1
|
Barker JS, Wu Z, Hunter DD, Dey RD. Ozone exposure initiates a sequential signaling cascade in airways involving interleukin-1beta release, nerve growth factor secretion, and substance P upregulation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:397-407. [PMID: 25734767 PMCID: PMC4491938 DOI: 10.1080/15287394.2014.971924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo.
Collapse
Affiliation(s)
- Joshua S Barker
- a Department of Neurobiology and Anatomy , West Virginia School of Medicine , Morgantown , West Virginia , USA
| | | | | | | |
Collapse
|
2
|
Birder LA, Wolf-Johnston AS, Chib MK, Buffington CA, Roppolo JR, Hanna-Mitchell AT. Beyond neurons: Involvement of urothelial and glial cells in bladder function. Neurourol Urodyn 2010; 29:88-96. [PMID: 20025015 DOI: 10.1002/nau.20747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM The urothelium, or epithelial lining of the lower urinary tract (LUT), is likely to play an important role in bladder function by actively communicating with bladder nerves, smooth muscle, and cells of the immune and inflammatory systems. Recent evidence supports the importance of non-neuronal cells that may extend to both the peripheral and central processes of the neurons that transmit normal and nociceptive signals from the urinary bladder. Using cats diagnosed with a naturally occurring syndrome termed feline interstitial cystitis (FIC), we investigated whether changes in physiologic parameters occur within 3 cell types associated with sensory transduction in the urinary bladder: 1) the urothelium, 2) identified bladder dorsal root ganglion (DRG) neurons and 3) grey matter astrocytes in the lumbosacral (S1) spinal cord. As estrogen fluctuations may modulate the severity of many chronic pelvic pain syndromes, we also examined whether 17beta-estradiol (E2) alters cell signaling in rat urothelial cells. RESULTS We have identified an increase in nerve growth factor (NGF) and substance P (SP) in urothelium from FIC cats over that seen in urothelium from unaffected (control) bladders. The elevated NGF expression by FIC urothelium is a possible cause for the increased cell body size of DRG neurons from cats with FIC, reported in this study. At the level of the spinal cord, astrocytic GFAP immuno-intensity was significantly elevated and there was evidence for co-expression of the primitive intermediate filament, nestin (both indicative of a reactive state) in regions of the FIC S1 cord (superficial and deep dorsal horn, central canal and laminae V-VIl) that receive input from pelvic afferents. Finally, we find that E2 triggers an estrus-modifiable activation of p38 MAPK in rat urothelial cells. There were cyclic variations with E2-mediated elevation of p38 MAPK at both diestrus and estrus, and inhibition of p38 MAPK in proestrous urothelial cells. CONCLUSION Though urothelial cells are often viewed as bystanders in the processing of visceral sensation, these and other findings support the view that these cells function as primary transducers of some physical and chemical stimuli. In addition, the pronounced activation of spinal cord astrocytes in an animal model for bladder pain syndrome (BPS) may play an important role in the pain syndrome and open up new potential approaches for drug intervention.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Interleukin-1alpha regulates substance P expression and release in adult sensory neurons. Exp Neurol 2009; 217:395-400. [PMID: 19341730 DOI: 10.1016/j.expneurol.2009.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 11/20/2022]
Abstract
Nerve injury frequently results in development of chronic, dysesthetic pain and allodynia (painful sensation in response to benign stimulation). Following nerve injury, spinal cord glia become activated and secrete a number of inflammatory cytokines, including interleukin-1 (IL-1), which exists as two genetically distinct proteins, IL-1alpha and IL-1beta. To investigate whether neuropeptide expression could be altered by exposure to these cytokines, dorsal root neurons from mature rats were grown in culture and substance P (SP) expression was analyzed. IL-1alpha and IL-1beta both increased neuronal content of SP. Interestingly, IL-1alpha was significantly more efficient than IL-1beta in inducing SP expression. Cultured neurons exposed to either cytokine secreted substantially more SP with capsaicin stimulation than did control cultures, supporting a physiologic role for these inflammatory cytokines after nerve injury. However, when IL-1beta was added in combination with IL-1alpha to cultured neurons, the amount of SP expressed was significantly lower than that induced by IL-1alpha alone. Evidence is presented that both cytokines alter SP expression via the IL-1 receptor, and that the signaling pathway involves nerve growth factor (NGF) expression and transcription. In summary, IL-1alpha was significantly more efficient than IL-1beta at up-regulating SP expression than IL-1beta. Taken together, these observations suggest an important role for IL-1alpha in the events following nerve injury.
Collapse
|
4
|
Arthur DB, Akassoglou K, Insel PA. P2Y2 and TrkA receptors interact with Src family kinase for neuronal differentiation. Biochem Biophys Res Commun 2006; 347:678-82. [PMID: 16842754 DOI: 10.1016/j.bbrc.2006.06.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The crosstalk between the P2Y(2) G-protein-coupled receptor (GPCR) with TrkA receptor tyrosine kinase (RTK) is an important mechanism that regulates neuronal differentiation. We show that Src family kinases (SFK) regulate P2Y(2)-TrkA molecular crosstalk. SFK inhibitors block ATPgammaS/P2Y(2)-promoted enhancement of NGF/TrkA signaling and neuronal differentiation in PC12 cells, abrogate the enhancement by ATPgammaS of neurite outgrowth in primary cultures of dorsal root ganglion neurons, and block co-immunoprecipitation of TrkA, P2Y(2) receptors and SFK. These results identify SFK as mediating nucleotide-enhanced neurotrophin-dependent neuronal differentiation and thus, as a key convergence point for interaction between RTKs and GPCRs.
