1
|
Lin B, Govindan S, Lee K, Zhao P, Han R, Runte KE, Craig R, Palmer BM, Sadayappan S. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function. PLoS One 2013; 8:e69671. [PMID: 23936073 PMCID: PMC3729691 DOI: 10.1371/journal.pone.0069671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C((t/t))). Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C((t/t)) mice. Slow and fast skeletal muscles in cMyBP-C((t/t)) mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C((t/t)) hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i) MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii) cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii) skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myocardium/metabolism
- Promoter Regions, Genetic/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sarcomeres/metabolism
- Sarcomeres/physiology
- Sarcomeres/ultrastructure
Collapse
Affiliation(s)
- Brian Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Suresh Govindan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Kyounghwan Lee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Piming Zhao
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Renzhi Han
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - K. Elisabeth Runte
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
2
|
Clause KC, Tchao J, Powell MC, Liu LJ, Huard J, Keller BB, Tobita K. Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression. PLoS One 2012; 7:e40725. [PMID: 22808244 PMCID: PMC3393685 DOI: 10.1371/journal.pone.0040725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 06/14/2012] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Kelly C. Clause
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason Tchao
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary C. Powell
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Li J. Liu
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institutes for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bradley B. Keller
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - Kimimasa Tobita
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institutes for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Sadayappan S, de Tombe PP. Cardiac myosin binding protein-C: redefining its structure and function. Biophys Rev 2012; 4:93-106. [PMID: 22707987 PMCID: PMC3374655 DOI: 10.1007/s12551-012-0067-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 01/10/2023] Open
Abstract
Mutations of cardiac myosin binding protein-C (cMyBP-C) are inherited by an estimated 60 million people worldwide, and the protein is the target of several kinases. Recent evidence further suggests that cMyBP-C mutations alter Ca(2+) transients, leading to electrophysiological dysfunction. Thus, while the importance of studying this cardiac sarcomere protein is clear, preliminary data in the literature have raised many questions. Therefore, in this article, we propose to review the structure and function of cMyBP-C with particular respect to the role(s) in cardiac contractility and whether its release into the circulatory system is a potential biomarker of myocardial infarction. We also discuss future directions and experimental designs that may lead to expanding the role(s) of cMyBP-C in the heart. In conclusion, we suggest that cMyBP-C is a regulatory protein that could offer a broad clinical utility in maintaining normal cardiac function.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| | - Pieter P. de Tombe
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| |
Collapse
|
4
|
Saruta K, Obinata T, Sato N. Differential expression of two cardiac myosin-binding protein-C isoforms in developing chicken cardiac and skeletal muscle cells. Zoolog Sci 2010; 27:1-7. [PMID: 20064001 DOI: 10.2108/zsj.27.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myosin-binding protein-C (MyBP-C), also known as C-protein, is a major myosin-binding protein characteristic of striated muscle, and plays a critical role in myofibril organization, especially in registration of thick filaments in the sarcomeres during myofibrillogenesis. We previously demonstrated that cardiac-type MyBP-C is involved early in the process of myofibrillogenesis in both cardiac and skeletal muscle during chicken muscle development. Two variants (type I and type II) have been detected in chicken cardiac MyBP-C; they differ only in the presence or absence of a sequence of 15 amino acid residues (termed P-seq) that includes a phosphorylation site for cyclic AMP-dependent kinase in the cardiac MyBP-C motif ( Yasuda et al, 1995 ). Therefore, types I and II are regarded as phosphorylatable and non-phosphorylatable isoforms, respectively. In this study, an antibody specific for P-seq was prepared. With this and other monoclonal antibodies to cardiac MyBP-C (C-315), expression and localization of the two MyBP-C isoforms in developing chicken cardiac and skeletal muscle were examined by immunocytochemistry and immunoblotting. The results showed that type I is predominantly expressed in the heart and is localized in myofibrils of both atrial and ventricular muscles through development. In contrast, type II is mainly expressed in embryonic skeletal muscle, although type I is faintly expressed in cultured skeletal muscle. These observations were confirmed by RT-PCR.
Collapse
Affiliation(s)
- Keiko Saruta
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | | | | |
Collapse
|
5
|
Wang J, Thurston H, Essandoh E, Otoo M, Han M, Rajan A, Dube S, Zajdel RW, Sanger JM, Linask KK, Dube DK, Sanger JW. Tropomyosin expression and dynamics in developing avian embryonic muscles. ACTA ACUST UNITED AC 2008; 65:379-92. [PMID: 18302173 DOI: 10.1002/cm.20267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of striated muscle proteins occurs early in the developing embryo in the somites and forming heart. A major component of the assembling myofibrils is the actin-binding protein tropomyosin. In vertebrates, there are four genes for tropomyosin (TM), each of which can be alternatively spliced. TPM1 can generate at least 10 different isoforms including the striated muscle-specific TPM1alpha and TPM1kappa. We have undertaken a detailed study of the expression of various TM isoforms in 2-day-old (stage HH 10-12; 33 h) heart and somites, the progenitor of future skeletal muscles. Both TPM1alpha and TPM1kappa are expressed transiently in embryonic heart while TPM1alpha is expressed in somites. Both RT-PCR and in situ hybridization data suggest that TPM1kappa is expressed in embryonic heart whereas TPM1alpha is expressed in embryonic heart, and also in the branchial arch region of somites, and in the somites. Photobleaching studies of Yellow Fluorescent Protein-TPM1alpha and -TPM1kappa expressed in cultured avian cardiomyocytes revealed that the dynamics of the two probes was the same in both premyofibrils and in mature myofibrils. This was in sharp contrast to skeletal muscle cells in which the fluorescent proteins were more dynamic in premyofibrils. We speculate that the differences in the two muscles is due to the appearance of nebulin in the skeletal myocytes premyofibrils transform into mature myofibrils.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG, Robbins J. Cardiac myosin binding protein C phosphorylation is cardioprotective. Proc Natl Acad Sci U S A 2006; 103:16918-23. [PMID: 17075052 PMCID: PMC1636554 DOI: 10.1073/pnas.0607069103] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac myosin binding protein C (cMyBP-C) has three phosphorylatable serines at its N terminus (Ser-273, Ser-282, and Ser-302), and the residues' phosphorylation states may alter thick filament structure and function. To examine the effects of cMyBP-C phosphorylation, we generated transgenic mice with cardiac-specific expression of a cMyBP-C in which the three phosphorylation sites were mutated to aspartic acid, mimicking constitutive phosphorylation (cMyBP-C(AllP+)). The allele was bred into a cMyBP-C null background (cMyBP-C((t/t))) to ensure the absence of endogenous dephosphorylated cMyBP-C. cMyBP-C(AllP+) was incorporated normally into the cardiac sarcomere and restored normal cardiac function in the null background. However, subtle changes in sarcomere ultrastructure, characterized by increased distances between the thick filaments, indicated that phosphomimetic cMyBP-C affects thick-thin filament relationships, and yeast two-hybrid data and pull-down studies both showed that charged residues in these positions effectively prevented interaction with the myosin heavy chain. Confirming the physiological relevance of these data, the cMyBP-C(AllP+:(t/t)) hearts were resistant to ischemia-reperfusion injury. These data demonstrate that cMyBP-C phosphorylation functions in maintaining thick filament spacing and structure and can help protect the myocardium from ischemic injury.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Hanna Osinska
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Raisa Klevitsky
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - John N. Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267
| | - Michelle Sargent
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jeffrey D. Molkentin
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Christine E. Seidman
- Department of Genetics and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; and
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Genetics and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; and
| | - Jeffrey Robbins
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 2004; 117:3295-306. [PMID: 15226401 DOI: 10.1242/jcs.01159] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile tissue of the heart is composed of individual cardiomyocytes. During mammalian embryonic development, heart growth is achieved by cell division while at the same time the heart is already exerting its essential pumping activity. There is still some debate whether the proliferative activity is carried out by a less differentiated, stem cell-like type of cardiomyocytes or whether embryonic cardiomyocytes are able to perform both of these completely different dynamic tasks, contraction and cell division. Our analysis of triple-stained specimen of cultured embryonic cardiomyocytes and of whole mount preparations of embryonic mouse hearts by confocal microscopy revealed that differentiated cardiomyocytes are indeed able to proliferate. However, to go through cell division, a disassembly of the contractile elements, the myofibrils, has to take place. This disassembly occurs in two steps with Z-disk and thin (actin)-filament-associated proteins getting disassembled before disassembly of the M-bands and the thick (myosin) filaments happens. After cytokinesis reassembly of the myofibrillar proteins to their mature cross-striated pattern can be seen. Another interesting observation was that the cell-cell contacts remain seemingly intact during division, probably reflecting the requirement of intact integration sites of the individual cells in the contractile tissue. Our results suggest that embryonic cardiomyocytes have developed an interesting strategy to deal with their major cytoskeletal elements, the myofibrils, during mitosis. The complex disassembly-reassembly process might also provide a mechanistic explanation, why cardiomyocytes cede to divide postnatally.
