1
|
Mir H, Alex T, Rajawat J, Kadam A, Begum R. Response of Dictyostelium discoideum to UV-C and involvement of poly (ADP-ribose) polymerase. Cell Prolif 2015; 48:363-74. [PMID: 25858552 DOI: 10.1111/cpr.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Radiation and chemical mutagens are direct DNA-damaging agents and ultraviolet (UV) radiation is frequently used in biological studies. Consequent to ozone depletion, UV-C could become a great challenge to living organisms on earth, in the near future. The present study has focused on the role of poly (ADP-ribose) polymerase (PARP) during UV-C-induced growth and developmental changes in Dictyostelium discoideum, a phylogenetically important unicellular eukaryote. MATERIALS AND METHODS Dictyostelium discoideum cells were exposed to different doses of UV-C and PARP activity, and effects of its inhibition were studied. Expression of developmentally regulated genes yakA, car1, aca, csA, regA, ctnA, ctnB, gp24, hspD and dsn were analysed using semiquantitative RT-PCR. RESULTS We report that the D. discoideum cells displayed PARP activation within 2 min of UV-C irradiation and there was increase in NO levels in a dose-dependent manner. UV-C-irradiated cells had impaired growth, delayed or blocked development and delayed germination compared to control cells. In our previous studies we have shown that inhibition of PARP recovered oxidative stress-induced changes in D. discoideum; however, intriguingly PARP inhibition did not correct all defects as effectively in UV-C-irradiated cells. This possibly was due to interplay with increased NO signalling. CONCLUSIONS Our results signify that UV-C and oxidative stress affected growth and development in D. discoideum by different mechanisms; these studies could provide major clues to complex mechanisms of growth and development in higher organisms.
Collapse
Affiliation(s)
- H Mir
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | | | | | | | | |
Collapse
|
2
|
Masaki N, Fujimoto K, Honda-Kitahara M, Hada E, Sawai S. Robustness of self-organizing chemoattractant field arising from precise pulse induction of its breakdown enzyme: a single-cell level analysis of PDE expression in Dictyostelium. Biophys J 2013; 104:1191-202. [PMID: 23473502 DOI: 10.1016/j.bpj.2013.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/29/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023] Open
Abstract
The oscillation of chemoattractant cyclic AMP (cAMP) in Dictyostelium discoideum is a collective phenomenon that occurs when the basal level of extracellular cAMP exceeds a threshold and invokes cooperative mutual excitation of cAMP synthesis and secretion. For pulses to be relayed from cell to cell repetitively, secreted cAMP must be cleared and brought down to the subthreshold level. One of the main determinants of the oscillatory behavior is thus how much extracellular cAMP is degraded by extracellular phosphodiesterase (PDE). To date, the exact nature of PDE gene regulation remains elusive. Here, we performed live imaging analysis of mRNA transcripts for pdsA--the gene encoding extracellular PDE. Our analysis revealed that pdsA is upregulated during the rising phase of cAMP oscillations. Furthermore, by analyzing isolated cells, we show that expression of pdsA is strictly dependent on the presence of extracellular cAMP. pdsA is induced only at ∼1 nM extracellular cAMP, which is almost identical to the threshold concentration for the cAMP relay response. The observed precise regulation of PDE expression together with degradation of extracellular cAMP by PDE form a dual positive and negative feedback circuit, and model analysis shows that this sets the cAMP level near the threshold concentration for the cAMP relay response for a wide range of adenylyl cyclase activity. The overlap of the thresholds could allow oscillations of chemoattractant cAMP to self-organize at various starving conditions, making its development robust to fluctuations in its environment.