Collapse
Affiliation(s)
- David B Arthur
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093, USA
| | | | | |
Collapse
|
5
|
Arthur DB, Akassoglou K, Insel PA. P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci U S A 2005; 102:19138-43. [PMID: 16365320 PMCID: PMC1323158 DOI: 10.1073/pnas.0505913102] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/09/2005] [Indexed: 11/18/2022] Open
Abstract
Neurotrophins are essential for neuronal differentiation, but the onset and the intensity of neurotrophin signaling within the neuronal microenvironment are poorly understood. We tested the hypothesis that extracellular nucleotides and their cognate receptors regulate neurotrophin-mediated differentiation. We found that 5'-O-(3-thio)triphosphate (ATPgammaS) activation of the G protein-coupled receptor P2Y(2) in the presence of nerve growth factor leads to the colocalization and association of tyrosine receptor kinase A and P2Y(2) receptors and is required for enhanced neuronal differentiation. Consistent with these effects, ATPgammaS promotes phosphorylation of tyrosine receptor kinase A, early response kinase 1/2, and p38, thereby enhancing sensitivity to nerve growth factor and accelerating neurite formation in both PC12 cells and dorsal root ganglion neurons. Genetic or small interfering RNA depletion of P2Y(2) receptors abolished the ATPgammaS-mediated increase in neuronal differentiation. Moreover, in vivo injection of ATPgammaS into the sciatic nerve increased growth-associated protein-43 (GAP-43), a marker for axonal growth, in wild-type but not P2Y(2)(-/-) mice. The interactions of tyrosine kinase- and P2Y(2)-signaling pathways provide a paradigm for the regulation of neuronal differentiation and suggest a role for P2Y(2) as a morphogen receptor that potentiates neurotrophin signaling in neuronal development and regeneration.
Collapse
Affiliation(s)
- David B Arthur
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | | | | |
Collapse
|
6
|
Skoff AM, Adler JE. Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors. Exp Neurol 2005; 197:430-6. [PMID: 16300761 DOI: 10.1016/j.expneurol.2005.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/29/2005] [Accepted: 10/04/2005] [Indexed: 12/30/2022]
Abstract
Expression of the nociceptive peptide, substance P (SP) is regulated by the neurotrophin, nerve growth factor (NGF), and exogenous exposure to high levels of NGF increases its cellular content and release. NGF utilizes two receptors, the NGF-specific tyrosine kinase receptor, TrkA, and also the non-specific neurotrophin receptor, p75(NTR) (p75). The purpose of this study is to determine the relative involvement of these receptors in nociception. To investigate the role of TrkA in SP signaling, sensory neurons from adult rats were grown in vitro and exposed to a TrkA-blocking antibody. Pretreatment with the antibody inhibited NGF-induced SP elevation. Furthermore, when neurons were exposed to K252a, a relatively specific TrkA kinase inhibitor, the NGF effect on SP was also inhibited. K252a did not prevent SP up-regulation in cells exposed to forskolin or glial cell line-derived neurotrophic factor (GDNF), two agents which increase SP expression independently of TrkA. When p75 was blocked by antiserum, SP up-regulation by NGF was also inhibited. The antiserum neither impacted neuronal survival or basal levels of SP expression, nor did it inhibit SP up-regulation induced by forskolin. Two other neurotrophins, which are also ligands for p75, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) did not block NGF-induced SP up-regulation, raising the possibility that activated p75 is able to cooperate in SP regulation regardless of which neurotrophin ligand occupies it. Our data suggest that NGF up-regulation of SP expression requires the involvement of both TrkA and p75, although the specific contribution of each receptor to SP signaling remains to be determined.
Collapse
Affiliation(s)
- Anne M Skoff
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | |
Collapse
|
7
|
Abstract
Chronic pain, especially neuropathic pain and cancer pain, is often not adequately treated by currently available analgesics. Animal models provide pivotal systems for preclinical study of pain. This article reviews some of the most widely used or promising new models for chronic pain. Partial spinal ligation, chronic constriction injury, and L5/L6 spinal nerve ligation represent three of the best characterized rodent models of peripheral neuropathy. Recently, several mouse and rat bone cancer pain models have been reported. Primary or permanent cultures of sensory neurons have been established to study the molecular mechanism of pain, especially for neurotransmitter release and signal transduction. The emerging gene microarray, genomics and proteomics methods may be applied to throughly characterize these cells. Each model is uniquely created with distinct mechanisms, it is therefore essential to report and interpret results in the context of a specific model.
