1
|
The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells. PLoS One 2013; 8:e63463. [PMID: 23717428 PMCID: PMC3661576 DOI: 10.1371/journal.pone.0063463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/03/2013] [Indexed: 12/28/2022] Open
Abstract
Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HAhigh-HS-578T cells to COS-7LYVE-1(+) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7LYVE-1(+) and COS-7LYVE-1(−) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.
Collapse
|
2
|
Bowers DF, Atkins DL. Avian fissura prima: differential accumulation of extracellular matrix at a fold. J Morphol 2004; 262:780-90. [PMID: 15487002 DOI: 10.1002/jmor.10278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular matrix components that flank the fissura prima, a primary surface infolding of the cerebellum in birds and mammals, were examined in the embryonic chick using light and transmission electron microscopy. Cerebella dissected from Day 10 embryos were perfused with a paraformaldehyde-glutaraldehyde-tannic acid primary fixative and sectioned in the sagittal plane through the mid-vermis. Ultrastructural analysis revealed a distinct, continuous basal lamina separating the organ parenchyma (epithelia) from pia mater (mesenchyme) at the fissure surface (arbitrarily labeled; fissure floor, folia wall, and folia apex). The basal lamina was significantly thicker (P < 0.001) at the fissure floor compared to that found at the folia wall, which was significantly thicker (P < 0.001) than that observed at the folia apex. Folds in the basal lamina were observed exclusively at the fissure floor. Surface-associated collagen fibrils were distributed in an aligned, relatively dense manner at the fissure floor, compared with fibrils observed in various orientations and widely separated or absent at the folia wall and folia apex. Metachromasia was more pronounced in the fissure floor than in either the folia wall or folia apex in methylene blue-stained tissue sections. Together, the thicker, folded basal lamina and densely aligned collagen fibrils at the fissure floor provide a chemical rationale for this color change. These findings suggest that the differential accumulation of extracellular matrix at the fissura prima is positioned to play a structural and/or biochemical role in the maintenance of this fold.
Collapse
Affiliation(s)
- Doria F Bowers
- Department of Biology, University of North Florida, Jacksonville, Florida 32224-2110, USA.
| | | |
Collapse
|
3
|
Liu H, Yin Y, Yao K, Ma D, Cui L, Cao Y. Influence of the concentrations of hyaluronic acid on the properties and biocompatibility of Cs–Gel–HA membranes. Biomaterials 2004; 25:3523-30. [PMID: 15020126 DOI: 10.1016/j.biomaterials.2003.09.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2003] [Accepted: 09/21/2003] [Indexed: 10/26/2022]
Abstract
The object of this study was to investigate the relationship between the concentrations of HA solutions and the physicochemical properties and the biocompatibility of Cs-Gel-HA membranes. The addition of different concentrations of HA not only improved the wettability significantly and extended the degradation time of Cs-Gel-HA membranes, but also changed their mechanical properties. The concentration of HA had a significant influence on the biocompatibility of Cs-Gel-HA membranes. Results demonstrated that it was only the concentrations of HA in a certain range (0.01-0.1%), that could promote the cell adhesion, migration and proliferation, while the concentration of HA was above 0.1% it would either reduce or even inhibit these behaviors.
Collapse
Affiliation(s)
- Haifeng Liu
- Research Institute of Polymer Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Erickson CA. James A. Weston and the JAWsfest: A celebration of his contributions to our understanding of the neural crest. Dev Dyn 2003; 229:2-4. [PMID: 14699572 DOI: 10.1002/dvdy.10452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Carol A Erickson
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Strobl B, Wechselberger C, Beier DR, Lepperdinger G. Structural organization and chromosomal localization of Hyal2, a gene encoding a lysosomal hyaluronidase. Genomics 1998; 53:214-9. [PMID: 9790770 DOI: 10.1006/geno.1998.5472] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human HYAL2 gene encodes a lysosomal hyaluronidase that is related to the testicular PH-20 hyaluronidase. Regions conserved in these proteins have been used to design PCR primers suitable for the isolation of a fragment of the murine Hyal2 gene. This fragment was used to isolate the Hyal2 cDNA from a cDNA library. The cloned cDNA has an open reading frame of 473 codons and a 3'-untranslated region of 302 bases plus a poly(A) tail. Using this cDNA, the corresponding genomic DNA was characterized from 129SVJ mice. The murine Hyal2 gene is approximately 3.5 kb, contains the coding sequence for the mRNA on four exons, and is localized on chromosome 9 between the microsatellite markers D9Mit183 and D9Mit17 near the genes for dystroglycan and transferrin. The gene is expressed ubiquitously, the sole exception being adult brain.
Collapse
Affiliation(s)
- B Strobl
- Department of Biochemistry, Austrian Academy of Sciences, Billrothstrasse 11, Salzburg, A-5020, Austria
| | | | | | | |
Collapse
|
6
|
Olsson L, Stigson M, Perris R, Sorrell JM, Löfberg J. Distribution of keratan sulphate and chondroitin sulphate in wild type and white mutant axolotl embryos during neural crest cell migration. PIGMENT CELL RESEARCH 1996; 9:5-17. [PMID: 8739556 DOI: 10.1111/j.1600-0749.1996.tb00081.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In embryos of the white mutant axolotl, prospective pigment cells are unable to migrate from the neural crest (NC) due to a deficiency in the subepidermal extracellular matrix (ECM). This raises the question of the molecular nature of this functional defect. Some PGs can inhibit cell migration on ECM molecules in vitro, and an excess of this class of molecules in the migratory pathways of neural crest cells might cause the restricted migration of prospective pigment cells seen in the white mutant embryo. In the present study, we use several monoclonal antibodies against epitopes on keratan sulphate (KS) and chondroitin sulphate (CS) and LM immunofluorescence to examine the distribution of these glycosaminoglycans at initial (stage 30) and advanced (stage 35) stages of neural crest cell migration. Most KS epitopes are more widely distributed in the white mutant than in the wild type embryo, whereas CS epitopes show very similar distributions in mutant and wild type embryos. This is confirmed quantitatively by immunoblotting: certain KS epitopes are more abundant in the white mutant. TEM immunogold staining reveals that KS as well as CS are present both in the basal lamina and in the interstitial ECM in both types of embryos. It remains to be investigated whether the abundance of certain KS epitopes in the white mutant embryo might contribute to the deficiency in supporting pigment cell migration shown by its ECM.
Collapse
Affiliation(s)
- L Olsson
- Department of Environmental and Developmental Biology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
7
|
Olsson L, Svensson K, Perris R. Effects of extracellular matrix molecules on subepidermal neural crest cell migration in wild type and white mutant (dd) axolotl embryos. PIGMENT CELL RESEARCH 1996; 9:18-27. [PMID: 8739557 DOI: 10.1111/j.1600-0749.1996.tb00082.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Migration of neural crest (NC) derived pigment cells is restricted in the white mutant (dd) axolotl embryo (Ambystoma mexicanum). Transplantations between mutant and wild type embryos show that the extracellular matrix (ECM) of the white mutant is unable to support the migration of prospective pigment cells in wild type embryos (Löfberg et al., 1989, Dev. Biol. 131:168-181). In the present study, we test the effects of various purified ECM molecules on NC cell migration in the subepidermal migratory pathway of wild type (D/-) and white mutant (dd) axolotl embryos. We adsorbed the ECM molecules onto membrane microcarriers, which were then implanted under the epidermis. Fibronectin (FN), tenascin (TN), collagens I and VI, and a chick aggrecan stimulated migration in both types of embryos. Laminin-nidogen, rat chondrosarcoma aggrecan, and shark aggrecan stimulated migration in dd embryos but did not affect migration in D/- embryos. Collagen III, fibromodulin and bovine aggrecan had no effect on migration in either type of embryo. NC cells did not migrate on control microcarriers, which lacked ECM molecules. Some cells observed contacting, and presumably migrating on, coated microcarriers could be identified as pigment cells by their ultrastructure. Enzymatic digestion in vivo with chondroitinase ABC had no effect on NC cell migration. The neutral or stimulatory effect of the aggrecans is surprising; when tested in vitro they inhibited NC cell migration. The effect of three-dimensionality and other molecules present either in the embryonic ECM or in solution may overcome the inhibitory effect of aggrecans.