Collapse
Affiliation(s)
- Preeti Ahuja
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, 8093 Zurich
| | | | | | | |
Collapse
|
8
|
Abstract
Myosin binding protein-C (MyBP-C) is a thick filament–associated protein localized to the crossbridge-containing C zones of striated muscle sarcomeres. The cardiac isoform is composed of eight immunoglobulin I–like domains and three fibronectin 3–like domains and is known to be a physiological substrate of cAMP-dependent protein kinase. MyBP-C contributes to thick filament structure via interactions at its C-terminus with the light meromyosin section of the myosin rod and with titin. The protein also has a role in the regulation of contraction, due to the binding of its N-terminus to the subfragment-2 portion of myosin, which reduces actomyosin ATPase activity; phosphorylation abolishes this interaction, resulting in release of the “brake” on crossbridge cycling. Several structural models of the interaction of MyBP-C with myosin have been proposed, although its precise arrangement on the thick filament remains to be elucidated. Mutations in the gene encoding cardiac MyBP-C are a common cause of hypertrophic cardiomyopathy, and this has led to increased interest in the protein’s function. Investigation of disease-causing mutations in domains with unknown function has led to further insights into the mechanism of cMyBP-C action. This Review aims to collate the published data on those aspects of MyBP-C that are well characterized and to consider new and emerging data that further define its structural and regulatory roles and its arrangement in the sarcomere. We also speculate on the mechanisms by which hypertrophic cardiomyopathy–causing truncation and missense mutations affect the normal functioning of the sarcomere.
Collapse
Affiliation(s)
- Emily Flashman
- Department of Cardiovascular Medicine, University of Oxford, UK
| | | | | | | |
Collapse
|
9
|
Ehler E, Fowler VM, Perriard JC. Myofibrillogenesis in the developing chicken heart: Role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn 2004; 229:745-55. [PMID: 15042698 DOI: 10.1002/dvdy.10482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recently, important differences between myofibrillogenesis in cultured cardiomyocytes vs. the three-dimensional setting in situ could be determined. We investigated thin filament assembly in situ by confocal microscopy of whole-mount preparations of immunostained embryonic chicken hearts. Of interest, a distinct localisation of different actin isoforms was observed in immature thin filaments. Cardiac alpha-actin is restricted to filaments with a length comparable to mature thin filaments as soon as the first contractions occur, while vascular alpha-actin makes up filaments that extend toward the M-band. The pointed-end actin filament capping protein tropomodulin can be found initially in close association with the plasma membrane, but attains its mature localisation pattern at the ends of the thin filaments only comparatively late during myofibrillogenesis. Thus tropomodulin acts as a length stabilising element of actin filaments also in developing cardiomyocytes in situ, but plays an additional role together with membrane-associated actin filaments in the earliest steps of myofibril assembly.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
10
|
Sato N, Kawakami T, Nakayama A, Suzuki H, Kasahara H, Obinata T. A novel variant of cardiac myosin-binding protein-C that is unable to assemble into sarcomeres is expressed in the aged mouse atrium. Mol Biol Cell 2003; 14:3180-91. [PMID: 12925755 PMCID: PMC181559 DOI: 10.1091/mbc.e02-10-0685] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cardiac myosin-binding protein-C (MyBP-C), also known as C-protein, is one of the major myosin-binding proteins localizing at A-bands. MyBP-C has three isoforms encoded by three distinct genes: fast-skeletal, slow-skeletal, and cardiac type. Herein, we are reporting a novel alternative spliced form of cardiac MyBP-C, MyBP-C(+), which includes an extra 30 nucleotides, encoding 10 amino acids in the carboxyl-terminal connectin/titin binding region. This alternative spliced form of MyBP-C(+) has a markedly decreased binding affinity to myosin filaments and connectin/titin in vitro and does not localize to A-bands in cardiac myocytes. When MyBP-C(+) was expressed in chicken cardiac myocytes, sarcomere structure was markedly disorganized, suggesting it has possible dominant negative effects on sarcomere organization. Expression of MyBP-C(+) is hardly detected in ventricles through cardiac development, but its expression gradually increases in atria and becomes the dominant form after 6 mo of age. The present study demonstrates an age-induced new isoform of cardiac MyBP-C harboring possible dominant negative effects on sarcomere assembly.
