cranial to, 300 microns bilateral to and 1 mm caudal to the center of Hensen's node. Second, they confirm our previous fate mapping studies based on quail/chick chimeras. Namely, they show that the prenodal midline region of the epiblast forms the floor of the forebrain and the ventrolateral part of the optic vesicles as well as MHP cells (i.e., mainly wedge-shaped neurepithelial cells contained within the median hinge point of the bending neural plate); in contrast, paranodal and postnodal regions contribute L cells (i.e., mainly spindle-shaped neurepithelial cells constituting the lateral aspects of the neural plate). Third, they reveal a second source of MHP cells, Hensen's node, verifying previous studies of others based on tritiated thymidine labeling. Fourth, they demonstrate, in contrast to studies of other based on vital staining, carbon marking, and chorioallantoic grafting but in accordance with our previous studies based on quail/chick chimeras, that the cells contributing to the four craniocaudal subdivisions of the neural tube (i.e., forebrain, midbrain, hindbrain, and spinal cord) are not yet spatially segregated from one another at the flat neural plate stage, although more cranial neural plate cells tend to form more cranial subdivision and more caudal cells tend to form more caudal subdivisions. Thus, single injections routinely mark multiple neural tube subdivisions. Probable reasons for the discrepancy between our present results and the previous results of others is discussed. Fifth, they suggest that cells contributing to the surface ectoderm and neural plate are not yet completely spatially segregated from one another at the flat neural plate stage, particularly in caudal postnodal regions. Sixth, they delineate the locations of the otic placodes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G C Schoenwolf
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
45
|
Hilfer SR, Marrero L, Sheffield JB. Patterns of cell movement in early organ primordia of the chick embryo. Anat Rec (Hoboken) 1990; 227:508-17. [PMID: 2393102 DOI: 10.1002/ar.1092270414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purse-string constriction of the cytoskeleton at cell poles is generally accepted as the causal mechanism for invagination during early stages of organ formation. However, it is known that other cell movements, including intercalation, play a role in the organotypic shape changes that occur during gastrulation and neurulation. Such cell movements have not been investigated in pouching and branching epithelial primordia. There is reason to suspect that cells within these organ primordia might exchange their neighbors for others, that is, intercalate or translocate, at sites of sharp folding such as borders with the surrounding epithelial sheet or where a bend occurs within the primordium. The greatest difficulty in identifying these movements has been the need to use intact embryos so that the processes are not distorted. This study explores the possibility of using time-lapse video recording to identify cell movement at these locations. Three organ primordia were tested: otic and thyroid placodes, which had not been tested previously, and neural plate as a control, where movements of this sort have been documented. Embryos or parts containing the primordia were immobilized and cell apices visualized with Hoffman modulation contrast optics. Recordings to an optical memory disc recorder were transferred to a microcomputer for image analysis. The viewing procedure allows reasonably clear visualization of cell apices, and image analysis permits tracking of a number of adjacent cell apices over an extended time period. Several types of movement were found to occur within cell sheets, and the relative abundance of each type depends on the specific primordium. In the neural plate, some cells move many cell diameters from their neighbors. In the other two primordia, most cells show limited shifts in position relative to their neighbors except at regions where folds are formed. In other regions, adjacent cells move as a unit. Knowledge of the movements which occur in any particular primordium is essential to an understanding of the mechanisms controlling its formation.
Collapse
Affiliation(s)
- S R Hilfer
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
46
|
Schoenwolf GC, Everaert S, Bortier H, Vakaet L. Neural plate- and neural tube-forming potential of isolated epiblast areas in avian embryos. ANATOMY AND EMBRYOLOGY 1989; 179:541-9. [PMID: 2751116 DOI: 10.1007/bf00315697] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Formation, shaping, and bending of the neural plate and closure of the neural groove are complex processes resulting in formation of the neural tube. Two experiments were performed using avian embryos as model systems to examine these events. First, we transected blastoderms near the level of Hensen's node to determine the potential of prenodal neural plate to form neural tube in isolation from primitive streak regression. Our results demonstrate that shaping and bending of the prenodal neural plate occur under these conditions, but neural groove closure is inhibited. Second, we isolated various areas of postnodal epiblasts to determine their potential to form neural plate. Our results suggest that the area of the postnodal epiblast that can form neural plate consists of paired tracts lying adjacent to the definitive primitive streak and extending caudally at least 1 mm from its cranial end.
Collapse
Affiliation(s)
- G C Schoenwolf
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
47
|
Moury JD, Jacobson AG. Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev Biol 1989; 133:44-57. [PMID: 2707486 DOI: 10.1016/0012-1606(89)90295-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to a recent model, the cortical tractor model, neural fold and neural crest formation occurs at the boundary between neural plate and epidermis because random cell movements become organized at this site. If this is correct, then a fold should form at any boundary between epidermis and neural plate. To test that proposition, we created new boundaries in axolotl embryos by juxtaposing pieces of neural plate and epidermis that would not normally participate in fold formation. These boundaries were examined superficially and histologically for the presence of folds, permitting the following observations. Folds form at each newly created boundary, and as many folds form as there are boundaries. When two folds meet they fuse into a hollow "tube" of neural tissue covered by epidermis. Sections reveal that these ectopic folds and "tubes" are morphologically similar to their natural counterparts. Transplanting neural plate into epidermis produces nodules of neural tissue with central lumens and peripheral nerve fibers, and transplanting epidermis into neural plate causes the neural tube and the dorsal fin to bifurcate in the region of the graft. Tissue transplanted homotypically as a control integrates into the host tissue without forming folds. When tissue from a pigmented embryo is transplanted into an albino host, the presence of pigment allows the donor cells to be distinguished from those of the host. Mesenchymal cells and melanocytes originating from neural plate transplants indicate that neural crest cells form at these new boundaries. Thus, any boundary between neural plate and epidermis denotes the site of a neural fold, and the behavior of cells at this boundary appears to help fold the epithelium. Since folds can form in ectopic locations on an embryo, local interactions rather than classical neural induction appear to be responsible for the formation of neural folds and neural crest.