Collapse
Affiliation(s)
- L Olsson
- Department of Environmental and Developmental Biology, Uppsala University, Sweden
| | | | | |
Collapse
|
8
|
Duband JL, Delannet M, Monier F, Garret S, Desban N. Modulations of cellular interactions during development of the neural crest: role of growth factors and adhesion molecules. Curr Top Microbiol Immunol 1996; 212:207-27. [PMID: 8934821 DOI: 10.1007/978-3-642-80057-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J L Duband
- Laboratoire de Biologie Cellulaire du Dévelopement, Université Paris, France
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Peripheral nerve cells, various endocrine and pigment cells and cranial connective tissue cells of vertebrates stem mainly from the embryonic neural crest. This originates with the central nervous system, but the crest cells detach from this tissue, via a decrease of cell-cell adhesion involving, particularly, a reduction of the adherens junction cell adhesive molecule A-CAM. This epithelio-mesenchymal transformation allows crest cells to migrate along pathways that are defined partly by the distribution of substrate adhesion molecules, the archetype being fibronectin, an extracellular matrix molecule recognized by integrin receptors on crest cells. Many other molecules, however, may act in the same way. In contrast, some molecules may define migration pathways by reducing adhesion; chondroitin sulfate proteoglycan is a candidate for this role. Pathway selection is most likely achieved by balanced combinations of molecules that promote and reduce adhesion. Cessation of migration, in the case of the nervous ganglia, correlated with re-expression of cell-cell adhesion molecules like A-CAM and others, consistent with an adhesive basis, although functional tests have not yet been performed. The development of the neural crest system provides a useful model that emphasizes the role of adhesion in morphogenesis.
Collapse
Affiliation(s)
- D F Newgreen
- Embryology Laboratory, Murdoch Institute, Parkville, Victoria, Australia
| | | |
Collapse
|
11
|
Erickson CA. Morphogenesis of the avian trunk neural crest: use of morphological techniques in elucidating the process. Microsc Res Tech 1993; 26:329-51. [PMID: 8305723 DOI: 10.1002/jemt.1070260406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Morphological data generated from light and electron microscopy form the basis of our understanding of avian morphogenesis. Because chicken embryos are readily and cheaply obtained and are easily accessible for experimental manipulation, morphogenetic processes have been studied extensively in this species. Such studies have allowed us to identify the cells involved during morphogenesis, observe the shape changes or cellular translocations that accompany a morphogenetic process, and determine the timing of these events. Elucidation of the molecular basis of morphogenesis has awaited the integration of several additional approaches. Among these are experimental embryology, which has allowed us to understand cellular behavior associated with morphogenesis; immunocytochemistry, which has identified the macromolecular cues that regulate cell movements and the environmental factors that control them; and molecular techniques, which will permit us eventually to clarify the genetic regulation of morphogenesis. Although current research in development is heavily biased towards molecular biology, morphological studies continue to frame the questions that are now being addressed using molecular techniques. This review focuses on the cells of the neural crest as a model system where questions of avian morphogenesis have been profitably addressed.
Collapse
Affiliation(s)
- C A Erickson
- Section of Molecular and Cell Biology, University of California, Davis 95616
| |
Collapse
|
12
|
Fenderson BA, Stamenkovic I, Aruffo A. Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01591.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Moro Balbás JA, Gato A, Alonso Revuelta MI, Pastor JF, Repressa JJ, Barbosa E. Retinoic acid induces changes in the rhombencephalic neural crest cells migration and extracellular matrix composition in chick embryos. TERATOLOGY 1993; 48:197-206. [PMID: 8248857 DOI: 10.1002/tera.1420480303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chick embryos at 9-10 stages (Hamburger and Hamilton: J Morphol 88:49-82, 1951) have been treated with all-trans retinoid acid (RA) (0.5 microgram, 1.5 micrograms, and 2.5 micrograms) to determine the pattern and mechanism of RA-induced effects on early cephalic development. We found that while 0.5 microgram RA did not produce any significant dysmorphogenesis, 2.5 micrograms RA elicited wide malformation of both cephalic and trunk regions. However, 1.5 micrograms RA produced selective and specific changes at the cephalic level, which consisted of morphological alterations, changes in neural crest cells (NCC) migration and extracellular matrix (ECM) composition. Morphological alterations included hypoplasia of the first three branchial arches, swelling of either anterior cardinal veins or dorsal aortae, and atrophy of branchial arch arteries. Concurrently NCC did not migrate away, remaining clustered on the dorsal surface of the rhombencephalon, and in some cases they shifted into the neural tube cavity. Accordingly, the second branchial arch showed a reduction of the mesenchymal cellular population. The extracellular matrix in RA-injected embryos showed changes in glycosaminoglycans (GAGs) concentration as compared with controls, that is, an increase in the non-sulphated GAGs, stained with alcian blue 8GX at 2.5 pH, and a decrease in the sulphated GAGs stained with alcian blue 8GX at 1 pH. These quantitative changes reflected alterations in the pattern of distribution and composition of the GAGs within the cephalic ECM, which specifically consisted in an increase of the hyaluronic acid and a decrease of the chondroitin sulphate. Our findings indicate that RA is involved in abnormal cephalic development, suggesting that RA may effect neural crest cell migration via changes in the GAGs of the ECM.
Collapse
Affiliation(s)
- J A Moro Balbás
- Departamento de Anatomía Humana, Facultad de Medicina, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Fenderson BA, Stamenkovic I, Aruffo A. Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 1993; 54:85-98. [PMID: 7694885 DOI: 10.1111/j.1432-0436.1993.tb00711.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hyaluronan was localized in postimplantation mouse embryos using CD44, the principal hyaluronan receptor. The specificity of CD44 receptor-globulin labelling was confirmed using Streptomyces hyaluronidase, anti-chondroitin sulfate antibody, and other receptor globulins. Our major findings are summarized as follows: 1. Implantation of the blastocyst into the uterine wall triggers a rapid loss of hyaluronan from the extracellular matrix of decidual cells on the anti-mesometrial side of the uterus. 2. Hyaluronan appears early in development in the yolk cavity, and the basement membranes of primitive ectoderm and primitive endoderm. 3. During gastrulation, mesodermal cells enter a hyaluronan-rich environment, but lack a pericellular hyaluronan coat themselves. 4. In limb bud embryos, hyaluronan is present throughout the cranial mesenchyme, but is generally not present in the branchial bars, somites, or limb buds. 5. At mid-gestation, hyaluronan is present in the axial skeleton, craniofacial mesenchyme, endocardial cushions of the heart, smooth muscle of the gastrointestinal tract, and connective tissue throughout the body. The pattern of hyaluronan expression in the day 13 fetus is nearly identical to the published distribution of transforming growth factor beta (TGF beta), suggesting a close functional relationship between these molecules. Together, the results suggest that hyaluronan is involved in the formation of early mesoderm, differentiation of craniofacial mesenchyme, and morphogenesis of the axial skeleton.