Collapse
Affiliation(s)
- Naruki Sato
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ehler E, Horowits R, Zuppinger C, Price RL, Perriard E, Leu M, Caroni P, Sussman M, Eppenberger HM, Perriard JC. Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 2001; 153:763-72. [PMID: 11352937 PMCID: PMC2192386 DOI: 10.1083/jcb.153.4.763] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated cardiomyocyte cytoarchitecture in a mouse model for dilated cardiomyopathy (DCM), the muscle LIM protein (MLP) knockout mouse and substantiated several observations in a second DCM model, the tropomodulin-overexpressing transgenic (TOT) mouse. Freshly isolated cardiomyocytes from both strains are characterized by a more irregular shape compared with wild-type cells. Alterations are observed at the intercalated disks, the specialized areas of mechanical coupling between cardiomyocytes, whereas the subcellular organization of contractile proteins in the sarcomeres of MLP knockout mice appears unchanged. Distinct parts of the intercalated disks are affected differently. Components from the adherens junctions are upregulated, desmosomal proteins are unchanged, and gap junction proteins are downregulated. In addition, the expression of N-RAP, a LIM domain- containing protein located at the intercalated disks, is upregulated in MLP knockout as well as in TOT mice. Detailed analysis of intercalated disk composition during postnatal development reveals that an upregulation of N-RAP expression might serve as an early marker for the development of DCM. Altered expression levels of cytoskeletal proteins (either the lack of MLP or an increased expression of tropomodulin) apparently lead to impaired function of the myofibrillar apparatus and to physiological stress that ultimately results in DCM and is accompanied by an altered appearance and composition of the intercalated disks.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | - Robert Horowits
- Laboratory of Physical Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Christian Zuppinger
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | - Robert L. Price
- Department of Developmental Biology and Anatomy, University of South Carolina, Columbia, South Carolina 29208
| | - Evelyne Perriard
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | - Martin Leu
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute Basel, CH-4002 Basel, Switzerland
| | - Mark Sussman
- The Children's Hospital and Research Foundation, Cincinnati, Ohio 45229
| | - Hans M. Eppenberger
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | - Jean-Claude Perriard
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Scholl FA, McLoughlin P, Ehler E, de Giovanni C, Schäfer BW. DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis. J Cell Biol 2000; 151:495-506. [PMID: 11062252 PMCID: PMC2185594 DOI: 10.1083/jcb.151.3.495] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DRAL is a four and a half LIM domain protein identified because of its differential expression between normal human myoblasts and the malignant counterparts, rhabdomyosarcoma cells. In the current study, we demonstrate that transcription of the DRAL gene can be stimulated by p53, since transient expression of functional p53 in rhabdomyosarcoma cells as well as stimulation of endogenous p53 by ionizing radiation in wild-type cells enhances DRAL mRNA levels. In support of these observations, five potential p53 target sites could be identified in the promoter region of the human DRAL gene. To obtain insight into the possible functions of DRAL, ectopic expression experiments were performed. Interestingly, DRAL expression efficiently triggered apoptosis in three cell lines of different origin to the extent that no cells could be generated that stably overexpressed this protein. However, transient transfection experiments as well as immunofluorescence staining of the endogenous protein allowed for the localization of DRAL in different cellular compartments, namely cytoplasm, nucleus, focal contacts, as well as Z-discs and to a lesser extent the M-bands in cardiac myofibrils. These data suggest that downregulation of DRAL might be involved in tumor development. Furthermore, DRAL expression might be important for heart function.
Collapse
Affiliation(s)
- F A Scholl
- Division of Clinical Chemistry & Biochemistry, Department of Pediatrics, University of Zurich, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Yang YG, Obinata T, Shimada Y. Developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin in chicken somites as studied by immunofluorescence microscopy. Cell Struct Funct 2000; 25:177-85. [PMID: 10984101 DOI: 10.1247/csf.25.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin was studied in chicken cervical somites by immunofluorescence microscopy. Muscle and non-muscle myosins initially appeared as slender rods at the same sites, and then, fused to form non-striated fibrils. As muscle myosin formed striated structures (A bands), non-muscle myosin disappeared from this structure. Myomesin (reactive with monoclonal antibodies MyB4 and MyBB78) and connectin (carboxy terminal region, reactive with monoclonal antibody T51) were seen as dots in the center of these myosin rods. These proteins then formed characteristic mature striations on non-striated fibrils of myosin. Earlier alignment of these myosin binding proteins rather than myosin indicates that the correct assembly of these proteins seems to be related to the formation of initial myosin rods as well as subsequent linear and periodic alignment of myosin molecules to form early A bands. Connectin spots reactive with 9D10 were scattered around myosin rods/myomesin dots/connectin T51 dots. These spots may represent radiating connectin filaments from these rods/dots to link myosin rods to the I-Z-I structures of myofibrils to be incorporated. Since the slow isoform of C-protein formed its characteristic bands ("doublets") prior to H zone formation within A bands by myosin, this isoform may help to precisely align myosin filaments within the A band region. The presence of the slow, then the slow and the cardiac, and finally the co-existence of the slow and the fast isoforms of C-protein may interfere with the incorporation and co-polymerization of non-adult isoforms into myofibrils.
Collapse
Affiliation(s)
- Y G Yang
- Department of Anatomy and Cell Biology, School of Medicine, Chiba University, Japan
| | | | | |
Collapse
|
14
|
Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard JC. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 1999; 112 ( Pt 10):1529-39. [PMID: 10212147 DOI: 10.1242/jcs.112.10.1529] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myofibrillogenesis in situ was investigated by confocal microscopy of immunofluorescently labelled whole mount preparations of early embryonic chicken heart rudiments. The time-course of incorporation of several components into myofibrils was compared in triple-stained specimens, taken around the time when beating starts. All sarcomeric proteins investigated so far were already expressed before the first contractions and myofibril assembly happened within a few hours. No typical stress fibre-like structures or premyofibrils, structures observed in cultured cardiomyocytes, could be detected during myofibrillogenesis in the heart. Sarcomeric proteins like (α)-actinin, titin and actin were found in a defined localisation pattern even in cardiomyocytes that did not yet contain myofibrils, making up dense body-like structures. As soon as the heart started to beat, all myofibrillar proteins were already located at their exact position in the sarcomere. The maturation of the sarcomeres was characterised by a short delay in the establishment of the pattern for M-line epitopes of titin with respect to Z-disk epitopes and the incorporation of the M-line component myomesin, which preceded that of myosin binding protein-C. Thus dense body-like structures, made up of titin, (α)-actinin and actin filaments serve as the first organised complexes also during myofibrillogenesis in situ and titin functions as a ruler for sarcomere assembly as soon as its C termini have become localised. We suggest that assembly of thin and thick filament occurs independently during myofibrillogenesis in situ and that myomesin might be important for integrating thick filaments with the M-line end of titin.
Collapse
Affiliation(s)
- E Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Gruen M, Gautel M. Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J Mol Biol 1999; 286:933-49. [PMID: 10024460 DOI: 10.1006/jmbi.1998.2522] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C.