Collapse
Affiliation(s)
- Noritaka Masaki
- Exploratory Research for Advanced Technology (ERATO), Complex Systems Biology Project, Japan Science and Technology Agency (JST), Tokyo, Japan
| | | | | | | | | |
Collapse
|
3
|
Kawabe Y, Weening KE, Marquay-Markiewicz J, Schaap P. Evolution of self-organisation in Dictyostelia by adaptation of a non-selective phosphodiesterase and a matrix component for regulated cAMP degradation. Development 2012; 139:1336-45. [PMID: 22357931 PMCID: PMC3294436 DOI: 10.1242/dev.077099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 01/21/2023]
Abstract
Dictyostelium discoideum amoebas coordinate aggregation and morphogenesis by secreting cyclic adenosine monophosphate (cAMP) pulses that propagate as waves through fields of cells and multicellular structures. To retrace how this mechanism for self-organisation evolved, we studied the origin of the cAMP phosphodiesterase PdsA and its inhibitor PdiA, which are essential for cAMP wave propagation. D. discoideum and other species that use cAMP to aggregate reside in group 4 of the four major groups of Dictyostelia. We found that groups 1-3 express a non-specific, low affinity orthologue of PdsA, which gained cAMP selectivity and increased 200-fold in affinity in group 4. A low affinity group 3 PdsA only partially restored aggregation of a D. discoideum pdsA-null mutant, but was more effective at restoring fruiting body morphogenesis. Deletion of a group 2 PdsA gene resulted in disruption of fruiting body morphogenesis, but left aggregation unaffected. Together, these results show that groups 1-3 use a low affinity PdsA for morphogenesis that is neither suited nor required for aggregation. PdiA belongs to a family of matrix proteins that are present in all Dictyostelia and consist mainly of cysteine-rich repeats. However, in its current form with several extensively modified repeats, PdiA is only present in group 4. PdiA is essential for initiating spiral cAMP waves, which, by organising large territories, generate the large fruiting structures that characterise group 4. We conclude that efficient cAMP-mediated aggregation in group 4 evolved by recruitment and adaptation of a non-selective phosphodiesterase and a matrix component into a system for regulated cAMP degradation.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| |
Collapse
|
4
|
Gaudet P, Fey P, Chisholm R. Extraction of RNA from dictyostelium. Cold Spring Harb Protoc 2008; 2008:pdb.prot5106. [PMID: 21356752 DOI: 10.1101/pdb.prot5106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a social ameba because it can form a multicellular structure when nutrient conditions are limiting. General principles for cell-to-cell communication, intracellular signaling, and cytoskeletal organization during cell motility have been derived from cellular and molecular studies of Dictyostelium and have been found to be conserved across all eukaryotes. The availability of a complete genome database and stocks of wild-type and mutant strains make D. discoideum an accessible and powerful model organism. Dictyostelium is amenable to genetic manipulations that require the introduction of DNA into cells, such as gene knockout, overexpression, antisense RNA expression, RNA interference (RNAi)-mediated gene knockdown, and restriction-enzyme-mediated mutagenesis. The extraction of RNA from Dictyostelium is relatively easy because RNA levels are very high in comparison to DNA levels (i.e., ~40 times higher). Certain commercially available kits, such as Trizol (Invitrogen) and RNeasy (QIAGEN) have been used successfully, although lysis conditions need to be adjusted. RNA samples are stable for several years at -80°C in diethylpyrocarbonate (DEPC)-treated H(2)O. For longer-term storage, the RNA pellet can be stored in 100% ethanol at -80°C. Such samples are suitable for Northern blots, reverse transcriptase-polymerase chain reaction (RT-PCR), and microarray analysis of gene expression.
Collapse
Affiliation(s)
- Pascale Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
5
|
Identification and characterization of DdRPB4, a subunit of Dictyostelium discoideum RNA polymerase II. Biochem Biophys Res Commun 2008; 377:1141-6. [PMID: 18992223 DOI: 10.1016/j.bbrc.2008.10.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022]
Abstract
Rpb4, the fourth largest subunit of the eukaryotic RNA polymerase II (RNAPII), is required for growth at extreme temperatures and for an appropriate response to nutrient starvation in yeast. Sequence homologs of Rpb4 are found in most sequenced genomes from yeast to humans. To elucidate the role of this subunit in nutrient starvation, we chose Dictyostelium discoideum, a soil amoeba, which responds to nutrient deprivation by undergoing a complex developmental program. Here we report the identification of homolog of Saccharomyces cerevisiae RPB4 in D. discoideum. Localization and complementation studies suggest that Rpb4 is functionally conserved. DdRPB4 transcript and protein levels are developmentally regulated. Although DdRPB4 could not be deleted, overexpression revealed that the Rpb4 protein is essential for cell survival and is regulated stringently at the post-transcriptional level in D. discoideum. Thus maintaining a critical level of Rpb4 is important for this organism.