Collapse
Affiliation(s)
- B A Fenderson
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | |
Collapse
|
15
|
Abstract
The ontogeny of hyaluronan (HA) secretion during early mouse embryogenesis has been investigated using a biotin-labelled HA-binding complex from cartilage proteoglycan. HA is first secreted by visceral endoderm cells of the early egg cylinder on day 5.5 post coitum (p.c.), predominantly into the expanding yolk cavity. On day 6.5 p.c., HA is present in both the yolk and proamniotic cavities, but pericellular staining is restricted to the visceral endoderm and a population of embryonic ectoderm cells at the antimesometrial end of the proamniotic cavity. By the primitive streak stage, HA is secreted into the ectoplacental, exocoelomic, amniotic and yolk cavities, whilst the only cells exhibiting pericellular staining are those of the embryonic and extraembryonic mesoderm, including the allantois. Comparisons of HA-staining patterns of cultured whole blastocysts, microdissected trophectoderm fragments and immunosurgically isolated inner cell masses, revealed no trophoblast-associated HA secretion during outgrowth in vitro but significant synthetic activity by the endodermal derivatives of differentiating inner cell masses. To identify the cell lineages responsible for secretion of HA into the embryonic cavities and to investigate the origin of the HA observed around migrating mesoderm cells, day 7.5 p.c. primitive streak stage conceptuses were dissected into their various embryonic and extraembryonic cell lineages. HA secretion was observed after short-term suspension culture of mesoderm, embryonic ectoderm and embryonic endoderm, but was undetectable in fragments of ectoplacental cone, parietal yolk sac (primary giant trophoblast and parietal endoderm), extraembryonic ectoderm or extraembryonic endoderm. The level of synthesis by the HA-positive tissues was markedly enhanced by culture in medium containing serum, compared with that obtained following culture in medium supplemented with a defined serum substitute containing insulin, transferrin, selenous acid and linoleic acid. This suggests that additional growth factors, present in serum but absent from the serum substitute, are required for optimal HA synthesis by the HA-secreting tissues in vitro, and probably also in vivo. The implications of these events for implantation and the development of peri- and early post-implantation mouse embryos are discussed, and a new role for HA in the initial formation and expansion of the embryonic cavities is proposed.
Collapse
Affiliation(s)
- J J Brown
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111
| | | |
Collapse
|
16
|
Benson MT, Rennie IG. Hemi-naevus of Ota: perturbation of neural crest differentiation as a likely mechanism. Graefes Arch Clin Exp Ophthalmol 1992; 230:226-9. [PMID: 1597286 DOI: 10.1007/bf00176293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We present a case of oculodermal melanosis that involves the lower eyelid and lower half of the globe in a very clearly defined fashion. We suggest that such a lesion is the result of a local change in embryonic environment occurring during a well-defined stage of ocular development, such that differentiation of neural crest cells into a melanocytic phenotype is favoured.
Collapse
Affiliation(s)
- M T Benson
- Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | |
Collapse
|
17
|
Akitaya T, Bronner-Fraser M. Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev Dyn 1992; 194:12-20. [PMID: 1421517 DOI: 10.1002/aja.1001940103] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Because of their distribution and known ability to promote neuronal adhesion, it has been proposed that N-CAM and N-cadherin are involved in the formation of the nervous system. Here, we examine the expression of these molecules during the initiation and cessation of trunk neural crest cell migration during the formation of the peripheral nervous system. Whereas other neural tube cells express N-cadherin, the dorsal neural tube containing neural crest precursors has little or no N-cadherin immunoreactivity. In contrast, N-CAM is expressed in the dorsal neural tube and on early migrating neural crest cells, from which it gradually disappears during migration. Both N-CAM and N-cadherin are absent from neural crest cells at advanced stages of migration. As neural crest cells cease migration and condense to form dorsal root and sympathetic ganglia, N-cadherin but not N-CAM is observed on the forming ganglia, identified by neurofilament expression and the aggregation of HNK-1 reactive cells. The results demonstrate that the absence of N-cadherin correlates with the onset of neural crest migration and its reappearance correlates with cessation of migration and precedes gangliogenesis.
Collapse
Affiliation(s)
- T Akitaya
- Hitachi Chemical Research Center, Inc., University of California, Irvine 92717
| | | |
Collapse
|
18
|
Erickson CA, Duong TD, Tosney KW. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev Biol 1992; 151:251-72. [PMID: 1577191 DOI: 10.1016/0012-1606(92)90231-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have characterized the dispersion of neural crest cells along the dorsolateral path in the trunk of the chicken embryo and experimentally investigated the control of neural crest cell entry into this path. The distribution of putative neural crest cells was analyzed in plastic sections of embryos that had been incubated for 24 hr in HNK-1 antibody, a procedure that we show successfully labels neural crest cells in the dorsolateral path and ectoderm. In accord with earlier observations, crest cells delay entering the dorsolateral path until a day or more after their counterparts have colonized the ventral path. However, once crest cells enter, they disperse rapidly through the path dorsal to the somite but still delay migrating dorsal to the intersegmental space. During dispersion, crest cells invade the ectoderm at sites associated with local disruptions in the basal lamina which may be caused by crest cells. Finally, deleting the dermamyotome releases an inhibition of neural crest cell migration: crest cells enter the dorsolateral path precociously. We speculate that the epithelial dermatome may transiently produce inhibitory substances and that emerging dermis may provide a long-distance, stimulatory cue.
Collapse
Affiliation(s)
- C A Erickson
- Department of Zoology, University of California, Davis 95616
| | | | | |
Collapse
|
19
|
Krenn V, Brand-Saberi B, Wachtler F. Hyaluronic acid influences the migration of myoblasts within the avian embryonic wing bud. THE AMERICAN JOURNAL OF ANATOMY 1991; 192:400-6. [PMID: 1781449 DOI: 10.1002/aja.1001920407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myoblasts migrate in a proximodistal direction within the avian embryonic wing bud during normal limb development. Since the presence and distribution of hyaluronic acid within the wing bud coincide with the time and with the direction of the migration of myoblasts, we microinjected hyaluronic acid into chicken wing buds that had received grafts containing quail myoblasts. It was found that injected hyaluronic acid has a strong positive effect on the migration of myoblasts: it causes a migration of myoblasts in donor-host combinations in which this is normally not the case, and it can cause migration in a proximal direction, a phenomenon not observed during normal development. From this it may be concluded that hyaluronic acid can influence myoblast migration in vivo. A similar effect could be observed after the microinjection of dextran sulfate, a synthetic compound having similar physicochemical properties. Hyaluronic acid, therefore, may play an important role in the control of the migration of myogenic cells in vivo by its physiocochemical properties.
Collapse
Affiliation(s)
- V Krenn
- Histologisch-Embryologisches Institut der Universität Wien, Austria
| | | | | |
Collapse
|
20
|
Kan FW. High-resolution localization of hyaluronic acid in the golden hamster oocyte-cumulus complex by use of a hyaluronidase-gold complex. Anat Rec (Hoboken) 1990; 228:370-82. [PMID: 2285156 DOI: 10.1002/ar.1092280403] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The distribution of hyaluronic acid in the oocyte-cumulus complexes collected from the oviduct ampulla of superovulated hamsters was revealed by use of hyaluronidase coupled to colloidal gold. On thin sections of Lowicryl-embedded oocyte-cumulus complexes, gold particles were associated specifically with interconnecting fibrillar materials that make up the cumulus matrix. Inside the cumulus cells, gold particles were found over the cisternal membrane of the rough endoplasmic reticulum, in the contents of lysosomes and multivesicular bodies, and over Golgi vesicles of some cumulus cells. A high concentration of gold labeling was observed over the peripheral condensed chromatin and perinucleolar components in the nucleus. The cell surface of the cumulus cells also appeared to be labeled. Gold particles, however, were absent over the mitochondria and lipid vacuoles. In the oocytes, labeling was found to be associated mainly with rough endoplasmic reticulum and arrays of lamellar structures; cortical granules, mitochondria, and coated vesicles were essentially devoid of gold particles. Gold particles were also seen along the plasma membrane of the oocytes and within the perivitelline space. The zona pellucida was not labeled by hyaluronidase-gold. Different control experiments confirmed the specificity of the labeling. Digestion of thin sections with hyaluronidase prior to incubation with hyaluronidase-gold abolished the initial reaction, whereas treatment of thin sections with chondroitinase did not prevent labeling of oocyte-cumulus complexes by hyaluronidase-gold. Although the function of hyaluronic acid in the oocyte-cumulus complex at the time of ovulation and fertilization is not known, the high concentration of this particular compound in the cumulus matrix and the cumulus cells and its specific locations in the perivitelline space and in the superovulated oocytes implicate the significance of its presence and warrant future investigations.