Collapse
Affiliation(s)
- Lili X Wang
- Department of Biopharmaceutical Sciences, University of Illinois, 833 South Woods Street, Chicago, IL 60612, USA
| | | |
Collapse
|
8
|
Abstract
We recently demonstrated an association between the development of hyperalgesia and an increase in nerve growth factor (NGF) during gastric inflammation. We hypothesized that block of NGF signalling will blunt injury-induced hyperalgesia. Male Sprague-Dawley rats (300-400 g) were anaesthetized, the stomach was exposed and placed in a circular clamp. Acetic acid (60%) or saline (control) was injected into this area and aspirated 45 s later, resulting in kissing ulcers. A balloon was surgically placed into the stomach and electromyographic responses to gastric distension (GD) were recorded from the acromiotrapezius muscle. Animals received a daily injection of neutralizing NGF antibody or control serum for 5 days. NGF in the stomach wall was measured with an ELISA. The severity of gastric injury was assessed macroscopically and by determination of myeloperoxidase (MPO) activity. Gastric injury enhanced the visceromotor response to GD and increased NGF content. Anti-NGF significantly blunted the development of hyperalgesia and led to a decrease in gastric wall thickness and MPO activity. Increases in NGF contribute to the development of hyperalgesia after gastric injury. This may be partly mediated by direct effects on afferent nerves and indirectly by modulatory effects on the inflammatory response.
Collapse
Affiliation(s)
- K Lamb
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
9
|
Skoff AM, Resta C, Swamydas M, Adler JE. Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) regulate substance P release in adult spinal sensory neurons. Neurochem Res 2003; 28:847-54. [PMID: 12718437 DOI: 10.1023/a:1023211107073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NGF increases expression and content of substance P in developing and mature spinal sensory neurons. The role this neurotrophin plays in peptide release, however, is less clear. Accordingly, we examined substance P release from cultures of mature rat sensory neurons, which do not require NGF for survival. Neurons grown without NGF have a low but detectable basal release, which increases with depolarization by KCI (50 mM) but never achieves statistical significance. In contrast, basal release is 3 times higher from neurons that have been cultured in the presence of NGF, and KCl depolarization triples the amount of SP released. Stimulation with capsaicin (10(-7) M) yields similar results. Residual peptide remaining after capsaicin stimulation is refractory to release for up to 24 h. Bradykinin does not induce SP secretion from mature neurons nor does it potentiate the action of capsaicin. GDNF, which also increases SP content, mimics NGF. Addition of NGF to the bath during release does not directly induce SP secretion, nor does it alter the effects of KCI, capsaicin, or bradykinin. It appears therefore that NGF increases SP release indirectly by increasing intracellular stores.
Collapse
Affiliation(s)
- Anne M Skoff
- Department of Neurology, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
10
|
Debski EA. Distribution and regulation of substance P-related peptide in the frog visual system. Microsc Res Tech 2001; 54:220-8. [PMID: 11514978 DOI: 10.1002/jemt.1134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Modulation of visual signal activity has consequences for both signal processing and for activity-dependent structuring mechanisms. Among the neuromodulatory agents found in visual areas are substance P (SP)-related peptides. This article reviews what is known about these substances in the amphibian retina and optic tectum with special emphasis on the leopard frog, Rana pipiens. It is found that the distribution of these SP-related peptides is remarkably similar to that seen in mammals. This suggests that study of model amphibian systems may significantly enhance our understanding of how neuropeptides contribute to visual system function and organization.
Collapse
Affiliation(s)
- E A Debski
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
11
|
Activity-dependent regulation of substance P expression and topographic map maintenance by a cholinergic pathway. J Neurosci 2000. [PMID: 10884319 DOI: 10.1523/jneurosci.20-14-05346.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have assessed the role of activity in the adult frog visual system in modulating two aspects of neuronal plasticity: neurotransmitter expression and topographic map maintenance. Chronic treatment of one tectal lobe with the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione decreased the percentage of substance P-like immunoreactive (SP-IR) tectal cells in the untreated lobe while disrupting topographic map formation in the treated one. Treatment with the NMDA receptor antagonist d-(-)-2-amino-5-phosphonovaleric acid (d-AP-5) disrupted the topographic map but had no affect on SP-IR cells. These results indicate that maintenance of the topographic map is dependent on direct input from the glutamatergic retinal ganglion cells, whereas substance P (SP) expression is being regulated by a pathway that relays activity from one tectal lobe to the other. Such a pathway is provided by the cholinergic nucleus isthmi, which is reciprocally connected to the ipsilateral tectum and sends a projection to the contralateral one. Mecamylamine and atropine, antagonists of nicotinic and muscarinic receptors, respectively, were used together to block all cholinergic activity or alone to block receptor subclass activity. All three treatments decreased SP expression and disrupted the topographic map in the treated tectal lobe. We conclude that both SP expression and topographic map maintenance in the adult optic tectum are activity-dependent processes. Although our results are consistent with the maintenance of the topographic map through an NMDA receptor-based mechanism, they suggest that SP expression is regulated by a cholinergic interaction that depends on retinal ganglion cell input only for its activation.
Collapse
|
12
|
Abstract
The tachykinin, substance P, has long been associated with transmission of noxious stimuli. However, relatively little is known about signal transduction pathways subserving peptidergic regulation in sensory neurons. To investigate whether cyclic AMP (cAMP) could be a potential second messenger subserving substance P expression, dorsal root ganglion neurons were grown in culture in the presence of agents that increase content of cAMP. In developing neurons, forskolin increased substance P content and survival almost threefold. Anti-nerve growth factor (NGF) blocked the effect of NGF but not forskolin, suggesting that increased cAMP acts directly and not via increased secretion of NGF from Schwann cells and fibroblasts. In adult neurons, which do not require supplemental trophic factors for survival, NGF and forskolin had similar effects on substance P levels. Neither agent had any effect on somatostatin content of either developing or mature sensory neurons. 8-bromo cAMP and isobutyl methylxanthine duplicated the action of forskolin. Further, all three agents increased expression of preprotachykinin mRNA. Forskolin appeared to increase both total and neuron-specific expression of message as well as the number of neurons expressing mRNA. Our results suggest that cAMP directly regulates substance P content in sensory neurons from adult and neonatal rats.