Collapse
Affiliation(s)
- M Gruen
- Max-Planck-Institut für Molekulare Physiologie, Rheinlanddamm 201, Dortmund, 44139, Germany
| | | |
Collapse
|
16
|
Kurasawa M, Sato N, Matsuda A, Koshida S, Totsuka T, Obinata T. Differential expression of C-protein isoforms in developing and degenerating mouse striated muscles. Muscle Nerve 1999; 22:196-207. [PMID: 10024132 DOI: 10.1002/(sici)1097-4598(199902)22:2<196::aid-mus7>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the aim of clarifying the roles of C-protein isoforms in developing mammalian skeletal muscle, we cloned the complementary DNA (cDNAs) encoding mouse fast (F) and slow (S) skeletal muscle C-proteins and determined their entire sequences. Northern blotting with these cDNAs together with mouse cardiac (C) C-protein cDNA was performed. It revealed that in adult mice, C, F, and S isoforms are expressed in a tissue-specific fashion, although the messages for both F and S isoforms are transcribed in extensor digitorum longus muscle, which has been categorized as a fast muscle. In addition, although C isoform is expressed first and transiently during development of chicken skeletal muscles, C isoform is not expressed in mouse skeletal muscles at all through the developmental stages; S isoform is first expressed, followed by the appearance of F isoform. Finally, in dystrophic mouse skeletal muscles, the expression of S isoform is increased as it is in dystrophic chicken muscle. These observations suggest that mutations in C isoform (MyBP-C) do not lead to any disturbance in skeletal muscle, although they may lead to familial hypertrophic cardiomyopathy. We also suggest that the expression of S isoform may be stimulated in degenerating human dystrophic muscles.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins
- Cloning, Molecular
- DNA, Complementary/analysis
- Gene Expression Regulation, Developmental
- Humans
- Laminin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/genetics
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Myocardium/metabolism
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Kurasawa
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Mohamed AS, Dignam JD, Schlender KK. Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites. Arch Biochem Biophys 1998; 358:313-9. [PMID: 9784245 DOI: 10.1006/abbi.1998.0857] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin binding protein C (MyBP-C) is a major myofibril-associated protein in cardiac muscle which is subject to reversible phosphorylation. Cardiac MyBP-C is a substrate in vivo and in vitro for cAMP-dependent protein kinase (PKA) and calcium/phospholipid-dependent protein kinase (PKC). Chicken cardiac MyBP-C was phosphorylated by PKA to 3.0 mol phosphate/mol and by PKC to 2.0 mol phosphate/mol. Tryptic phosphopeptides from MyBP-C were purified by successive iron iminodiacetate column chromatography and reversed-phase high-performance liquid chromatography. Three phosphopeptides purified from PKA-phosphorylated MyBP-C contained phosphoserine [T1, (RTS[P]LAGGGR) and T2, (KRDS[P]FLR)] or phosphothreonine (CT3, MT[P]SAFL). PKC phosphorylated two of the same sites (T1 and T2) as PKA and an additional site [T2a (TGTTYKPPS[P]YK)]. PKA phosphorylation sites corresponding to peptides T1, T2, and T3 were identified in the N-terminus of the cDNA deduced amino acid sequence (S265, S300, and T274, respectively). The PKC-specific site in peptide T2a was at position S1169. cDNA clones encoding rat cardiac MyBP-C were isolated, and the segment corresponding to PKA and major PKC phosphorylation sites was sequenced. Chicken cardiac MyBP-C has a threonine at position 274 (CT3), whereas rat cardiac MyBP-C has a serine at the corresponding position. Only chicken cardiac MyBP-C had a phosphorylatable residue at the position corresponding to S1169. All of the cardiac MyBP-C phosphorylation sites are absent in known sequences of skeletal muscle MyBP-C isoforms.
Collapse
Affiliation(s)
- A S Mohamed
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, Ohio, 43614-5804, USA
| | | | | |
Collapse
|
18
|
Bonne G, Carrier L, Richard P, Hainque B, Schwartz K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998; 83:580-93. [PMID: 9742053 DOI: 10.1161/01.res.83.6.580] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertrophic cardiomyopathy is characterized by left and/or right ventricular hypertrophy, which is usually asymmetric and involves the interventricular septum. Typical morphological changes include myocyte hypertrophy and disarray surrounding the areas of increased loose connective tissue. Arrhythmias and premature sudden deaths are common. Hypertrophic cardiomyopathy is familial in the majority of cases and is transmitted as an autosomal-dominant trait. The results of molecular genetics studies have shown that familial hypertrophic cardiomyopathy is a disease of the sarcomere involving mutations in 7 different genes encoding proteins of the myofibrillar apparatus: ss-myosin heavy chain, ventricular myosin essential light chain, ventricular myosin regulatory light chain, cardiac troponin T, cardiac troponin I, alpha-tropomyosin, and cardiac myosin binding protein C. In addition to this locus heterogeneity, there is a wide allelic heterogeneity, since numerous mutations have been found in all these genes. The recent development of animal models and of in vitro analyses have allowed a better understanding of the pathophysiological mechanisms associated with familial hypertrophic cardiomyopathy. One can thus tentatively draw the following cascade of events: The mutation leads to a poison polypeptide that would be incorporated into the sarcomere. This would alter the sarcomeric function that would result (1) in an altered cardiac function and then (2) in the alteration of the sarcomeric and myocyte structure. Some mutations induce functional impairment and support the pathogenesis hypothesis of a "hypocontractile" state followed by compensatory hypertrophy. Other mutations induce cardiac hyperfunction and determine a "hypercontractile" state that would directly induce cardiac hypertrophy. The development of other animal models and of other mechanistic studies linking the genetic mutation to functional defects are now key issues in understanding how alterations in the basic contractile unit of the cardiomyocyte alter the phenotype and the function of the heart.
Collapse
Affiliation(s)
- G Bonne
- From the INSERM Unit 153, the Service de Biochimie B, and the IFR de Physiologie et Génétique Cardiovasculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Harder BA, Hefti MA, Eppenberger HM, Schaub MC. Differential protein localization in sarcomeric and nonsarcomeric contractile structures of cultured cardiomyocytes. J Struct Biol 1998; 122:162-75. [PMID: 9724617 DOI: 10.1006/jsbi.1998.3981] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of cardiomyocyte cell culture models allows the identification of various cell mediators that bring about changes in subcellular structures and gene expression associated with hypertrophy. The effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), and triiodothyronine (T3) on gene expression and on the structural organization of myofibrillar and cytoskeletal proteins were compared in adult atrial (aARC) and ventricular (vARC) as well as in neonatal ventricular rat cardiomyocytes (vNRC) in long-term culture. Structural changes were evaluated by confocal microscopy and correlated to biochemical alterations. In vARC, IGF-I enhanced myofibrillar growth, whereas bFGF or T3 restricted sarcomere assembly to the central cell area, forming a sharp boundary in more than 50% of the cells. However, myosin occurred both in the cross-striated myofibrillar structures and in patches running along the nonsarcomeric fibrillar structures (also called stress fiber-like structures) in the cell periphery. In cells treated with either bFGF or T3, the expression of alpha-smooth muscle actin (alpha-sm actin) was greatly increased. This actin isoform was incorporated mainly into the nonsarcomeric contractile structures outside the area where myofibrils ended abruptly. alpha-sm actin protein increased up to 14- to 17-fold while the mRNA showed a moderate increase of 2- to 4-fold. This suggests that alpha-sm actin is mainly regulated at the translational or posttranslational level. In contrast, the cytoskeletal proteins alpha-actinin and vinculin increased only moderately (less than 2-fold) but also showed a relocalization in cells with restricted myofibrils. In aARC and in vNRC, alpha-sm actin was only moderately upregulated by bFGF or T3 and no drastic morphological changes were observed. In conclusion, IGF-I, bFGF, and T3 induced characteristic structural phenotypes depending on the type of cardiomyocyte. Large amounts of alpha-sm actin as expressed in bFGF and T3 treated vARC seem to be incompatible with sarcomere assembly.
Collapse
Affiliation(s)
- B A Harder
- Institute of Pharmacology, University of Zurich, Zurich, CH-8057, Switzerland
| | | | | | | |
Collapse
|
20
|
Gautel M, Fürst DO, Cocco A, Schiaffino S. Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ Res 1998; 82:124-9. [PMID: 9440711 DOI: 10.1161/01.res.82.1.124] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the gene for the cardiac isoform of myosin binding protein C (MyBP-C) have been identified as the cause of chromosome 11-associated autosomal-dominant familial hypertrophic cardiomyopathy (FHC). Most mutations produce a truncated polypeptide that lacks the sarcomeric binding region. We have now investigated the expression pattern of the cardiac and skeletal isoforms of cMyBP-C in mice and humans by in situ hybridization and immunofluorescence microscopy using specific antibodies and probes. We demonstrate that the cardiac isoform is expressed only in cardiac muscle throughout development. The slow and fast isoforms of MyBP-C remain specific for skeletal muscle, where they can be coexpressed. Immunological evidence also suggests that an embryonic isoform of MyBP-C precedes the expression of slow MyBP-C in developing skeletal muscle. This suggests that transcomplementation of MyBP-C isoforms is possible in skeletal but not cardiac muscle.