Collapse
Affiliation(s)
- F W Kan
- Department of Anatomy, Faculty of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
21
|
Straaten HWM, Hooper KC, Bernfield M. Hyaluronan Disappears Intercellularly and Appears at the Basement Membrane Region during Formation of Embryonic Epithelia. (mouse embryo/hyaluronan/epithelium/basement membrane/development). Dev Growth Differ 1990. [DOI: 10.1111/j.1440-169x.1990.00505.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Morrison-Graham K, Bork T, Weston JA. Association between collagen and glycosaminoglycans is altered in dermal extracellular matrix of fetal Steel (Sld/Sld) mice. Dev Biol 1990; 139:308-13. [PMID: 2338171 DOI: 10.1016/0012-1606(90)90300-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Altered extracellular matrix produced by Steel mutant fetuses affects the pigmentation of neural crest cells in vitro (K. Morrison-Graham, L. West-Johnsrud, and J.A. Weston, 1990, Dev. Biol. 139). Here, we demonstrate that collagen bundle morphology and hyaluronidase sensitivity of the glycosaminoglycans associated with the collagen fibrils differ between normal and mutant dermis. Although no differences were detected in the amounts of collagen or glycosaminoglycans produced in vitro or present in vivo, hyaluronic acid was more readily extracted from Sld/Sld than from normal skin. We suggest that the Steel mutation alters the organization of collagen bundles and associated hyaluronic acid within the extracellular matrix.
Collapse
|
23
|
Mina M, Kollar EJ, Bishop JA, Rohrbach DH. Interaction between the neural crest and extracellular matrix proteins in craniofacial skeletogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1990; 1:79-87. [PMID: 2129622 DOI: 10.1177/10454411900010020401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M Mina
- Department of Pediatric Dentistry, University of Connecticut Health Center School of Dental Medicine, Farmington
| | | | | | | |
Collapse
|
24
|
Mariotti A, Cochran DL. Characterization of fibroblasts derived from human periodontal ligament and gingiva. J Periodontol 1990; 61:103-11. [PMID: 2313526 DOI: 10.1902/jop.1990.61.2.103] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growth characteristics and macromolecular synthesis of fibroblasts derived from human periodontal ligament (PDLF) and gingiva (GF) have been compared in cell culture. Cells were isolated from explants and plated at 500,000 cells/100 mm culture dish (day 0) with daily changes of culture medium. DNA histograms were obtained by flow microfluorimetric analysis to confirm the growth state of the cell cultures. Human PDLF cultures became confluent at day 6 as determined by cell number and cell cycle analysis while GF were confluent by day 4. Initially, DNA content of logarithmically growing cells was significantly greater in GF cultures; however, when confluent, DNA content and cell number was greater in PDLF cultures. Total protein content in GF was slightly greater than PDLF until day 7 but this difference was not significant. Analysis of collagen and noncollagen protein synthesis revealed a greater trend in noncollagen protein synthesis in the GF cultures compared to PDLF cultures. Analysis of glycosaminoglycans in the culture medium of GF and PDLF revealed similar distributions of components. In the cellular fraction, GF had greater amounts of hyaluronic acid and heparin and lesser amounts of chondroitin sulfates A and C than PDLF cultures. The results indicate that the growth characteristics of PDLF and GF, although similar in many respects, do exhibit specific differences in proliferative rates and macromolecular synthesis. The differences observed in these parameters may be important during in vivo events, such as guided tissue regeneration, where significant functional differences are observed between gingival connective tissue and periodontal ligament connective tissue.
Collapse
Affiliation(s)
- A Mariotti
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville
| | | |
Collapse
|
25
|
Tennyson VM, Payette RF, Rothman TP, Gershon MD. Distribution of hyaluronic acid and chondroitin sulfate proteoglycans in the presumptive aganglionic terminal bowel of ls/ls fetal mice: an ultrastructural analysis. J Comp Neurol 1990; 291:345-62. [PMID: 2298938 DOI: 10.1002/cne.902910303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The terminal colon of the ls/ls mouse is aganglionic because an intrinsic defect prevents its colonization by cells migrating from the neural crest. Previous studies showed that laminin, type IV collagen, and glycosaminoglycans accumulate in the region of the presumptive aganglionic ls/ls bowel through which crest-derived cells would be expected to migrate. It was suggested that crest-derived cells might fail to enter the abnormal bowel because they receive inappropriate signals from a defective extracellular matrix. This hypothesis was evaluated by analyzing the ultrastructure of the extracellular matrix in mutant and control gut. Tissue was fixed in the presence of ruthenium red before or after selective enzymatic digestion. Heparan sulfate proteoglycan (diameter approximately equal to 15 nm) and chondroitin sulfate proteoglycan (diameter approximately equal to 20-50 nm) granules were found in both control and presumptive aganglionic gut. The heparan sulfate proteoglycan granules were primarily located within formed basal laminae, while chondroitin sulfate proteoglycan granules decorated plasma membranes and 5 nm hyaluronic acid microfibrils that formed a network in the extracellular matrix. At day E11.5, the mutant gut differed from the control in the following: 1) Hyaluronic acid microfibrils were longer and more numerous. 2) There were larger numbers of chondroitin sulfate proteoglycan granules associated with cell membranes and with hyaluronic acid microfibrils. By day E13 the spaces between mesenchymal cells of the outer wall of the control bowel contained a regular lattice of hyaluronic acid microfibrils studded with chondroitin sulfate proteoglycan granules. Instead of this lattice, tangles of excessively long hyaluronic acid microfibrils, coated more heavily than in the control with chondroitin sulfate proteoglycan granules, were found in the presumptive aganglionic gut. These results confirm that the extracellular matrix is abnormal in the presumptive aganglionic bowel of the ls/ls mouse; moreover, they also indicate that the defect involves not one, but several components of the extracellular matrix, as well as their distribution. The defective extracellular matrix is apparent at a time when crest-derived cells would be expected to be migrating in the terminal bowel and is located in their path. The observations thus support the idea that a localized abnormality of the extracellular matrix interferes with the colonization of the terminal bowel by crest-derived cells in the ls/ls mouse.
Collapse
Affiliation(s)
- V M Tennyson
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032
| | | | | | | |
Collapse
|
26
|
Levi G, Duband JL, Thiery JP. Modes of cell migration in the vertebrate embryo. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 123:201-52. [PMID: 2289849 DOI: 10.1016/s0074-7696(08)60675-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- G Levi
- Laboratoire de Physiopathologie du Développement du CNRS, Ecole Normale Superieure, Paris, France
| | | | | |
Collapse
|
27
|
Lallier T, Artinger M, Matthew W, Bronner-Fraser M. Distribution and biochemical characterization of the INO antigen during chick neural crest cell migration. NEUROSCIENCE RESEARCH. SUPPLEMENT : THE OFFICIAL JOURNAL OF THE JAPAN NEUROSCIENCE SOCIETY 1990; 13:S126-40. [PMID: 2259480 DOI: 10.1016/0921-8696(90)90041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The INO (inhibitor of neurite outgrowth) antibody recognizes a laminin-heparan sulfate proteoglycan complex and was isolated for its ability to functionally inhibit axonal outgrowth of peripheral neurons. Here, we examine the distribution and biochemical characteristics of INO in the early chick embryo. Because the INO antigen is sensitive to most classical fixation procedures and fixation leads to abundant nuclear staining, the antibody was directly injected into 1.5-2.5-day-old embryos prior to fixation. The distribution of the injected antibody was then observed in cryostat sections by indirect immunofluorescence. Particular attention was focussed upon regions of ongoing neural crest cell migration. The INO antigen was observed along both cranial and trunk neural crest cell migratory pathways. The antigen was seen around the basement membrane surrounding the neural tube and notochord, and underneath the ectoderm and endoderm. In addition, fibrillar staining was observed in the cranial mesenchyme and in both rostral and caudal halves of the somitic sclerotome in the trunk. The distribution pattern was identical to that previously observed for laminin or heparan sulfate proteoglycan. To confirm the nature of the INO antigen, we performed immunoprecipitations of chick embryos ranging from 1.5 to 9 days of incubation. Half of each sample was digested with heparinase prior to SDS-PAGE and silver staining. In material from young embryos, bands of 200 and 180 kD (probably corresponding to the B-chains of laminin) plus two broad smears of bands at 180-150 kD and 130-85 kD were observed without heparinase digestion. Following enzymatic digestion, the 200-kD and 180-kD bands remained, while the smears disappeared and were replaced by numerous low-molecular-weight bands. In contrast to preparations from young embryos, samples taken from embryos at day 3 or beyond did not enter the 8% gel without heparinase digestion, though the banding pattern appeared identical to younger samples after heparinase digestion in the presence or absence of Ca2+. This change in the INO antigen with age could result from an increase in the heparin-side-chains attached to similar core proteins, or from an increase in the stability of the laminin-heparan sulfate proteoglycan containing complex with time.