Collapse
Affiliation(s)
- J E Adler
- Departments of Neurology, Veterans Administration Medical Center, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
13
|
Abstract
Adult sensory neurons differ chemically, morphologically, and functionally, but the factors that generate their diversity remain unclear. For example, neuropeptides are generally found in small neurons, whereas abundant neurofilament is common in large neurons. Neurons containing the neuropeptides calcitonin gene-related peptide (CGRP) or substance P were quantified using immunohistochemistry in rat lumbar dorsal root ganglion (DRG) at times before and after sensory neurons contact central and peripheral targets in vivo. No neurons in the newly formed DRG expressed neuropeptide or neuropeptide mRNA, but neuropeptides were detectable about the time that axons connect with peripheral targets. To determine the requirement for target in neuropeptide regulation, embryonic DRG neurons were isolated at times before central and peripheral connections had formed, placed in culture, and immunocytochemically assayed for CGRP and substance P. Cultured neurons expressed neuropeptides with a time course and in proportions similar to those in vivo. Thus, some neurons in the embryonic DRG seem to be intrinsically specified to later express CGRP and substance P. The percentage of CGRP-immunoreactive neurons was not changed by cell density, non-neuronal cells, neurotrophins in addition to nerve growth factor (NGF), or antibody inactivation of neurotrophin-3 in the presence of NGF. To test the role of extrinsic cues on CGRP expression, DRG neurons were co-cultured with potential target tissues. Co-culture with a rat epidermal or smooth muscle cell line increased the proportion of CGRP-containing neurons, whereas primary skeletal muscle and 3T3 cells had no effects. Thus, multiple appropriate sensory neuron phenotypes arise in a regulated fashion in cultured neurons isolated before target connections have formed, and some candidate target tissues can modulate that intrinsic expression pattern.
Collapse
|
14
|
Abstract
Optic nerve activity helps determine the placement of retinal ganglion cell terminals in the optic tectum of the frog. We investigated whether the presence of this nerve might also influence a characteristic of its target structure, neurotransmitter biosynthesis. We performed unilateral optic nerve transections on adult animals and assayed the percent and intensity of substance P- and serotoninlike immunoreactive (SP-ir and 5-HT-ir, respectively) cells in the deafferented and afferented tectal lobes. Regeneration of the optic nerve was prevented. The percent of SP-ir cells in the afferented tectal lobes was significantly less than that in the deafferented ones either 6 weeks or 5 months following optic nerve lesion. Comparison to normal animals indicated that the change in SP-ir expression was due to a decrease in the percent of immunoreactive cells in the afferented tecta ipsilateral to the optic nerve lesion. The serotoninlike immunoreactivity of tectal cells was also significantly different in the two lobes following optic nerve lesions. This difference resulted from an increase in the percent of 5-HT-ir cells in the deafferented tectum. In addition, the intensity of 5-HT-ir cells in the deafferented lobe was significantly greater than in the afferented one. The staining intensity of SP-ir cells underwent only a transient, relative decrease in the deafferented tectum. We conclude that the optic nerve does regulate substance P and serotonin expression in the tectum, but that this regulation likely occurs through different pathways.
Collapse
Affiliation(s)
- Q Liu
- School of Biological Sciences, University of Kentucky, Lexington 40506, USA
| | | |
Collapse
|
15
|
LoPresti P, Scott SA. Target specificity and size of avian sensory neurons supported in vitro by nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3. JOURNAL OF NEUROBIOLOGY 1994; 25:1613-24. [PMID: 7861123 DOI: 10.1002/neu.480251212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3-dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons.
Collapse
Affiliation(s)
- P LoPresti
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794
| | | |
Collapse
|
16
|
Wong M, Jeng AY. Posttranslational modification of glycine-extended substance P by an alpha-amidating enzyme in cultured sensory neurons of dorsal root ganglia. J Neurosci Res 1994; 37:97-102. [PMID: 7511706 DOI: 10.1002/jnr.490370113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The terminal step in the biosynthesis of substance P is the conversion of its glycine-extended precursor to the mature, amidated peptide by the alpha-amidating enzyme. This posttranslational modification was demonstrated in cultured, dissociated sensory neurons of dorsal root ganglia from neonatal rats. An assay was developed to quantitate both substance P and its precursor peptide in these cells. More than 90% of these two peptides was present as mature peptide in uncultured cells. In contrast, after 8 days in culture, about 85% of the peptides was the precursor, which increased 200-fold, whereas the level of substance P itself tripled during this culturing period. Since alpha-amidating enzyme requires ascorbate for activity, this reducing agent was added to the culture medium. Ascorbate induced a dose-dependent rise in the percentage of amidated peptide, with an apparent Km of 20 microM. After 5 days of culturing in the presence of 500 microM ascorbate, substance P increased 8-fold, constituting 70% of the total. The alpha-amidating enzyme also needs copper for activity. Even with 500 microM ascorbate in the culture medium, the copper chelator diethyldithiocarbamate dose-dependently reduced substance P synthesis by the sensory neurons, with a concomitant increase in its precursor peptide. These results suggest the presence of alpha-amidating enzyme in sensory neurons of dorsal root ganglia. It is likely that conversion of other glycine-extended precursors to their mature peptides in cell cultures would also require ascorbate and copper.