Collapse
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | |
Collapse
|
21
|
Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L. Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ Res 1998; 82:130-3. [PMID: 9440712 DOI: 10.1161/01.res.82.1.130] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac myosin binding protein C (MyBP-C) is a substantial component of the sarcomere, with both structural and regulatory roles. The gene encoding cardiac MyBP-C in humans is located on chromosome 11p11.2, and mutations that are most predicted to produce truncated proteins have been identified in this gene in unrelated families with familial hypertrophic cardiomyopathy (FHC). To understand better the pathophysiology of FHC and with a view to the development of animal models for this disease, we have investigated by in situ hybridization the pattern of expression of the cardiac MyBP-C gene during human and mouse development using species-specific oligonucleotide probes. From 4 weeks of human development, a strong labeling of cardiac MyBP-C mRNAs was unambiguously detected in all heart compartments, and no signal could be visualized in somites. In murine embryos, from embryonic day 9.5 until birth, a strong signal was detected exclusively in the heart. Our results showed that during both human and murine development, in contrast to chicken development, the cardiac MyBP-C gene is abundantly and specifically expressed in the heart.
Collapse
Affiliation(s)
- F Fougerousse
- Laboratoire d'Histo-Embryologie et de Cytogénétique, Faculté Cochin Port-Royal, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC. Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J Clin Invest 1996; 98:1737-44. [PMID: 8878423 PMCID: PMC507611 DOI: 10.1172/jci118972] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Effects of triiodothyronine (T3) on the expression of cytoskeletal and myofibrillar proteins in adult rat cardiomyocytes (ARC) were followed during two weeks of culture in the presence of 20% T3-depleted (stripped) FCS. Control cultures expressed mainly beta-myosin heavy chain (MHC) mRNA. T3 caused a switch to alpha-MHC expression and a dose-dependent increase of alpha-smooth muscle (alpha-sm) actin mRNA and protein. In parallel, the number of alpha-sm actin immunoreactive cells increased from 1% in controls to 29 and 62% in ARC treated with 5 and 100 nM T3. In the presence of T3, cells exhibited a higher beating rate than controls. The distribution of myofibrils in T3-treated cells was restricted to the perinuclear area with a sharp boundary. Only 5% of the control cells but 30 and 62% of the T3-treated (5 and 100 nM) ARC showed this restricted myofibrillar phenotype. Basic fibroblast growth factor (bFGF) which restricts myofibrillar growth and upregulates alpha-sm actin in ARC cultured with normal FCS had no effect on alpha-sm actin in ARC cultured in stripped FCS, but potentiated the effect of T3. In contrast, insulin-like growth factor I (IGF I), which suppresses alpha-sm actin and stimulates myofibrillogenesis in the presence of normal FCS suppressed T3-induced alpha-sm actin expression in stripped FCS. Thus, T3 appears to be permissive for the action of bFGF and IGF I on alpha-sm actin expression.
Collapse
Affiliation(s)
- M A Gosteli-Peter
- Department of Internal Medicine, University Hospital Zurich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
von Arx P, Bantle S, Soldati T, Perriard JC. Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J Biophys Biochem Cytol 1995; 131:1759-73. [PMID: 8557743 PMCID: PMC2120671 DOI: 10.1083/jcb.131.6.1759] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intracompartmental sorting and functional consequences of ectopic expression of the six vertebrate actin isoforms was investigated in different types of cultured cells. In transfected fibroblasts all isoactin species associated with the endogenous microfilament cytoskeleton, even though cytoplasmic actins also showed partial localization to peripheral submembranous sites. Functional and structural studies were performed in neonatal and adult rat cardiomyocytes. All the muscle isoactin constructs sorted preferentially to sarcomeric sites and, to a lesser extent, also to stress-fiber-like structures. The expression of muscle actins did not interfere with cell contractility, and did not disturb the localization of endogenous sarcomeric proteins. In sharp contrast, ectopic expression of the two cytoplasmic actin isoforms resulted in rapid cessation of cellular contractions and induced severe morphological alterations characterized by an exceptional outgrowth of filopodia and cell flattening. Quantitative analysis in neonatal cardiomyocytes indicated that the levels of accumulation of the different isoactins are very similar and cannot be responsible for the observed isoproteins-specific effects. Structural analysis revealed a remodeling of the cytoarchitecture including a specific alteration of sarcomeric organization; proteins constituting the sarcomeric thin filaments relocated to nonmyofibrillar sites while thick filaments and titin remained unaffected. Experiments with chimeric proteins strongly suggest that isoform specific residues in the carboxy-terminal portion of the cytoplasmic actins are responsible for the dominant negative effects on function and morphology.
Collapse
Affiliation(s)
- P von Arx
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Yasuda M, Koshida S, Sato N, Obinata T. Complete primary structure of chicken cardiac C-protein (MyBP-C) and its expression in developing striated muscles. J Mol Cell Cardiol 1995; 27:2275-86. [PMID: 8576942 DOI: 10.1016/s0022-2828(95)91731-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
C-protein (MyBP-C) is a myosin binding protein of about 140 kDa which is known to modulate myosin assembly in striated muscles. A cardiac-type isoform of C-protein appears not only in cardiac muscle but also in skeletal muscle before skeletal muscle-type isoforms become detectable during myogenesis, suggesting that the cardiac isoform is involved in the early phase of myofibrillogenesis (Bähler et al., 1985; Kawashima et al., 1986). In this study, in order to understand the structure and functional domains of the cardiac-type C-protein, we cloned and sequenced full-length cDNAs encoding chicken cardiac C-protein from lambda gt11 cDNA libraries which were prepared with poly (A)+ RNA from embryonic chicken cardiac muscle as well as embryonic chicken skeletal muscle by using antibodies specific for cardiac C-protein. Two cDNA variants, probably generated by alternative RNA splicing and encoding different C-protein isoforms, were detected. As judged by the cDNA sequences determined, overall homology of the peptide sequence between cardiac and skeletal muscle C-proteins (Einheber et al., 1990; Fürst et al., 1992, Weber et al., 1994) was about 50-55%. Like other myosin binding proteins, skeletal C-proteins, 86 kDa protein and M-protein, cardiac C-protein contains several copies of fibronectin type III motifs and immunoglobulin C2 motifs in the molecule, but their number and arrangements differed somewhat from those in the other proteins. Northern blot analysis with the cloned cDNA as a probe demonstrated that mRNA of 5.0 kb is transcribed in both cardiac and embryonic skeletal muscle, and that it is specifically expressed in cardiac muscle among adult tissues.