Collapse
|
6
|
Pilcher KE, Gaudet P, Fey P, Kowal AS, Chisholm RL. A general purpose method for extracting RNA from Dictyostelium cells. Nat Protoc 2007; 2:1329-32. [PMID: 17545970 DOI: 10.1038/nprot.2007.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we present a protocol for the extraction of RNA from Dictyostelium discoideum. Dictyostelium is a social amoeba that undergoes a basic developmental program, and therefore analysis of RNA levels over a time course is a commonly used technique. This procedure is similar to other guanidine thiocyanate-based methods; however, it has been adjusted because of the large quantities of carbohydrate and nucleases found in Dictyostelium cells. After cell lysis and phenol:chloroform extraction, the resulting high-quality RNA isolated with the described protocol allows the molecular genetic analysis of wild-type and genetically modified cells. The purified RNA can be used for analyses such as northern blotting, RT-PCR and microarrays. This procedure requires approximately 2 h to complete.
Collapse
Affiliation(s)
- Karen E Pilcher
- dictyBase, Center for Genetic Medicine, Northwestern University, 676 North Saint Clair Street Suite 1260, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
7
|
Bader S, Kortholt A, Van Haastert P. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP. Biochem J 2007; 402:153-61. [PMID: 17040207 PMCID: PMC1783984 DOI: 10.1042/bj20061153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Dictyostelium discoideum genome uncovers seven cyclic nucleotide PDEs (phosphodiesterases), of which six have been characterized previously and the seventh is characterized in the present paper. Three enzymes belong to the ubiquitous class I PDEs, common in all eukaryotes, whereas four enzymes belong to the rare class II PDEs that are present in bacteria and lower eukaryotes. Since all D. discoideum PDEs are now characterized we have calculated the contribution of each enzyme in the degradation of the three important pools of cyclic nucleotides: (i) extracellular cAMP that induces chemotaxis during aggregation and differentiation in slugs; (ii) intracellular cAMP that mediates development; and (iii) intracellular cGMP that mediates chemotaxis. It appears that each cyclic nucleotide pool is degraded by a combination of enzymes that have different affinities, allowing a broad range of substrate concentrations to be degraded with first-order kinetics. Extracellular cAMP is degraded predominantly by the class II high-affinity enzyme DdPDE1 and its close homologue DdPDE7, and in the multicellular stage also by the low-affinity transmembrane class I enzyme DdPDE4. Intracellular cAMP is degraded by the DdPDE2, a class I enzyme regulated by histidine kinase/phospho-relay, and by the cAMP-/cGMP-stimulated class II DdPDE6. Finally, basal intracellular cGMP is degraded predominantly by the high-affinity class I DdPDE3, while the elevated cGMP levels that arise after receptor stimulation are degraded predominantly by a cGMP-stimulated cGMP-specific class II DdPDE5. The analysis shows that the combination of enzymes is tuned to keep the concentration and lifetime of the substrate within a functional range.
Collapse
Affiliation(s)
- Sonya Bader
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Peter J. M. Van Haastert
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Bandala-Sanchez E, Annesley SJ, Fisher PR. A phototaxis signalling complex in Dictyostelium discoideum. Eur J Cell Biol 2006; 85:1099-106. [PMID: 16735078 DOI: 10.1016/j.ejcb.2006.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phototaxis has been studied in a variety of organisms belonging to all three major taxonomic domains - the bacteria, the archaea and the eukarya. Dictyostelium discoideum is one of a small number of eukaryotic organisms which are amenable to studying the signalling pathways involved in phototaxis. In this study we provide evidence based on protein coimmunoprecipitation for a phototaxis signalling complex in Dictyostelium that includes the proteins RasD, filamin, ErkB, GRP125 and PKB.
Collapse
|
9
|
Bader S, Kortholt A, Snippe H, Van Haastert PJM. DdPDE4, a novel cAMP-specific phosphodiesterase at the surface of dictyostelium cells. J Biol Chem 2006; 281:20018-26. [PMID: 16644729 DOI: 10.1074/jbc.m600040200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum cells possess multiple cyclic nucleotide phosphodiesterases that belong either to class I enzymes that are present in all eukaryotes or to the rare beta-lactamase class II. We describe here the identification and characterization of DdPDE4, the third class I enzyme of Dictyostelium. The deduced amino acid sequence predicts that DdPDE4 has a leader sequence, two transmembrane segments, and an extracellular catalytic domain that exhibits a high degree of homology with human cAMP-specific PDE8. Expression of the catalytic domain of DdPDE4 shows that the enzyme is a cAMP-specific phosphodiesterase with a K(m) of 10 microm; cGMP is hydrolyzed at least 100-fold more slowly. The full-length protein is shown to be membrane-bound with catalytic activity exposed to the extracellular medium. Northern blots and activity measurements reveal that expression of DdPDE4 is low during single cell stages and increases at 9 h of starvation, corresponding with mound stage. A function during multicellular development is confirmed by the phenotype of ddpde4(-) knock-out strains, showing normal aggregation but impaired development from the mound stage on. These results demonstrate that DdPDE4 is a unique membrane-bound phosphodiesterase with an extracellular catalytic domain regulating intercellular cAMP during multicellular development.