Collapse
Affiliation(s)
- M Wong
- Research Department Ciba-Geigy Corp., Summit, New Jersey 07901
| | | |
Collapse
|
17
|
Matthew E. Neuropeptides in dissociated cell cultures of mammalian spinal cord and dorsal root ganglion. Int J Dev Neurosci 1993; 11:721-9. [PMID: 8135129 DOI: 10.1016/0736-5748(93)90061-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immunohistochemical studies of leucine-enkephalin, somatostatin, vasoactive intestinal polypeptide and neurotensin were carried out in dissociated cell co-cultures of embryonic mouse spinal cord and dorsal root ganglion, using the peroxidase-antiperoxidase technique. Leucine-enkephalin immunoreactivity exceeded that of the other peptides in these coculture preparations. Leucine-enkephalin, substance P and somatostatin were also studied in spinal cord cultures (without dorsal root ganglia) and in dorsal root ganglia cultures (without spinal cord). Each of these peptides was present in only a small percentage (< 10%) of perikarya and processes in spinal cord cultures. No leucine-enkephalin immunoreactivity was seen in dorsal root ganglion cultures; a considerable proportion of the processes were immunoreactive for substance P or somatostatin. These observations suggest that co-cultures of spinal cord and dorsal root ganglia can provide a simplified in vitro "model" of the nervous system for the study of peptidergic interactions.
Collapse
Affiliation(s)
- E Matthew
- Montreal Neurological Institute, Canada
| |
Collapse
|
18
|
Chalazonitis A, Kalberg J, Twardzik DR, Morrison RS, Kessler JA. Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Biol 1992; 152:121-32. [PMID: 1378411 DOI: 10.1016/0012-1606(92)90162-a] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo.
Collapse
Affiliation(s)
- A Chalazonitis
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | |
Collapse
|
19
|
Duc C, Barakat-Walter I, Philippe E, Droz B. Substance P-like-immunoreactive sensory neurons in dorsal root ganglia of the chick embryo: ontogenesis and influence of peripheral targets. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:209-19. [PMID: 1717180 DOI: 10.1016/0165-3806(91)90101-n] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of substance P (SP) was studied in sensory neurons of developing chick lumbosacral dorsal root ganglia (DRG) by using a mixture of periodic acid, lysine and paraformaldehyde as fixative and a monoclonal antibody for SP-like immunostaining. The first SP-like-immunoreactive DRG cells appeared first at E5, then rapidly increased in number to reach a peak (88% of ganglion cells) at E8, and finally declined (59% at E12, 51% after hatching). The fall of the SP-like-positive DRG cells resulted from two concomitant events affecting a subset of small B-neurons: a loss of neuronal SP-like immunoreactivity and cell death. After one hindlimb resection at an early (E6) or late (E12) stage of development (that is before or after establishment of peripheral connections), the DRG were examined 6 days later. In both cases, a drastic neuronal death occurred in the ispilateral DRG. However, the resection at E6 did not change the percentage of SP-like-positive neurons, while the resection at E12 severely reduced the proportion of SP-like-immunoreactive DRG cells (25%). In conclusion, connections established between DRG and peripheral target tissues not only promote the survival of sensory neurons, but also control the maintenance of SP-like-expression. Factors issued from innervated targets such as NGF would support the survival of SP-expressing DRG cells and enhance their SP content while other factors present in skeletal muscle or skin would hinder SP expression and therefore lower SP levels in a subset of primary sensory neurons.
Collapse
Affiliation(s)
- C Duc
- Institut d'Histologie et d'Embryologie, Faculté de Médecine, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
20
|
Kornack DR, Lu B, Black IB. Sexually dimorphic expression of the NGF receptor gene in the developing rat brain. Brain Res 1991; 542:171-4. [PMID: 1647253 DOI: 10.1016/0006-8993(91)91015-s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To define relations between trophic molecules and known sexually dimorphic traits in brain, we examined possible sex differences in nerve growth factor (NGF) and NGF receptor (NGF-R) gene expression in the rat cholinergic basal forebrain (BF)-hippocampal system. Hippocampal NGF mRNA levels did not differ between sexes; in contrast, BF NGF-R mRNA levels were greater in neonatal females than males, paralleling the known dimorphic development of cholinergic enzyme activity. Cerebellar NGF-R mRNA levels were also dimorphic in the neonate, suggesting that sex-specific influences may regulate trophic receptor gene expression in diverse brain systems.