Collapse
Affiliation(s)
- M Yasuda
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | |
Collapse
|
25
|
Donath MY, Zapf J, Eppenberger-Eberhardt M, Froesch ER, Eppenberger HM. Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc Natl Acad Sci U S A 1994; 91:1686-90. [PMID: 8127866 PMCID: PMC43228 DOI: 10.1073/pnas.91.5.1686] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adult rat cardiomyocytes in long-term culture express type 1 insulin-like growth factor (IGF) receptors. In contrast to insulin receptors, type 1 IGF receptors are up-regulated during culturing. IGF-I added to the cells at plating increased granular density and pseudopodia number per cell after 7 days. After 16 days, IGF-I-treated cells showed, as compared with controls, a dramatic increase of the number of newly built sarcomeres and were packed with myofibrils. At the same time, IGF-I suppressed the accumulation of smooth muscle alpha-actin (sm-alpha-actin) in a dose-dependent manner. Under the conditions of this in vitro system, growth hormone had no effect on cell morphology or sm-alpha-actin. sm-alpha-Actin, a nonsarcomeric isoform of actin expressed in early fetal cardiac development, reappears both during long-term culture of adult rat cardiomyocytes and during heart hypertrophy. This study shows that type 1 IGF receptors are up-regulated in adult rat cardiomyocytes in long-term culture and that IGF-I enhances myofibril development and concomitantly down-regulates sm-alpha-actin. This protein forms stress-fiber-like structures and may temporarily serve as a scaffold for the formation of new sarcomeres until myofibrils have developed throughout the cell and the scaffold is no longer needed. Our findings thus allow us to propose another hypothesis for the mechanism leading to overload heart hypertrophy.
Collapse
Affiliation(s)
- M Y Donath
- Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Price MG, Caprette DR, Gomer RH. Different temporal patterns of expression result in the same type, amount, and distribution of filamin (ABP) in cardiac and skeletal myofibrils. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:248-61. [PMID: 8020110 DOI: 10.1002/cm.970270306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The morphogenesis of functional myofibrils in chick skeletal and cardiac muscle occurs in greatly different time spans, in about 7 and 2 days, respectively. In chick skeletal myogenic cells, one isoform of the 250 kD actin-binding protein (ABP) filamin is associated with stress fiber-like structures of myoblasts and early myotubes, then disappears for approximately 4 days, whereupon a second filamin isoform reappears at the Z-disc periphery. We sought to determine if cardiac myogenesis involves this sequence of appearance, disappearance, and reappearance of a new filamin isoform in a compressed time scale. It was known that in mature heart, filamin is localized at the Z-disc periphery as in mature (fast) skeletal muscle, and is also associated with intercalated discs. We find that myocardial filamin has an apparent molecular weight similar to that of adult skeletal muscle filamin and lower than that of smooth muscle filamin, and that both skeletal and cardiac muscle contain roughly 200 filamin monomers per sarcomere. Two-dimensional peptide mapping shows that myocardial filamin is very similar to skeletal muscle filamin. Myocardial, slow skeletal, and fast skeletal muscle filamins are all phosphorylated, as previously shown for filamin of non-striated muscle. Using immunofluorescence, we found that filamin could not be detected in the developing heart until the 14-somite stage, when functional myofibrils exist and the heart has been beating for 3 to 4 hours. We conclude that in cardiac and skeletal myogenesis, different sequences of filamin gene expression result in myofibrils with similar filamin distributions and isoforms.
Collapse
Affiliation(s)
- M G Price
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892
| | | | | |
Collapse
|
27
|
Messerli JM, Eppenberger-Eberhardt ME, Rutishauser BM, Schwarb P, von Arx P, Koch-Schneidemann S, Eppenberger HM, Perriard JC. Remodelling of cardiomyocyte cytoarchitecture visualized by three-dimensional (3D) confocal microscopy. HISTOCHEMISTRY 1993; 100:193-202. [PMID: 8244770 DOI: 10.1007/bf00269092] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The break-down and reassembly of myofibrils in long-term cultures of adult rat cardiomyocytes was investigated by a novel combination of confocal laser scanning microscopy and three-dimensional image reconstruction, referred to as FTCS, to visualize the morphological changes these cells undergo in culture. FTCS is discussed as an alternative imaging mode to low-magnification scanning electron microscopy. The three-dimensional shape of the cells are correlated with the assembly state of myofibrils in different stages. Based on immunofluorescence and confocal laser scanning microscopy it was shown that myofibrils are degraded within a few days after plating and that newly assembled myofibrils are predominantly confined to the continuous area in the perinuclear region close to the membrane in contact with the substratum. The localization of myofibrils along the cell's vertical axis has been investigated both by optical sectioning using confocal light microscopy and by physical sectioning followed by transmission electron microscopy. Based on the distribution of myofibrillar proteins we propose a model of myofibrillar growth locating the putative assembly sites to a region concentric around the nuclei. We provide evidence that the cell shape is dominated by the myofibrillar apparatus.
Collapse
Affiliation(s)
- J M Messerli
- Swiss Federal Institute of Technology, Institute for Cell Biology, Zürich
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- T Obinata
- Department of Biology, Faculty of Science, Chiba University, Japan
| |
Collapse
|
29
|
Wegmann G, Zanolla E, Eppenberger HM, Wallimann T. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 1992; 13:420-35. [PMID: 1401038 DOI: 10.1007/bf01738037] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Creatine kinase isoenzymes (CK = ATP: creatine N-phosphoryl transferase, EC 2.7.3.2) were localized in situ in cryosections of intact sarcomeric muscle by immunocytochemical staining. Similar to cardiac muscle, spermatozoa and photoreceptor cells, mitochondrial-type CK (Mi-CK) localization in skeletal muscle was also restricted to mitochondria. Besides the well-documented localization of muscle-type (M-CK) at the M-line and at the sarcoplasmic reticulum, surprisingly, most of the sarcoplasmic M-CK was also highly compartmentalized and was mainly confined to the I-band. The localization of M-CK at the I-band coincided with that of adenylate kinase and aldolase. In intact muscle, the diffusion equilibrium decisively favours occupancy by all three enzymes of the I-band, with the acto-myosin overlap region of the A-band acting as a molecular sieve, excluding to a large extent all three enzymes from the acto-myosin overlap region. This indicates that in intact muscle, this region of the A-band may be less accessible in vivo to soluble, sarcoplasmic enzymes than thought before. If muscle were permeabilized by chemical skinning before fixation, I-band CK, as well as aldolase and adenylate kinase, were solubilized and disappeared from the myofibrils, but the fraction of M-CK which was specifically associated with the M-line remained bound to the myofibrils. Implications of these findings are discussed with respect to the functional coupling of I-band-CK with glycolysis, to the formation of large multienzyme complexes of glycolytic enzymes with CK and to the supply of energy for muscle contraction in general.
Collapse
Affiliation(s)
- G Wegmann
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich
| | | | | | | |
Collapse
|
30
|
Stromer MH. Immunocytochemical localization of proteins in striated muscle. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 142:61-144. [PMID: 1487396 DOI: 10.1016/s0074-7696(08)62075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
31
|
Structure and developmental expression of troponin I isoforms. cDNA clone analysis of avian cardiac troponin I mRNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55043-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Müller M, Eppenberger HM, Wallimann T. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol 1991; 113:289-302. [PMID: 1849138 PMCID: PMC2288938 DOI: 10.1083/jcb.113.2.289] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In adult regenerating cardiomyocytes in culture, in contrast to fetal cells, mitochondrial creatine kinase (Mi-CK) was expressed. In the same cell, two populations of mitochondria, differing in shape, in distribution within the cell and in content of Mi-CK, could be distinguished. Immunofluorescence studies using antibodies against Mi-CK revealed a characteristic staining pattern for the two types of mitochondria: giant, mostly cylindrically shaped, and, as shown by confocal laser light microscopy, randomly distributed mitochondria exhibited a strong signal for Mi-CK, whereas small, "normal" mitochondria, localized in rows between myofibrils, gave a much weaker signal. Transmission EM of the giant mitochondria demonstrated paracrystalline inclusions located between cristae membranes. Immunogold labeling with anti-Mi-CK antibodies revealed a specific decoration of these inclusions for Mi-CK. Addition of 20 mM creatine, the substrate of Mi-CK, to the essentially creatine-free culture medium caused the disappearance of the giant cylindrically shaped mitochondria as well as of the paracrystalline inclusions, accompanied by an increase of the intracellular level of total creatine. Replacement of creatine in the medium by the creatine analogue and competitor beta-guanidinopropionic acid caused the reappearance of the enlarged mitochondria. It is believed that the accumulation of Mi-CK within the paracrystalline inclusions, similar to those observed in certain myopathies, represents a compensatory effect of the cardiomyocytes to cope with a metabolic stress situation caused by low intracellular total creatine levels.