Collapse
Affiliation(s)
- T Lallier
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | |
Collapse
|
28
|
Perris R, Johansson S. Inhibition of neural crest cell migration by aggregating chondroitin sulfate proteoglycans is mediated by their hyaluronan-binding region. Dev Biol 1990; 137:1-12. [PMID: 1688536 DOI: 10.1016/0012-1606(90)90002-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently shown that the large hyaluronan-aggregating chondroitin sulfate proteoglycan from cartilage (PG-LA) is unfavorable as a substrate for neural crest cell migration in vitro and that this macromolecule inhibits cell dispersion on fibronectin substrates when included in the medium (R. Perris and S. Johansson, 1987, J. Cell Biol. 105, 2511-2521). In this study we present data on the specificity of the migration-repressing activity of PG-LA and data on the molecular mechanisms by which the proteoglycan might impair neural crest cell motility. Soluble PG-LA potently impaired cell migration on substrates of laminin/laminin-nidogen, vitronectin, and collagen types I, III, IV, and VI. When tested in solid-phase binding assays, PG-LA bound avidly to substrates of collagen types I-III and V. Conversely, minimal amounts of the proteoglycan bound to substrates of laminin-nidogen, vitronectin, collagen types IV and VI, and fibronectin or to a proteolytic fragment encompassing its cell-binding domain (105 kDa). Preincubation of these substrates with soluble PG-LA prior to plating of the cells had no effect on their locomotory behavior. These results indicate that PG-LA affects neural crest cell movement primarily through an interaction with the cell surface, rather than by association with the cell motility-promoting substrate molecules. The molecular interaction of soluble PG-LA with neural crest cells was further examined by analyzing the effects of isolated domains of the proteoglycan on cell migration on fibronectin. Addition of chondroitin sulfate chains, the core protein free of glycosaminoglycans, the isolated hyaluronan-binding region (HABr), or a proteolytic fragment corresponding to the keratan sulfate-enriched domain of the PG-LA to neural crest cells migrating on fibronectin or the 105-kDa fibronectin fragment had no significant effect on their motility. After reduction and alkylation, PG-LA was considerably less efficient in perturbing cell movement on fibronectin substrates and virtually ineffective in altering migration on the 105-kDa fragment. In the presence of hyaluronan fragments of 16-30 monosaccharides in length, or an antiserum against the HABr, the migration repressing activity of PG-LA was reduced in a dose-dependent fashion. Furthermore, the inhibitory action of PG-LA was significantly reduced by treatment of the cells with Streptomyces hyaluronidase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Perris
- Developmental Biology Center, University of California, Irvine 92717
| | | |
Collapse
|
29
|
Keshmirian J, Bray G, Carbonetto S. The extracellular matrix modulates the response of PC12 cells to nerve growth factor: cell aggregation versus neurite outgrowth on 3-dimensional laminin substrata. JOURNAL OF NEUROCYTOLOGY 1989; 18:491-504. [PMID: 2553876 DOI: 10.1007/bf01474545] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PC12 cells attach well to plastic culture dishes coated with laminin, collagen, polylysine or a basement membrane extract (2-dimensional substrata) and, in the presence of NGF, extend short neurites within 1-2 days. However, on gels (3-dimensional substrata) reconstituted from a basement membrane extract (RBM), PC12 cells attach extending short processes transiently and within one day, form networks of small aggregates interconnected by process-bearing cells. By 3 days the network collapses into large aggregates that, in media supplemented with NGF, extended a halo of neurites resembling dorsal root ganglia in culture. Time-lapse video recordings indicate that cell motility on RBM gel is accompanied by extensive blebbing as well as extension of processes that attach to and pull together neighbouring cells. These cellular events may contribute to the disruption of the gel underneath aggregates that is apparent when cultures are stained with Coomasie Blue. Ultrastructural studies indicated that aggregates often have zonula adherens-type junctions where cell bodies and processes come in contact. PC12 cells seeded onto gels of laminin alone behave essentially the same as on RBM gels, whereas on collagen gels they behave as on 2-dimensional substrata and extended neurites rather than aggregate. The extent of aggregation increases with greater cell density and is enhanced significantly by NGF. Antisera to NGF reduce the NGF-enhancement of aggregation but do not block aggregation in the absence of NGF. Dibutyryl cAMP or epidermal growth factor, which stimulate process extension and cell division respectively, do not enhance aggregation. However, 3A3, a monoclonal antibody to a laminin/collagen receptor on PC12 cells and antibodies (Fab fragments) to the neural cell adhesion molecule both inhibit cell aggregation.
Collapse
Affiliation(s)
- J Keshmirian
- Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Quebec, Canada
| | | | | |
Collapse
|
30
|
Schor SL, Schor AM, Grey AM, Chen J, Rushton G, Grant ME, Ellis I. Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: effect on hyaluronic and synthesis. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:737-46. [PMID: 2768134 DOI: 10.1007/bf02623727] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously demonstrated that confluent fetal fibroblasts migrate into three-dimensional collagen gels to a significantly greater extent than their normal adult counterparts. Recent studies have revealed that this behavioral difference results from the secretion by fetal fibroblasts of a soluble migration-stimulating factor (MSF) which acts on these cells in an autocrine fashion. Adult fibroblasts do not produce MSF but remain responsive to it. Skin fibroblasts from cancer patients resemble fetal fibroblasts (rather than normal adult cells) with respect to their migratory behavior on collagen gels and continued production of MSF. This communication is concerned with elucidating the biochemical basis of MSF activity. Data are presented indicating that a) hyaluronic acid is required for the elevated migratory activity displayed by confluent fetal and breast cancer patient skin fibroblast; b) adult fibroblasts exhibit a bell-shaped dose-response to MSF, with maximal stimulation of migration observed at a concentration of 10 ng/ml; c) the migratory activity of adult fibroblasts pre-incubated with MSF remains high in the absence of additional factor: and d) MSF affects both the quantity and size class distribution of hyaluronic acid synthesized by adult fibroblasts. We have previously speculated that the persistent fetal-like fibroblasts of breast cancer patients play a direct role in disease pathogenesis by perturbing normal epithelial-mesenchymal interactions. The observations reported here suggest that MSF-induced alterations in hyaluronic acid synthesis may contribute to the molecular basis of such perturbations.