Collapse
Affiliation(s)
- D R Kornack
- Department of Neurology, Cornell University Medical College, New York, NY 10021
| | | | | |
Collapse
|
21
|
Abstract
Cell-cell contact appears to play a critical role in the expression of transmitter traits in developing neurons. We have previously shown that cell membrane contact induces the de novo appearance of choline acetyltransferase (CAT) in virtually pure cultures of dissociated sympathetic neurons. A membrane-associated CAT-inducing factor has been extracted and purified 5000-fold. This factor exerts differential effects on transmitter traits in cultured sympathetic neurons. After 3 days in vitro, neurons exposed to the factor contained 40-fold higher levels of the neuropeptide substance P than controls. Somatostatin exhibited a similar dramatic elevation. In contrast, the factor had no effect on leucine-enkephalin. Further, the specific activity of tyrosine hydroxylase was reduced to 5% of control activity in treated cultures. These effects occurred in the absence of any increases in cell number. Thus, it appears that cell contact via membrane-associated factors may exert differential effects on phenotypic expression.
Collapse
Affiliation(s)
- J M Lee
- Department of Neurology, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
22
|
Ehrlich D, Keyser K, Manthorpe M, Varon S, Karten HJ. Differential effects of axotomy on substance P-containing and nicotinic acetylcholine receptor-containing retinal ganglion cells: time course of degeneration and effects of nerve growth factor. Neuroscience 1990; 36:699-723. [PMID: 1700331 DOI: 10.1016/0306-4522(90)90013-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The time course of degeneration of chick retinal ganglion cells was examined with Nissl stains and immunohistochemical methods for detection of substance P-like immunoreactive and nicotinic acetylcholine receptor immunoreactive neurons. Small lesions were made in the retinae, adjacent to the optic nerve head, and were subsequently sectioned parallel to the vitreal surface, permitting direct comparison of normal and axotomized retinal ganglion cells distal to the site of axon damage. At four and six days after surgery, a large number of degenerating cells with clear cytoplasm and pyknotic nuclei were seen. After eight, 10 and 14 days, many retinal ganglion cells displayed a chromatolytic response with dispersed Nissl granules, eccentric nuclei and the cells appeared crenulated. The number of apparently normal neurons in the ganglion cell layer in the axotomized region was reduced by about 50% six days following surgery, by about 70% on the 10th day and by about 75% on the 17th day. The remaining neurons in the ganglion cell layer were identified as displaced amacrine cells. From day 2 onwards, increased numbers of glial cells were present in the optic fibre, ganglion cell and inner plexiform layers. Many glial cells were enlarged and displayed extensive cytoplasmic processes, while others showed mitotic activity. Somata and proximal dendrites of retinal ganglion cells were intensely stained for substance P-like immunoreactivity at two and four days following surgery. At six, eight and 10 days, staining intensity was markedly reduced though still evident and at 14 and 17 days, substance P-like immunoreactivity had virtually disappeared. The persistence of limited substance P-like immunoreactive ganglion cells 10 days after surgery indicates that these cells have a relatively protracted response to axotomy. Nicotinic acetylcholine receptor-like immunoreactivity in the ganglion cells at two and four days following axotomy was substantially reduced. The majority of faintly stained nicotinic acetylcholine receptor-like immunoreactive ganglion cells, as visualized in counterstained sections, did not exhibit pyknosis in the immediate period following axotomy. Double label studies demonstrated that substance P-like immunoreactive ganglion cells were distinct from the nicotinic acetylcholine receptor-like immunoreactive ganglion cells. In a second set of experiments, nerve growth factor was then placed into the vitreous humor following intra-retinal axotomy. The somata, dendrites and proximal axons of lesioned substance P-like immunoreactive ganglion cells in these retinae were more intensely stained for a longer period of time and appeared more robust than cells from untreated retinae.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Ehrlich
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
23
|
Wienrich M, Reuss K, Harting J. Effects of receptor-selective neurokinin agonists and a neurokinin antagonist on the electrical activity of spinal cord neurones in culture. Br J Pharmacol 1989; 98:914-20. [PMID: 2480170 PMCID: PMC1854762 DOI: 10.1111/j.1476-5381.1989.tb14621.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Rat spinal cord neurones grown in tissue culture were used to examine the electrophysiological effects of the neurokin in (NK)-selective agonists (pGlu6, Pro9) substance P(6-11) (septide; NK1, 10(-6)M) and (pGlu5, MePhe8, MeGly9)SP(1-7) (DiMe-C7; NK3, 10(-6)M). In addition, the effect of the neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP (10(-5)M) on the neurokinin-evoked responses was investigated. 2. Neurokinin-evoked responses consisted of an increase in neuronal activity with or without long-lasting (mean: 50s) depolarizations of the membrane potential of up to 25mV. The latter also occurred in the presence of tetrodotoxin (10(-7)M) (direct response). 3. In a number of spinal cord neurones (n = 17) only septide induced a membrane depolarization while DiMe-C7 elicited no response. On the other hand, in 2 neurones a response was exclusively evoked by DiMe-C7. 4. The neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP had no effect of its own but blocked the septide- and DiMe-C7-induced depolarizations. It had no effect on the glutamate (10(-5)M)-evoked depolarization. 5. It is concluded that by the use of neurokinin receptor-selective agonists, subpopulations of spinal cord neurones in primary dissociated cell culture can be differentiated which express the NK1 or the NK3 receptor. Cells expressing only the NK1 receptor outnumber those expressing only the NK3 receptor subtype. Both receptors can be blocked by the neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP.