Collapse
|
33
|
Eppenberger-Eberhardt M, Flamme I, Kurer V, Eppenberger HM. Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev Biol 1990; 139:269-78. [PMID: 2186943 DOI: 10.1016/0012-1606(90)90296-u] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of alpha-smooth muscle (sm) actin in regenerating adult cardiomyocytes in culture was investigated. No alpha-sm-actin could be detected in adult ventricular tissue or in newly dissociated rod-shaped cells, whereas a fraction of the polymorphic flattened out adult cardiac cells in culture did express the protein. Immunofluorescence studies revealed a characteristic staining pattern, suggesting the preferential presence of alpha-sm-actin in stress fiber-like structures, while newly formed myofibrils contained only little alpha-sm-actin isoprotein. Cell-cell contacts were resumed, but formation of new gap junctions, as revealed by microinjecting Lucifer yellow, was not dependent on alpha-sm-actin expression. The behavior corresponds to fetal cardiomyocytes either in tissue or as single cells in culture where expression of alpha-sm-actin can be observed. Such immunofluorescence staining patterns with corresponding immunoblot data can be expected when a return to a less differentiated, more fetal state of the adult cardiomyocyte in culture is assumed. The possible role of the alpha-sm-actin and alpha-sarcomeric actin isoforms during reformation of myofibrillar sarcomeres is discussed.
Collapse
|
34
|
Zak R, Camoretti-Mercado B, Gupta M, Jakovcic S, Shimizu N, Stewart A. Myofibrillar proteins in the developing heart. Ann N Y Acad Sci 1990; 588:216-24. [PMID: 2192641 DOI: 10.1111/j.1749-6632.1990.tb13212.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Zak
- Department of Medicine, University of Chicago, Illinois 60637
| | | | | | | | | | | |
Collapse
|
35
|
Fürst DO, Osborn M, Weber K. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 1989; 109:517-27. [PMID: 2474551 PMCID: PMC2115733 DOI: 10.1083/jcb.109.2.517] [Citation(s) in RCA: 237] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antibodies to muscle-specific proteins were used in immunofluorescence to monitor the development of skeletal muscle during mouse embryogenesis. At gestation day (g.d.) 9 a single layer of vimentin filament containing cells in the myotome domain of cervical somites begins to stain positively for myogenic proteins. The muscle-specific proteins are expressed in a specific order between g.d. 9 and 9.5. Desmin is detected first, then titin, then the muscle specific actin and myosin heavy chains, and finally nebulin. At g.d. 9.5 fibrous desmin structures are already present, while for the other myogenic proteins no structure can be detected. Some prefusion myoblasts display at g.d. 11 and 12 tiny and immature myofibrils. These reveal a periodic pattern of myosin, nebulin, and those titin epitopes known to occur at and close to the Z line. In contrast titin epitopes, which are present in mature myofibrils along the A band and at the A-I junction, are still randomly distributed. We propose, that the Z line connected structures and the A bands (myosin filaments) assemble independently, and that the known interaction of the I-Z-I brushes with the A bands occurs at a later developmental stage. After fusion of myoblasts to myotubes at g.d. 13 and 14 all titin epitopes show the myofibrillar banding pattern. The predominantly longitudinal orientation of desmin filaments seen in myoblasts and in early myotubes is transformed at g.d. 17 and 18 to distinct Z line connected striations. Vimentin, still present together with desmin in the myoblasts, is lost from the myotubes. Our results indicate that the putative elastic titin filaments act as integrators during skeletal muscle development. Some developmental aspects of eye and limb muscles are also described.
Collapse
Affiliation(s)
- D O Fürst
- Max Planck Institute of Biophysical Chemistry, Goettingen, Federal Republic of Germany
| | | | | |
Collapse
|
36
|
Van Horn R, Crow MT. Fast myosin heavy chain expression during the early and late embryonic stages of chicken skeletal muscle development. Dev Biol 1989; 134:279-88. [PMID: 2472984 DOI: 10.1016/0012-1606(89)90100-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of embryonic skeletal muscles in the chick can be divided into two periods of fiber specialization--an early one during which the different muscles of the limb are formed and an initial round of fiber specialization occurs and a late or fetal period during which there is extensive growth of this previously established fiber pattern. This latter period of growth is dependent on the establishment and maintenance of functional neuromuscular contacts. As has been described for other developmental stages, we show here that there are different embryonic fast skeletal muscle myosin heavy chain (MHC) isoforms expressed during the different embryonic periods of muscle growth. The identification of these isoforms was based on differences in their reactivity with various fast MHC monoclonal antibodies and on their different peptide banding patterns. The in ovo accumulation of the late embryonic MHC isoform pattern was similar to the time course of the previously described changes in alpha-actin and troponin T isotype switching during embryogenesis. The appearances of the late embryonic isoforms were blocked by chronic treatment with the neuromuscular blocking agent, d-tubocurarine, and cell cultures of embryonic chicken skeletal muscle which differentiated in the absence of motorneurons expressed little of the late embryonic isoform, indicating that the expression of the late embryonic isoform was dependent on functional nerve-muscle interactions. These different embryonic fast MHC isoforms provide important markers for monitoring the progression of muscle through its embryonic stages and its interaction with motorneurons.
Collapse
Affiliation(s)
- R Van Horn
- Department of Pharmacology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
37
|
Ruzicka DL, Schwartz RJ. Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 1988; 107:2575-86. [PMID: 3204121 PMCID: PMC2115638 DOI: 10.1083/jcb.107.6.2575] [Citation(s) in RCA: 234] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The expression of cytoplasmic beta-actin and cardiac, skeletal, and smooth muscle alpha-actins during early avian cardiogenesis was analyzed by in situ hybridization with mRNA-specific single-stranded DNA probes. The cytoplasmic beta-actin gene was ubiquitously expressed in the early chicken embryo. In contrast, the alpha-actin genes were sequentially activated in avian cardiac tissue during the early stages of heart tube formation. The accumulation of large quantities of smooth muscle alpha-actin transcripts in epimyocardial cells preceded the expression of the sarcomeric alpha-actin genes. The accumulation of skeletal alpha-actin mRNAs in the developing heart lagged behind that of cardiac alpha-actin by several embryonic stages. At Hamburger-Hamilton stage 12, the smooth muscle alpha-actin gene was selectively down-regulated in the heart such that only the conus, which subsequently participates in the formation of the vascular trunks, continued to express this gene. This modulation in smooth muscle alpha-actin gene expression correlated with the beginning of coexpression of sarcomeric alpha-actin transcripts in the epimyocardium and the onset of circulation in the embryo. The specific expression of the vascular smooth muscle alpha-actin gene marks the onset of differentiation of cardiac cells and represents the first demonstration of coexpression of both smooth muscle and striated alpha-actin genes within myogenic cells.