Collapse
Affiliation(s)
- J D Moury
- Department of Zoology, University of Texas, Austin 78712-1064
| | | |
Collapse
|
48
|
Nicol D, Meinertzhagen IA. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev Biol 1988; 130:737-66. [PMID: 3197930 DOI: 10.1016/0012-1606(88)90364-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe the lineage and morphogenesis of neural plate cells in the ascidian, Ciona intestinalis, from reconstructed cell maps of embryos at 12-min intervals during and after neurulation, between 31 and 61% of embryonic development. Neurulation commences in a posterior to anterior wave following in the wake of the ninth cleavage, when all cells, except possibly four, are in their 10th generation. The neural plate then comprises 76 cells, in up to four posterior rows each of eight vegetal-hemisphere cells, and eight anterior rows each of six animal-hemisphere cells. Two cells are lost from the neural plate to the muscle cell line during neurulation and four cells are gained from ectoderm outside the plate. All cells become wedge-shaped. Simple, stereotyped positional changes transform cells from lateral locations in the plate to posterior locations in the tube; bilateral partners shear their midline positions to form the keel, and ectodermal cells zipper up dorsally to form the capstone, of a tube which is four cells in cross section posteriorly, but more complex anteriorly. Neither cell death nor migration occur during neurulation. Divisions become asynchronous and the cell-cycle extends; 170 10th- to 12th-generation cells exist by the time the neural tube becomes completely internalized. Generally, only one further division is required to complete the lineage analysis, two at the most. Neural plate cell divisions were invariant using our observational methods, and their lineage is compared with that from recent studies of H. Nishida (1987, Dev. Biol. 121, 526-541).
Collapse
Affiliation(s)
- D Nicol
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
49
|
Schoenwolf GC. Microsurgical analyses of avian neurulation: separation of medial and lateral tissues. J Comp Neurol 1988; 276:498-507. [PMID: 3198787 DOI: 10.1002/cne.902760404] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurulation, formation of the neural tube, is a complex process involving shaping and bending of the neural plate and closure of the neural groove. We have used avian embryos as model systems to study this process. In the present investigation, blastoderms were cut parasagittally through their entire thickness, either unilaterally or bilaterally, at two mediolateral locations: 1) at the juncture between prospective neural plate and prospective surface epithelium, and 2) at the juncture between the midline strip of prospective neural plate and more lateral prospective neural plate. In the first experiment, shaping of the neural plate seemed normal, but elevation and convergence of the neural folds and closure of the neural groove were inhibited (except at the forebrain level). This result demonstrates that extrinsic forces generated by lateral tissues are required for neural plate bending and neural groove closure. In the second experiment, neuroepithelial cells within the isolated, midline strip became wedge shaped. This result indicates that neuroepithelial cell "wedging" is an active event occurring independently of forces generated by elevation of the neural folds. Additional studies are required to define the natures of neurulation forces and the mechanisms by which they are generated.
Collapse
Affiliation(s)
- G C Schoenwolf
- Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132
| |
Collapse
|
50
|
Schoenwolf GC, Folsom D, Moe A. A reexamination of the role of microfilaments in neurulation in the chick embryo. Anat Rec (Hoboken) 1988; 220:87-102. [PMID: 3348489 DOI: 10.1002/ar.1092200111] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formation of wedge-shaped neuroepithelial cells, owing to the constriction of apical bands of microfilaments, is widely believed to play a major part in bending of the neural plate. Although cell "wedging" occurs during neurulation, its exact role in bending is unknown. Likewise, although microfilament bands occupy the apices of neuroepithelial cells, whether these structures are required for cell wedging is unknown. Finally, although it is known that cytochalasins interfere with neurulation, it is unknown whether they block shaping or furrowing of the neural plate, or elevation, convergence, or fusion of the neural folds. The purpose of this study was to reexamine the role of microfilaments in neurulation in the chick embryo. Embryos were treated with cytochalasin D (CD) to depolymerize microfilaments and were analyzed 4-24 hr later. CD did not prevent neural plate shaping, median neural plate furrowing, wedging of median neuroepithelial cells, or neural fold elevation. However, dorsolateral neural plate furrowing, wedging of dorsolateral neuroepithelial cells, and convergence of the neural folds were blocked frequently by CD. In addition, neural folds always failed to fuse across the midline in embryos treated with CD, and neural crest cell migration was prevented. These data indicate that only the later aspects of neurulation may require microfilaments, and that certain neuroepithelial cells, particularly those that normally wedge with median furrowing and elevation of the neural folds, become (and remain) wedge-shaped in the absence of apical microfilament bands. Thus, microfilament-mediated constriction of neuroepithelial cell apices is not the major force for median neuroepithelial cell wedging and elevation of the chick neural plate. Further studies are needed to localize the motor(s) for these processes.
Collapse
Affiliation(s)
- G C Schoenwolf
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | | | |
Collapse
|