Collapse
Affiliation(s)
- Sonya Bader
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN Haren, the Netherlands
| | | | | | | |
Collapse
|
10
|
Coukell B, Cameron A, Perusini S, Shim K. Disruption of the NCS-1/frequenin-related ncsA gene in Dictyostelium discoideum accelerates development. Dev Growth Differ 2005; 46:449-58. [PMID: 15606490 DOI: 10.1111/j.1440-169x.2004.00761.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To learn more about the function of intracellular Ca2+ in Dictyostelium discoideum, we searched databases for sequences encoding potential members of the neuronal calcium sensor (NCS) family of Ca2+-binding proteins. As a result, genes for five new putative Ca2+-binding proteins were identified. Based on amino acid sequence alignments and phylogenetic analyses, one of these genes (ncsA) was determined to be closely related to NCS-1/frequenin genes in other organisms. The protein product of ncsA (NcsA) binds 45Ca2+ and exhibits a dramatic gel mobility shift in the presence of Ca2+, suggesting that it is a Ca2+ sensor. ncsA-null cells grow normally in axenic culture. However, on bacterial lawns, the ncsA-null clones expand slowly and development begins prematurely within the plaques. In larger clones, ncsA-null cells form narrow growth zones with evenly spaced aggregates along the inner edge, and closely packed fruiting bodies. An analysis of intracellular cyclic adenosine monophosphate (cAMP) levels, developmental timing on phosphate-buffered saline (PBS) agar, and stage-specific gene expression indicate that development of ncsA-null cells is accelerated by 3-4 h. Together, these results suggest that NcsA might function in Dictyostelium to prevent cells from entering development prematurely in the presence of environmental nutrients.
Collapse
Affiliation(s)
- Barrie Coukell
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | | | | | | |
Collapse
|
11
|
Kotsifas M, Barth C, de Lozanne A, Lay ST, Fisher PR. Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 2003; 23:839-52. [PMID: 12952082 DOI: 10.1023/a:1024444215766] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The single Dictyostelium chaperonin 60 gene, hspA, was cloned, sequenced and characterized. Sequence comparisons and a three-dimensional model for the structure of the encoded protein showed that it exhibits the conserved sequence and structural features expected for its role as the Dictyostelium mitochondrial chaperonin 60. Dictyostelium hspA contains two introns and, unusually for a member of this major heat shock gene family, is not stress-inducible in response to heat, cold or cadmium ions. Although transcription of hspA is down regulated during early Dictyostelium development in response to starvation, the levels of the chaperonin 60 protein remain constant throughout the life cycle. Consistent with the essential role of chaperonin 60 in mitochondrial biogenesis, we were unable to isolate mutants in which the hspA gene had been disrupted. However, transformants were isolated that exhibited differing levels of antisense inhibition of chaperonin 60 expression, depending upon the number of copies of the antisense-expressing plasmid in the genome. Orientation in phototaxis (and thermotaxis) was severely impaired in all antisense transformants, while growth and morphogenesis were markedly defective only in transformants with higher levels of antisense inhibition. This pattern of phenotypes is similar to that reported previously to result from targeted disruption of the mitochondrial large subunit rRNA gene in a subpopulation of mitochondria. This suggests that, regardless of the nature of the underlying genetic defect, mitochondrial deficiency impairs signal transduction more sensitively than other cellular activities.