Collapse
Affiliation(s)
- S L Schor
- Department of Cell and Structural Biology, University of Manchester
| | | | | | | | | | | | | |
Collapse
|
31
|
Moase CE, Trasler DG. Spinal ganglia reduction in the splotch-delayed mouse neural tube defect mutant. TERATOLOGY 1989; 40:67-75. [PMID: 2763211 DOI: 10.1002/tera.1420400109] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Splotch and splotch-delayed mutants have anomalies in certain neural crest cell derivatives as well as neural tube defects. A genetic marker was used to identify mutant, heterozygote, and wild-type embryos within a litter, which enabled us to make intergenotypic comparisons. Histological studies of the lumbosacral region of day 15 and day 16 embryos indicated that the splotch-delayed mutant had similar but less severe defects in spinal ganglion development than those reported for splotch (Auerbach: Journal of Experimental Zoology 127:305-329, 1954). The ganglia were extensively reduced in size, residual, or missing in the splotch-delayed mutant, whereas in the splotch mutant, they were virtually nonexistent. Paired comparison analyses showed that all mutant embryos had a significant reduction in their volume of lumbosacral spinal ganglia when compared to their heterozygous and/or wild-type littermates. Also, some heterozygotes were found to have spinal ganglia volumes that were significantly reduced when compared to wild-type embryos. The volume of spinal ganglia was not related to the severity of the neural tube defect. In fact, three mutant embryos, which did not exhibit a neural tube defect, had spinal ganglia volumes comparable to or less than those mutants with open neural tube lesions or curly tails. This shows that the formation of abnormal neural crest cell derivatives is not a result of the neural tube closure defect. We hypothesize that the two anomalies observed in these mutants have a common etiological basis.
Collapse
Affiliation(s)
- C E Moase
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Eckstein DJ, Shur BD. Laminin induces the stable expression of surface galactosyltransferase on lamellipodia of migrating cells. J Cell Biol 1989; 108:2507-17. [PMID: 2500448 PMCID: PMC2115591 DOI: 10.1083/jcb.108.6.2507] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that cell surface galactosyltransferase (GalTase) mediates cell spreading and migration on basal lamina matrices by binding N-linked oligosaccharide substrates within laminin. In this study we have examined the distribution and expression of cell surface GalTase during mesenchymal cell migration on various extracellular matrices. Antisera raised against affinity-purified beta 1,4 GalTase, as well as anti-GalTase Fab fragments, inhibited cell migration on laminin-containing matrices, whereas under identical conditions, anti-GalTase IgG had no effect on the rate of cell migration on fibronectin substrates. Cells migrating on laminin had three times the level of surface GalTase, assayed by 125I-antibody binding and by direct enzyme assay, than similar cells migrating on fibronectin. On the other hand, total cellular GalTase, assayed either enzymatically or by Northern blot analysis, was similar when cells were grown on laminin or fibronectin. The laminin-dependent increase in surface GalTase was due to its expression onto the leading and trailing edges of migrating cells in association with actin-containing microfilaments assayed by double-label indirect immunofluorescence. On stationary cells, surface GalTase levels were low, but as cells began to migrate on laminin GalTase became polarized to the growing lamellipodia. GalTase was not detectable on lamellipodia or filopodia when cells migrated on fibronectin substrates. These results show that laminin-containing matrices induce the stable expression of GalTase onto cell lamellipodia and filopodia where it mediates subsequent cell spreading and migration. Since fibronectin was unable to induce GalTase expression onto lamellipodia, these studies also suggest that the extracellular matrix can selectively influence which intracellular components are maintained on the cell surface.
Collapse
Affiliation(s)
- D J Eckstein
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
33
|
Kühtreiber WM, van Dongen CA. Microinjection of lectins, hyaluronidase, and hyaluronate fragments interferes with cleavage delay and mesoderm induction in embryos of Patella vulgata. Dev Biol 1989; 132:436-41. [PMID: 2494090 DOI: 10.1016/0012-1606(89)90239-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In embryos of Patella vulgata at the 32-cell stage, one of the four vegetally located macromeres makes contacts with overlying animal micromeres. As a result, this macromere (designated 3D) divides significantly later than the other macromeres and forms the mesodermal stem cell 4d. Shortly before and during this interaction two types of extracellular matrix are present: a basal lamina-like layer on the tips of the micromeres and a loose fibrillar meshwork in the blastocoel. In this paper we examine the role of the matrix in cleavage delay and mesoderm determination. The microinjection of extracellular matrix-binding lectins, or of hyaluronidase, or of decasaccharide fragments of hyaluronate into the blastocoel results in embryos in which either no or two macromeres are delayed in cleavage and are presumably determined as mesodermal stem cells. We suggest that the fibrillar meshwork is needed for macromere elongation toward the micromeres and that the basal lamina-like layer is involved in the determination process itself.
Collapse
Affiliation(s)
- W M Kühtreiber
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Halfter W, Chiquet-Ehrismann R, Tucker RP. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro. Dev Biol 1989; 132:14-25. [PMID: 2465193 DOI: 10.1016/0012-1606(89)90200-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum.
Collapse
Affiliation(s)
- W Halfter
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
35
|
Affiliation(s)
- M A Nathanson
- Department of Anatomy, New Jersey Medical School, Newark 07103
| |
Collapse
|
36
|
Sanders EJ, Prasad S, Cheung E. Extracellular matrix synthesis is required for the movement of sclerotome and neural crest cells on collagen. Differentiation 1988; 39:34-41. [PMID: 3246291 DOI: 10.1111/j.1432-0436.1988.tb00078.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During early embryogenesis cells of several different populations disperse by active cell movement from one location to another. Preexisting extracellular materials are major determinants of these dispersal patterns, but the cells are also able to modify their substrata by synthesizing and secreting extracellular matrix molecules as they move. In order to determine the contribution made by these deposited materials, several tissues from the early chick embryo have been cultured in the presence of inhibitors of extracellular matrix synthesis and secretion. The tissues examined were sclerotome cells from differentiated somites and neural crest cells. For comparison, undifferentiated somites were also cultured. The movement of these cells was compared in type I collagen gel culture and in conventional culture on artificial substrata. Inhibitors of collagen synthesis were used (cis-hydroxy proline and L-azetidine-2-carboxylic acid) in addition to a proteoglycan inhibitor (p-nitrophenyl-xylopyranoside) and a secretion inhibitor (monensin). Results indicate that sclerotome cells require collagen synthesis for movement in a collagen matrix. Reversal of the effects of collagen inhibitors, by proline and type II collagen, suggest that sclerotome cells normally condition the type I matrix in order to move in it. Inhibition of proteoglycan synthesis produced the greatest effect on the movement of neural crest cells regardless of the substratum, confirming an important role for these molecules in the crest migratory routes. The attachment of all cells to collagen was highly sensitive to the presence of monensin, which is known to reduce the deposition of glycosaminoglycans and fibronectin. These results suggest that conditioning of the extracellular matrix by newly synthesized material is required for cell attachment and movement during early development.
Collapse
Affiliation(s)
- E J Sanders
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Affiliation(s)
- B U Pauli
- Dept. of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
38
|
Glimelius B, Norling B, Nederman T, Carlsson J. Extracellular matrices in multicellular spheroids of human glioma origin: increased incorporation of proteoglycans and fibronectin as compared to monolayer cultures. APMIS 1988; 96:433-44. [PMID: 3288248 DOI: 10.1111/j.1699-0463.1988.tb05327.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tumor spheroids were cultured from five human glioma cell lines which differed considerably in their relative amount and composition of glycosaminoglycans (GAG), fibronectin and other extracellular matrix (ECM) components when grown as monolayer cultures. These differences were also evident when the cells were grown as spheroids. Under the 3-dimensional geometry of the spheroid system, there was, however, generally a more extensive ECM. Especially noteworthy was the presence of a small proteoglycan, probably a dermatan sulphate proteoglycan, in the ECM of the spheroids, but not in the monolayers. Noteworthy was also the appearance of fibronectin in spheroids which did not show any staining for fibronectin when grown as monolayer. The two spheroid types (U-87MG, U-105MG) with the most extensive matrix, and with the lowest proportion of hyaluronic acid (HA), had a low proliferation rate, whereas the three other spheroid types (U-118MG, U-138MG, U-251MG) with a less extensive ECM, and a relatively high production of HA had a much higher proliferation rate. These data provide further evidence for the usefulness of culturing cell lines as spheroids in the process of understanding important cell biological phenomena.