Collapse
Affiliation(s)
- M Wienrich
- E. Merck, Biological Research, Darmstadt, F.R.G
| | | | | |
Collapse
|
24
|
Linnik MD, Sakas DE, Uhl GR, Moskowitz MA. Subarachnoid blood and headache: altered trigeminal tachykinin gene expression. Ann Neurol 1989; 25:179-84. [PMID: 2465732 DOI: 10.1002/ana.410250212] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sensory axons from the trigeminal ganglion (V) innervate cephalic blood vessels and use the preprotachykinin gene products, substance P (SP) and neurokinin A (NKA), as putative neurotransmitters conveying nociceptive information. Blood in the subarachnoid space is accompanied by severe headache. We now report that this painful stimulus, which should enhance activity in V, specifically alters tachykinin peptide and mRNA levels in V and perivascular axons. Marked reductions in SP levels were observed in basilar artery segments within 4 hours after intracisternal blood injection which persisted for 48 hours and recovered by 7 days. SP peptide levels in V were elevated by 49% two days after blood injection. The changes in SP peptide levels were accompanied by increases in ganglionic content of the preprotachykinin mRNA that codes for the peptide. Blood-induced peptide depletion in arteries and subsequent increases in peptide and mRNA in V are consistent with increased neuronal activity and enhanced neuropeptide release. These results implicate the tachykinin-utilizing trigeminovascular neurons in the sequelae of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- M D Linnik
- Neurology Services, Massachusetts General Hospital, Boston 02114
| | | | | | | |
Collapse
|
25
|
|
26
|
Ernsberger U, Rohrer H. Neuronal precursor cells in chick dorsal root ganglia: differentiation and survival in vitro. Dev Biol 1988; 126:420-32. [PMID: 2450797 DOI: 10.1016/0012-1606(88)90151-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuronal precursor cells present in dorsal root ganglia (DRG) during early development have been previously shown to differentiate in vitro to neurons, as characterized by morphology, cell surface antigens, and electrophysiological properties (H. Rohrer, S. Henke-Fahle, T. El-Sharkawy, H. D. Lux, and H. Thoenen, 1985, Embo J. 4, 1709-1714). In the present study the conditions necessary for the initial differentiation and long-term survival of these cells were established, and the neurotransmitter phenotype of the newly differentiated neurons was analyzed. Neuronal precursor cells isolated from chick DRG at Embryonic Day 6 (E6) were found to require the presence of a polyornithine substrate coated with either laminin or fibronectin for initial neurite production and long-term survival. Neurons were unable to develop on polyornithine alone or on polyornithine coated with BSA. The survival and neurite outgrowth from neuronal precursor cells was not affected by the presence of nerve growth factor (NGF) during the first 9 hr in culture. NGF also had no effect on the proportion of cells expressing the neuron-specific Q211 antigen. However, after this initial differentiation period the neurons did require the presence of a survival factor. The neurons could be maintained for at least 6 days in culture both in the presence of NGF and in the presence of brain-derived neurotrophic factor (BDNF). At saturating concentrations of both survival factors no additive effects could be observed, indicating a complete overlap of NGF- and BDNF-responsiveness. Although the same proportion of cells survived with either NGF or BDNF during the first 3 days in culture, survival decreased in the presence of BDNF but not in the presence of NGF during the following 3 days in culture. The loss of BDNF responsiveness in vitro was also observed in vivo. After 6 days in culture about 70% of the neurons expressed substance P immunoreactivity, and approximately the same proportion was positive for myelin-associated glycoprotein immunoreactivity. The neurons did not express properties of adrenergic neurons such as tyrosine hydroxylase immunoreactivity or norepinephrine uptake. These findings indicate that the neuronal precursor cells from E6 DRG acquire the same characteristics in vitro as in their normal in vivo environment.
Collapse
Affiliation(s)
- U Ernsberger
- Max-Planck-Institute for Psychiatry, Department of Neurochemistry, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
27
|
Barakat I, Droz B. Differentiation of postmitotic neuroblasts into substance P-immunoreactive sensory neurons in dissociated cultures of chick dorsal root ganglion. Dev Biol 1987; 122:274-86. [PMID: 2439396 DOI: 10.1016/0012-1606(87)90352-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.
Collapse
|
28
|
Martínez HJ, Dreyfus CF, Jonakait GM, Black IB. Nerve growth factor selectively increases cholinergic markers but not neuropeptides in rat basal forebrain in culture. Brain Res 1987; 412:295-301. [PMID: 3607470 DOI: 10.1016/0006-8993(87)91136-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously used organotypic cultures to study mechanisms regulating phenotypic expression of neurotransmitter characters in the brain. Our previous work indicated that nerve growth factor (NGF) specifically increased the activity of choline acetyltransferase (CAT) in striatal cholinergic interneurons. In the present study we examined the effect of NGF on neurons of fetal rat basal forebrain-medial septal area (BF-MS) maintained in organotypic culture. Treatment with 200 biological units/ml of NGF resulted in a 3- to 6-fold increase in the specific activity of CAT. This effect was specifically blocked by anti-NGF antiserum, whereas treatment with antiserum alone did not alter the cholinergic enzyme. NGF also elicited a marked increase in CAT staining intensity, using a monoclonal antibody directed against the enzyme. Further, the number of CAT-positive neurons appeared to increase in the NGF-treated cultures. Exposure to NGF also increased the activity of another cholinergic marker, the catabolic enzyme, acetylcholinesterase. The effect of NGF appeared to be highly selective, since substance P and somatostatin levels were unchanged by NGF treatment.