Collapse
Affiliation(s)
- Martha Kotsifas
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
12
|
Weening KE, Wijk IVV, Thompson CR, Kessin RH, Podgorski GJ, Schaap P. Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development. Dev Biol 2003; 255:373-82. [PMID: 12648497 DOI: 10.1016/s0012-1606(02)00077-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of the Dictyostelium PdsA gene from the aggregative (PdA) and late (PdL) promoter is essential for aggregation and slug morphogenesis, respectively. We studied the regulation of the PdA and PdL promoters in slugs using labile beta-galactosidase (gal) reporter enzymes. PdL was active in prestalk cells as was also found with stable gal. PdA activity decreased strongly in slugs from all cells, except those at the rear. This is almost opposite to PdA activity traced with stable gal, where slugs showed sustained activity with highest levels at the front. PdA was down-regulated after aggregation irrespective of stimulation with any of the factors known to control gene expression. PdL activity was induced in cell suspension by cAMP and DIF acting in synergy. However, a DIF-less mutant showed normal PdL activity during development, suggesting that DIF does not control PdL in vivo. Dissection of the PdL promoter showed that all sequences essential for correct spatiotemporal control of promoter activity are downstream of the transcription start site in a region between -383 and -19 nucleotides relative to the start codon. Removal of nucleotides to position -364 eliminated responsiveness to DIF and cAMP, but normal PdL activity in prestalk cells in slugs was retained. Further 5' deletions abolished all promoter activity. This result also indicates that the induction by DIF and cAMP as seen in cell suspensions is not essential for PdL activity in normal development.
Collapse
Affiliation(s)
- Karin E Weening
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
13
|
Gaudet P, MacWilliams H, Tsang A. Inducible expression of exogenous genes in Dictyostelium discoideum using the ribonucleotide reductase promoter. Nucleic Acids Res 2001; 29:E5. [PMID: 11139635 PMCID: PMC29686 DOI: 10.1093/nar/29.2.e5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 11/01/2000] [Accepted: 11/10/2000] [Indexed: 11/14/2022] Open
Abstract
We report here the development of a regulated gene expression system for Dictyostelium discoideum based on the DNA-damage inducibility of the rnrB gene. rnrB, which codes for the small subunit of the enzyme ribonucleotide reductase, responds to DNA-damaging agents at all stages of the D.discoideum life cycle. Doses that have little effect on development have previously been shown to increase the level of the rnrB transcript by up to 15-fold. Here we show that all elements necessary for DNA-damage induction are contained in a 450 bp promoter fragment. We used a fusion of the rnrB promoter with the gene encoding GFP to demonstrate an up to 10-fold induction at the RNA level, which appears in all aspects similar to induction of the endogenous rnrB transcript. Using a fusion with the lacZ gene we observed an up to 7-fold induction at the protein level. These results indicate that the rnrB promoter can be used to regulate the expression of specific genes in D.discoideum. This controllable gene expression system provides the following new characteristics: the induction is rapid, taking place in the order of minutes, and the promoter is responsive at all stages of the D.discoideum life cycle.
Collapse
Affiliation(s)
- P Gaudet
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada
| | | | | |
Collapse
|
14
|
Gaudet P, Tsang A. Regulation of the ribonucleotide reductase small subunit gene by DNA-damaging agents in Dictyostelium discoideum. Nucleic Acids Res 1999; 27:3042-8. [PMID: 10454598 PMCID: PMC148528 DOI: 10.1093/nar/27.15.3042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, yeast and mammalian cells, the genes encoding ribonucleotide reductase, an essential enzyme for de novo DNA synthesis, are up-regulated in response to DNA damaging agents. We have examined the response of the rnrB gene, encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum, to DNA damaging agents. We show here that the accumulation of rnrB transcript is increased in response to methyl methane sulfonate, 4-nitroquinoline-1-oxide and irradiation with UV-light, but not to the ribonucleotide reductase inhibitor hydroxyurea. This response is rapid, transient and independent of protein synthesis. Moreover, cells from different developmental stages are able to respond to the drug in a similar fashion, regardless of the basal level of expression of the rnrB gene. We have defined the cis -acting elements of the rnrB promoter required for the response to methyl methane sulfonate and 4-nitroquinoline-1-oxide by deletion analysis. Our results indicate that there is one element, named box C, that can confer response to both drugs. Two other boxes, box A and box D, specifically conferred response to methyl methane sulfonate and 4-nitroquinoline-1-oxide, respectively.