Collapse
Affiliation(s)
- B Glimelius
- Department of Oncology, University of Uppsala, Akademiska sjukhuset, Sweden
| | | | | | | |
Collapse
|
39
|
Kapron-Brás CM, Trasler DG. Histological comparison of the effects of the splotch gene and retinoic acid on the closure of the mouse neural tube. TERATOLOGY 1988; 37:389-99. [PMID: 3293260 DOI: 10.1002/tera.1420370412] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The splotch gene (Sp) and all-trans retinoic acid (RA) interact to cause spina bifida in mouse embryos. To investigate the mechanisms of action of the two, the spinal regions of Sp homozygotes, RA-treated wild-type, and control wild-type embryos were examined histologically by light microscopy on day 9 of gestation. The mean numbers of cells per section in the neural tube, mesoderm, and notochord were determined, along with the percentages of mitotic and pyknotic nuclei and the numbers of migrating neural crest cells. As well, the effect of Sp and RA on the extracellular matrix was studied histochemically with Alcian blue staining for glycosaminoglycans. The main defect in Sp homozygotes was a marked reduction in the number of migrating neural crest cells and the amount of extracellular matrix around the neural tube. Retinoic acid, on the other hand, caused a number of disruptions in the embryo, including abnormalities in the position of the notochord and the shape of the neural tube. Sp and RA delay neural tube closure and thus cause neural tube defects, through different mechanisms. However, the combined effects of the gene and teratogen on the embryo lead to a greater inhibition of neural tube closure than when either is present separately.
Collapse
Affiliation(s)
- C M Kapron-Brás
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Kalcheim C, Leviel V. Stimulation of collagen production in vitro by ascorbic acid released from explants of migrating avian neural crest. CELL DIFFERENTIATION 1988; 22:107-14. [PMID: 2830031 DOI: 10.1016/0045-6039(88)90022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryonic neuronal tissues contain a collagen-stimulating factor, shown to enhance the hydroxylation and secretion of proline-containing macromolecules by cultured muscle cells. Here we report on a similar activity found during avian embryonic development in explants of migrating mesencephalic neural crest. The degree of proline hydroxylation of proteins secreted into the medium was stimulated 2.5-6-fold in neural crest-muscle and neural crest-somite cocultures, as compared with control cultures devoid of crest explants. No such stimulation occurred when cocultures were treated with the enzyme ascorbate oxidase (EC 1.10.3.3), suggesting that the active factor in neural crest explants was ascorbic acid or an ascorbate-like molecule. Further characterization of this molecule was performed in crest explants and other embryonic tissues by using HPLC with amperometric detection: this study revealed that migrating cephalic neural crest contains 1.5 micrograms ascorbic acid per mg protein. Our results suggest that ascorbic acid and/or related molecule(s) could act during development of the nervous system as a trigger for collagen production and subsequent assembly of an extracellular matrix.
Collapse
Affiliation(s)
- C Kalcheim
- Institut d'Embryologie du CNRS, Nogent-sur-Marne, France
| | | |
Collapse
|
41
|
Bilozur ME, Hay ED. Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin, or collagen. Dev Biol 1988; 125:19-33. [PMID: 3275424 DOI: 10.1016/0012-1606(88)90055-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.
Collapse
Affiliation(s)
- M E Bilozur
- Department of Anatomy and Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
42
|
Perris R, Johansson S. Amphibian neural crest cell migration on purified extracellular matrix components: a chondroitin sulfate proteoglycan inhibits locomotion on fibronectin substrates. J Biophys Biochem Cytol 1987; 105:2511-21. [PMID: 3693392 PMCID: PMC2114685 DOI: 10.1083/jcb.105.6.2511] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability of purified extracellular matrix components to promote the initial migration of amphibian neural crest (NC) cells was quantitatively investigated in vitro. NC cells migrated avidly on fibronectin (FN), displaying progressively more extensive dispersion at increasing amounts of material incorporated in the substrate. In contrast, dispersion on laminin substrates was optimal at low protein concentrations but strongly reduced at high concentrations. NC cells were unable to migrate on substrates containing a high molecular mass chondroitin sulfate proteoglycan (ChSP). When proteolytic peptides, representing isolated functional domains of the FN molecule, were tested as potential migration substrates, the cell binding region of the molecule (105 kD) was found to be as active as the intact FN. A 31-kD heparin-binding fragment also stimulated NC cell migration, whereas NC cells dispersed to a markedly lower extent on the isolated collagen-binding domain (40 kD), or the latter domain linked to the NH2-terminal part of the FN molecule. Migration on the intact FN was partially inhibited by antibodies directed against the 105- and 31-kD fragments, respectively; dispersion was further decreased when the antibodies were used in combination. Addition of the ChSP to the culture medium dramatically perturbed NC cell migration on substrates of FN, as well as of 105- or 31-kD fragments. However, preincubation of isolated cells or substrates with ChSP followed by washing did not affect NC cell movement. The use of substrates consisting of different relative amounts of ChSP and the 105-kD peptide revealed that ChSP counteracted the motility-promoting activity of the 105-kD FN fragment in a concentration-dependent manner also when bound to the substrate. Our results indicate that NC cell migration on FN involves two separate domains of the molecule, and that ChSP can modulate the migratory behavior of NC cells moving along FN-rich pathways and may therefore influence directionally and subsequent localization of NC cells in the embryo.
Collapse
Affiliation(s)
- R Perris
- Department of Zoology, Uppsala University, Sweden
| | | |
Collapse
|
43
|
Teillet MA, Kalcheim C, Le Douarin NM. Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Dev Biol 1987; 120:329-47. [PMID: 3549390 DOI: 10.1016/0012-1606(87)90236-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.
Collapse
|
44
|
Nakao T, Ishizawa A. Development of the spinal nerves in the lamprey: III. Spinal ganglia and dorsal roots in 26-day (13 mm) larvae. J Comp Neurol 1987; 256:369-85. [PMID: 3571511 DOI: 10.1002/cne.902560306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serial sections of the trunk and tail of 26-day (13 mm) larval lampreys were examined by light and electron microscopy. Trunk region: Spinal ganglia and ventral nerves are seen alternately along the spinal cord and the notochord in the trunk. Spinal ganglia are located medially in intermyotome spaces with intersegmental blood vessels and send "dorsal nerves" ventrally along the vessels. "Ventral nerves" are seen on the midmedial surface of each myotome. Fibers containing dense-cored vesicles occur in the dorsal root but not in the ventral root. Caudal region: In the caudal one-third of the tail the ventral nerves are formed earlier than spinal ganglia and dorsal nerves. The most caudal (primitive) ventral nerve (root) develops at the 12th myotome from the caudal end of the series of myotomes, the caudalmost ganglion being formed between the 15th and the 14th myotome in a 13-mm larval lamprey. The intimate association of dorsolateral outflow (DLO) fibers (Nakao and Ishizawa: J. Comp. Neurol. 256:356-368, '87b) with neural crest cells (DO cells of Nakao and Ishizawa; ibid.) strongly suggested that these fibers play an important role as the substrate for guiding the cells to form compact cell masses as primitive spinal ganglia. Two types of cell groups are progressively distinguished in primitive spinal ganglia during development. One of them has a light round nucleus with a prominent nucleolus and a large amount of the perinuclear cytoplasm that contains abundant free ribosomes, rough endoplasmic reticulum (ER), numerous Golgi apparatuses, and dense bodies. Cells of the other type are characterized by a dense, flattened nucleus with a small amount of perinuclear cytoplasm that extends as a thin cytoplasmic sheet to surround cells of the other type as a whole, the basal lamina surrounding the whole cell mass. The former type is interpreted as neural cells and the latter satellite cells of the ganglion. Central processes of ganglionic neural cells are assumed to enter the spinal cord along DLO fibers by using them as a substrate to establish the dorsal root. Intersegmental blood vessels develop later than spinal ganglia and peripheral processes extend along the vessels.