Collapse
Affiliation(s)
- D L Ruzicka
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
38
|
Eppenberger ME, Hauser I, Baechi T, Schaub MC, Brunner UT, Dechesne CA, Eppenberger HM. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev Biol 1988; 130:1-15. [PMID: 2903104 DOI: 10.1016/0012-1606(88)90408-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dissociated adult rat ventricular cardiomyocytes obtained from hearts by retrograde perfusion with collagenase were investigated in long-term cultures. Myofibril regeneration, isoprotein transition of alpha- and beta-myosin heavy chain (MHC), and M-band localization of M-creatine kinase in the reconstituting heart cells were studied. Myofibril formation was demonstrated by the use of antibodies against either cardiac C-protein or myomesin as early differentiation markers. Four days after plating, small myofibrils could be identified in attached cells in a perinuclear fashion; later in culture the cells displayed various shapes and myofibril distribution. Frequently a patchy distribution of myofibrils within the extending peripheral processes could be observed. Colocalization of sarcomeres and phalloidin-stained F-actin filament bundles was demonstrated by double fluorescence staining and by the use of high intensifying video microscopy and computerized image processing. The immunofluorescence distribution of alpha- and beta-MHC isoproteins in newly isolated and cultured cardiomyocytes changed from 100% alpha-MHC and 70% beta-MHC in rod-shaped cells to about 100% beta-MHC and 70% alpha-MHC in spread out cultured cells. This shift was corroborated by a relative gradual decline in alpha-MHC at the expense of increasing amounts of beta-MHC with time in culture as assessed by sodium dodecyl sulfate gel electrophoresis of total cell homogenates. In addition, whereas rod-shaped newly isolated cardiomyocytes showed a clear M-band association of M-creatine kinase as found in adult heart tissue, adult cultivated spread out cells did not show a cross-striated pattern after incubation with antibody. Taken together, these observations suggest that adult cardiomyocytes not only undergo extensive morphological transitions in long-term cultures, but also generate new myofibrillar structures lacking M-creatine kinase and containing the beta-MHC, thus fitting the characteristics of fetal myofibrils. These results indicate a change from the adult terminally differentiated to a less differentiated state of the cardiac cells in culture.
Collapse
|
39
|
Mar JH, Antin PB, Cooper TA, Ordahl CP. Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells. J Biophys Biochem Cytol 1988; 107:573-85. [PMID: 3047142 PMCID: PMC2115209 DOI: 10.1083/jcb.107.2.573] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The chicken gene encoding cardiac troponin T (cTNT) is expressed in both cardiac and skeletal muscle during early embryonic development, but is specifically repressed in skeletal muscle during fetal development. To determine if the cis-acting sequences governing transcription of a single gene in these two related cell types are the same, we have transfected promoter/upstream segments of the cTNT gene coupled to the bacterial chloramphenicol acetyltransferase gene into primary cultures of early embryonic cardiac and skeletal muscle cells. Using this assay system, chloramphenicol acetyltransferase activity directed by the cTNT promoter/upstream region was between two and three orders of magnitude higher in cardiac or skeletal muscle cells than in fibroblast cells, indicating that cis elements responsible for cell-specific expression reside in this region of the cTNT gene. Deletion experiments showed that a 67-nucleotide DNA segment residing between 268 and 201 nucleotides upstream of the cTNT transcription initiation site is required for cTNT promoter activity in embryonic cardiac cells. This region is not required in embryonic skeletal muscle cells because a cTNT promoter construction containing only 129 upstream nucleotides is transcriptionally active in these cells. These results demonstrate that different cis-acting sequences are required for cTNT expression in early embryonic cardiac and skeletal muscle cells. Nonessential regions residing farther upstream, on the other hand, affected the level of expression of these minimum regions in a similar manner in both cell types. The data from these experiments indicate, therefore, that transcription of the cTNT promoter in early embryonic cardiac and skeletal muscle cells is governed both by common and divergent regulatory elements in cis and in trans.
Collapse
Affiliation(s)
- J H Mar
- Department of Anatomy, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
40
|
Abstract
C-protein isoform expression in hereditary dystrophic chicken skeletal muscle was compared with that in normal chicken muscle during postnatal development by immunocytochemical and immunoblot methods. In the pectoralis muscle (PM) of both normal and dystrophic chicken, slow- and fast-type C-proteins were coexpressed in the vast majority of myofibers at neonatal age, but the slow C-protein disappeared, leaving continued expression of only the fast-type C-protein as muscle development progressed up to 2 weeks posthatch. In the dystrophic chicken PM, however, myofibers containing slow-type C-protein reappeared about 1 month posthatch and increased in number with the progression of muscular dystrophy. We conclude that C-protein isoform expression in dystrophic myofibers resembles that in neonatal myofibers and that the expression of slow-type C-protein can be seen as a marker for chicken muscular dystrophy.
Collapse
|
41
|
|
42
|
Grove BK, Holmbom B, Thornell LE. Myomesin and M protein: differential expression in embryonic fibers during pectoral muscle development. Differentiation 1987; 34:106-14. [PMID: 3305119 DOI: 10.1111/j.1432-0436.1987.tb00056.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By applying immunocytochemistry using monoclonal antibodies, we found that the myofibrillar M band of both presumptive type-I and -II fibers in the pectoralis major muscle of chickens contains two high-molecular-weight proteins, i.e., myomesin (Mr, 185,000) and M protein (Mr, 165,000), early in embryonic development (7 days in ovo), even though adult type-I fibers lack M protein. The developmental expression of M protein is unusual in that, from 10 to 14 days in ovo, it is gradually suppressed not only in presumptive type-I fibers but also in presumptive type-II fibers formed from primary-generation myotubes. This latter suppression is transient, as M protein is expressed in all adult type-II fibers derived from both the primary- and second-generation myotubes. Myomesin, on the other hand, is continuously expressed in all myotubes throughout development. This finding shows that myomesin and M protein expression is regulated independently in different myotube populations, and that the suppression of M protein in primary-generation myotubes accounts for the delayed accumulation of M protein during development, as previously revealed by biochemical analysis. Presumptive type-I fibers, which form in the deep portion of the muscle, become concentrated in a narrow band known as the red strip.
Collapse
|
43
|
Abstract
The relative steady-state abundance of cardiac and skeletal alpha-actin mRNAs at different stages of embryonic skeletal and cardiac (striated) muscle development was determined by a reverse transcriptase extension assay employing an single oligonucleotide primer complementary to a perfectly conserved region near the 5' end of both mRNAs. Both mRNAs were found to be present at every stage of embryonic striated muscle development tested, including the earliest assayable stages of limb muscle and cardiac muscle development. At early stages of skeletal muscle development the two mRNAs are present at similar levels while at later stages the abundance of the skeletal alpha-actin mRNA far exceeds that of the cardiac alpha-actin mRNA. Both mRNAs are also present at similar levels throughout embryonic cardiac muscle development while in adult cardiac muscle the cardiac alpha-actin mRNA predominates over the skeletal alpha-actin mRNA. These results for early embryonic striated muscle, in combination with previous results with late embryonic and adult striated muscle, indicate that both genes are coexpressed throughout striated muscle ontogeny. These two genes may not, therefore, be regulated under unique tissue-specific regulatory programs but each may have acquired regulatory elements which confer important quantitative differences in their level of expression in mature striated muscle cells.
Collapse
|