Collapse
|
29
|
|
30
|
Black IB, Adler JE. Sympathetic neuronal density and cell membrane contact regulate phenotypic expression in culture. Ann N Y Acad Sci 1986; 486:87-95. [PMID: 2436526 DOI: 10.1111/j.1749-6632.1986.tb48064.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Abstract
Exposure of bovine adrenal medullary cells in culture to a depolarizing concentration of potassium (50 mM), causes a rapid rise in both cellular and secreted Met-enkephalin peptide. The induction of peptide is preceded by the appearance of a nuclear preproenkephalin transcript and subsequent increases in cytoplasmic preproenkephalin mRNA. These data suggest that the depolarizing medium acts by enhancing enkephalin gene transcription. Potassium stimulation of Met-enkephalin biosynthesis requires the presence of extracellular Ca2+ and is not observed in either low Ca2+ medium or in the presence of D600, a Ca2+ channel blocker. As similar depolarizing stimuli inhibit enkephalin biosynthesis in the rat adrenal gland, these findings suggest that the regulation of enkephalin peptide content in neuroendocrine cells is highly species specific.
Collapse
|
32
|
Martínez HJ, Dreyfus CF, Jonakait GM, Black IB. Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc Natl Acad Sci U S A 1985; 82:7777-81. [PMID: 3865196 PMCID: PMC391417 DOI: 10.1073/pnas.82.22.7777] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have examined the effect of the trophic protein, nerve growth factor (NGF), on organotypic cultures of fetal rat striatum. Treatment of cultures with NGF for 10-11 days resulted in a 5- to 12-fold increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT; EC 2.3.1.6). in a dose-dependent fashion. This effect was not elicited by insulin, ferritin, or cytochrome c, proteins similar in structure or physicochemical properties to NGF. The effect of NGF on CAT activity was specifically blocked by anti-NGF antiserum, whereas treatment with the antiserum alone did not have a significant effect on the enzyme. Immunocytochemical studies of the treated cultures, using a monoclonal antibody directed against CAT, revealed positively stained neurons exhibiting dendritic and axonal processes. NGF did not have an effect on total protein content of the striatal cultures, suggesting a highly specific effect. Moreover, levels of substance P, a peptide localized to other, noncholinergic neurons, were not altered by NGF. Substance P remained unchanged after treatment with NGF for 12 days, whereas CAT activity increased 12-fold in sister cultures. Although the mechanisms of action of NGF on striatal cholinergic interneurons remain to be determined, the marked, specific response of CAT suggests that this well-defined trophic protein may play a critical role in normal brain development.
Collapse
|
33
|
Sympathetic neuron density differentially regulates transmitter phenotypic expression in culture. Proc Natl Acad Sci U S A 1985; 82:4296-300. [PMID: 2408279 PMCID: PMC397985 DOI: 10.1073/pnas.82.12.4296] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effects of cell density and aggregation on expression of transmitter traits were examined in dissociated, pure sympathetic neuron cultures, grown in fully defined, serum-free medium. After 1 week at a density of 7-8 X 10(3) neurons per 35-mm dish, moderate levels of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2) activity and substance P were detected. When neuron density was increased 4-fold, a 4-fold increase in tyrosine hydroxylase activity was observed; i.e., there was no change in tyrosine hydroxylase activity per neuron. In contrast, substance P increased 30-fold, corresponding to a 7-fold increase in substance P per neuron. Choline O-acetyltransferase (EC 2.3.1.6) activity, not detected at low cell densities, was first detectable at a concentration of 15,000 neurons per dish and increased 6-fold when this cell concentration was doubled. Medium conditioned by high-density cultures failed to reproduce these effects on low-density cultures, suggesting that diffusible factors are not involved in the density-dependent differential regulation. Time-lapse phase-contrast microscopy of high-density cultures showed neuronal migration and progressive aggregation, which did not occur in low-density cultures. Our observations suggest that cell contact may mediate differential expression of transmitter traits.
Collapse
|
34
|
Wolfson B, Manning RW, Davis LG, Arentzen R, Baldino F. Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature 1985; 315:59-61. [PMID: 3873012 DOI: 10.1038/315059a0] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The discrete anatomical distribution of arginine vasopressin and corticotropin releasing factor (CRF) immunoreactivity in the paraventricular nucleus (PVN) of the rat hypothalamus is altered after adrenalectomy. Not only is the immunostaining of both peptides enhanced, but vasopressin immunoreactivity, normally confined to the magnocellular subdivision, becomes clear in a large percentage of CRF neurones in the parvocellular subdivision. These changes in immunoreactivity may reflect changes in post-translational events, peptide metabolism or genomic activity that lead indirectly or directly to the enhanced expression of vasopressin. Here we report that levels of transcripts homologous to vasopressin messenger RNA increase in the PVN after adrenalectomy, in parallel with increases in vasopressin immunoreactivity. In fact, after adrenalectomy, vasopressin mRNA can be detected in CRF-immunoreactive neurones. These results indicate that a considerable degree of plasticity is retained by the adult neuronal genome of the rat and that this plasticity may be modulated by the endocrine environment.
Collapse
|