Collapse
|
45
|
Abstract
The rapid transport of cells has been shown to occur by ordered countercurrent convection. This convection can be created by mixtures of macromolecules which make up the extracellular matrix and by the degradation and aggregation products of these macromolecules. The ordered countercurrent convection is manifested in the form of structured flows and arises in isothermal systems with small concentration gradients of solutes. The flows are gravity driven but may rapidly move at angles close to the horizontal axis if they are mechanically constrained to do so. These flows have been shown to rapidly transport cells at rates ranging from 1 to 100 mm h-1, depending on the conditions of the experiment. The transport of cells is nonspecific in that various cell types (chondrocytes, fibroblasts, endothelial cells, and red blood cells) as well as inert particles of similar size (latex beads 6-microns diam) are transported at similar rates. Latex bead transport by structured flow has also been demonstrated to occur in confined spaces in the form of Teflon tubing down to 200 microns in diameter and at angles in the range of 45-90 degrees to the horizontal axis. The flows may also occur over relatively long distances for a prolonged period of time. The conditions for flow formation are simple and widespread. It is suggested that it may contribute to the forces involved in the movement of cells in the extracellular matrix in vivo especially during remodeling and embryogenesis.
Collapse
|
46
|
Tucker RP, Erickson CA. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation. Dev Biol 1986; 118:268-85. [PMID: 3770303 DOI: 10.1016/0012-1606(86)90094-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The neural crest is a population of highly migratory mesenchymal cells that ultimately localize in specific sites and differentiate into a variety of cell types. This report describes studies on the factors governing the migratory pathways, differentiation, and ultimate localization of the neural crest-derived pigment cells (black melanophores and yellow xanthophores) in the California newt, Taricha torosa. Melanophores first appear scattered in the dorsal portion of the lateral neural crest migratory pathway (between the somites and the ectoderm). These cells are eventually found in two stripes: a dorsal stripe that runs along the apex of the somites, and a midbody stripe near the somite-lateral plate mesoderm border. Melanophores are not seen in the dorsal fin of prehatching embryos. Xanthophores can be identified with the light microscope using NH4OH-induced autofluorescence of pteridines and in the transmission electron microscope (TEM) by the presence of pterinosomes. Xanthophores first appear scattered among the melanophores over the surface of the somites; these cells eventually are found between the two melanophore stripes and in the dorsal fin. We were interested in determining the roles of the extracellular matrix (ECM) in controlling the formation of pigment cell patterns in T. torosa. Immunocytochemistry, Alcian blue staining of paraffin sections and ruthenium red staining of thin sections (accompanied by Streptomyces hyaluronidase and chondroitinase ABC digestion) were used to identify the composition and distribution of the ECM surrounding the pigment cells at various stages during development. The adhesive glycoprotein fibronectin is found in the dorsal portion of the lateral neural crest migratory pathway as well as in the dorsal fin matrix. Glycosaminoglycans (GAG) are found primarily in the dorsal fin and in the ECM surrounding the notochord. The dorsal fin ECM contains hyaluronate (HA), which was identified in the TEM as Streptomyces hyaluronidase-sensitive 3-5 nm microfibrils, as well as sulfated proteoglycan aggregates. We then confronted T. torosa neural crest cells in vitro with known ECM molecules. When neural folds are explanted onto tissue culture plastic in half-strength L-15 medium containing 10% fetal calf serum (FCS), cells migrate from the explant and differentiate into melanophores after 6 to 9 days. Xanthophores appear in the cultures 2 to 4 days after the appearance of melanophores. When cultured on three-dimensional collagen gels, xanthophores migrate significantly farther (P less than 0.01) onto and into the collagen than melanophores (336 +/- 183 vs 196 +/- 160 microns from the edge of the explant).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
47
|
Bronner-Fraser M. An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 1986; 117:528-36. [PMID: 2944780 DOI: 10.1016/0012-1606(86)90320-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies from this laboratory (M. Bronner-Fraser (1985). J. Cell Biol. 101, 610) have demonstrated that an antibody to a cell surface receptor complex caused alterations in avian neural crest cell migration. Here, these observations are extended to examine the distribution and persistency of injected antibody, the dose dependency of the effect, and the long-term influences of antibody injection. The CSAT antibody, which recognizes a cell surface receptor for fibronectin and laminin, was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. Injected antibody molecules did not cross the midline, but appeared to diffuse throughout the injected half of the mesencephalon, where they remained detectable by immunocytochemistry for about 22 hr. Embryos were examined either during neural crest migration (up to 24 hr after injection) or after formation of neural crest-derived structures (36-48 hr after injection). In those embryo fixed within the first 24 hr, the major defects were a reduction in the neural crest cell number on the injected side, a buildup of neural crest cells within the lumen of the neural tube, and ectopically localized neural crest cells. In embryos allowed to survive for 36 to 48 hr after injection, the neural crest derivatives appeared normal on both the injected and control side, suggesting that the embryos compensated for the reduction in neural crest cell number on the injected side. However, the embryos often had severely deformed neural tubes and ectopic aggregates of neural crest cells. In contrast, several control antibodies had no effect. These findings suggest that the CSAT receptor complex is important in the normal development of the neural crest and neural tube.
Collapse
|
48
|
Luckenbill-Edds L. Development of extracellular matrix in chick paravertebral sympathetic ganglia. J Morphol 1986; 189:157-69. [PMID: 3528505 DOI: 10.1002/jmor.1051890206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Alcian blue staining coupled with enzyme digestion or critical electrolyte staining revealed differences in the development of extracellular matrix (ECM) within sympathetic ganglia compared with the surrounding capsule. On day 5 of chick development (Hamburger-Hamilton stage 26) only hyaluronic acid (HA) could be detected in the ECM surrounding condensing primary ganglia. By day 7 (st 30) the ganglionic capsule contained HA, as well as sulfated glycosaminoglycans (GAGs), and this pattern continued into the adult stage. During the later stages of embryonic life (st 41-45) satellite cells appear, showing fine structural characteristics that point to their role in the secretion of intraganglionic ECM. Only during these stages could ECM be detected histochemically within ganglia, the same stages (days 15-19) when routine electron microscopic methods reveal collagen fibrils embedded in a granular ground substance. Thus, the intraganglionic environment appears as a separate compartment free of detectable amounts of GAG until late embryonic stages when ECM is secreted around satellite cells. This developmental pattern could represent a role of ECM in the histological stabilization of ganglia during the late stages of differentiation, since the appearance of intraganglionic ECM is correlated with the appearance of small dense-cored vesicles characteristic of adult neurons. The developmental pattern of ECM in differentiating sympathetic ganglia is compared with that of other tissues that undergo condensation and morphogenesis.
Collapse
|
49
|
Abstract
Neural tube closure defects occurred in 33% of the embryos obtained from matings of male mice heterozygous for a reciprocal chromosome translocation (T(2;4)1Sn) with normal female CFLP mice. Light and electron microscopic observations of neuroepithelium and mesenchyme in affected embryos indicated two distinct types of anomalies occurred. The first consisted of neuroepithelial hypertrophy and neural tube closure defects. These defects most frequently affected the midbrain and hindbrain, but occasional defects of the lumbosacral neural tube were also observed. Unlike the highly organized, pseudostratified neuroepithelium in control embryos, neuroepithelial cells became stratified and formed cell islands with secondary lumina within the wall of the neural tube. The second condition was associated with a reduction in neuroepithelial thickness, considerable neuroepithelial and neural crest cell death, basal lamina alterations and premature invasion of the neuroepithelium by subjacent endothelial cells. In both cases, the cephalic mesenchyme cells, rather than their normal stellate appearance, were markedly elongated in shape and reduced in area. The number of cell-cell contacts between mesenchymal cells was also reduced significantly. These results are discussed in light of recent theories regarding the role of mesenchyme and extracellular matrix in neurulation.
Collapse
|
50
|
Runyan RB, Maxwell GD, Shur BD. Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices. J Cell Biol 1986; 102:432-41. [PMID: 3080436 PMCID: PMC2114083 DOI: 10.1083/jcb.102.2.432] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149-162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha-LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina-like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.
Collapse
|