Collapse
Affiliation(s)
- P Gaudet
- Department of Chemistry, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
15
|
Bonfils C, Gaudet P, Tsang A. Identification of cis-regulating elements and trans-acting factors regulating the expression of the gene encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum. J Biol Chem 1999; 274:20384-90. [PMID: 10400662 DOI: 10.1074/jbc.274.29.20384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the promoter of rnrB, the gene encoding the small subunit of ribonucleotide reductase of Dictyostelium discoideum, using lacZ as a reporter gene. Deletion analysis showed that expression of this gene in vegetative cells involves an A/T-rich element, whereas its expression in prespore cells during development requires a region encompassing two G/C-rich elements, designated box A and box B. Removal of boxes A and B results in very low level of activity. When either box A or box B is deleted, prestalk cells adjacent to the prespore zone also express beta-galactosidase. The behavior of these cis-regulatory elements implies that the mechanism regulating the prespore-specific expression of rnrB is different from that regulating other known prespore genes. We have used electrophoretic mobility shift assays to identify factors that interact with box A and box B. Box A interacts with a factor that is found in the nuclear fraction. While box B interacts with a factor that is present in the cytosolic fraction throughout growth and development, its presence in the nuclear fraction is developmentally regulated. Results from competition assays suggest that both box A and box B interact with transcriptional activators that have not been characterized previously.
Collapse
Affiliation(s)
- C Bonfils
- Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | | | |
Collapse
|
16
|
Moniakis J, Coukell MB, Janiec A. Involvement of the Ca2+-ATPase PAT1 and the contractile vacuole in calcium regulation in Dictyostelium discoideum. J Cell Sci 1999; 112 ( Pt 3):405-14. [PMID: 9885293 DOI: 10.1242/jcs.112.3.405] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Dictyostelium discoideum, the Ca2+-ATPase, PAT1, is localized to membranes of the contractile vacuole and its expression is upregulated substantially when the cells are grown in Ca2+-rich medium. In this study, we have analyzed the cellular/molecular mechanisms regulating PAT1 expression and examined the role of PAT1 and the contractile vacuole in Ca2+ regulation. During both growth and development, Dictyostelium cells respond to low millimolar concentrations of extracellular Ca2+ and upregulate PAT1 in a few hours. This process is dependent on protein synthesis and the serine/threonine phosphatase, calcineurin. Immunofluorescence analysis indicates that the upregulated PAT1 is associated mainly with the contractile vacuole, but it is also on the plasma membrane. This latter finding suggests that the contractile vacuole fuses with the plasma membrane to eliminate excess intracellular Ca2+. In support of this idea, it was observed that conditions which impair contractile vacuolar function reduce the rate of Ca2+ secretion. It was also found that cells deficient in PAT1, due to the expression of antisense patA RNA or to the presence of calcineurin antagonists, grow normally in low Ca2+ medium but poorly or not at all in high Ca2+ medium. Together, these results suggest that PAT1 and the contractile vacuole are components of a Ca2+ sequestration and excretion pathway, which functions to help maintain Ca2+ homeostasis, especially under conditions of Ca2+ stress.
Collapse
Affiliation(s)
- J Moniakis
- Department of Biology, York University, Toronto, Ontario, Canada, M3J 1P3
| | | | | |
Collapse
|
17
|
Rieben WK, Gonzales CM, Gonzales ST, Pilkington KJ, Kiyosawa H, Hughes JE, Welker DL. Dictyostelium discoideum nuclear plasmid Ddp5 is a chimera related to the Ddp1 and Ddp2 plasmid families. Genetics 1998; 148:1117-25. [PMID: 9539429 PMCID: PMC1460040 DOI: 10.1093/genetics/148.3.1117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The 14,955-bp Dictyostelium discoideum nuclear plasmid Ddp5 contains six transcribed open reading frames. One of these is related to the rep gene of the Ddp2 plasmid, and the other five are related to genes present on the Ddp1 plasmid. The absence of a homolog of the Ddp1 G1 gene, coupled with the presence of the Ddp2 rep gene homolog and of a 1.6-kb inverted repeat analogous to the inverted repeats on members of the Ddp2 plasmid family, suggests that Ddp5 uses Ddp2-like replication and copy number control mechanisms and that it should be assigned to the Ddp2 plasmid family. Ddp5 carries genes homologous to the D1/D3 and D2 genes of the Ddp1 plasmid as well as the Ddp1 G2/G3/D4, G5/D6, and G6/G4/D5 genes. The products of the Ddp5 G2-like, G5-like, and G6-like genes are likely to be transcription factors regulating the expression of themselves and of the other Ddp5 genes. The D1-like and D2-like genes may confer a selective advantage to plasmid-bearing cells, because they can be deleted from plasmid-based shuttle vectors with no apparent effect on vector maintenance. Updated sequence information for the Ddp1 G5/D6, D1/D3, and D2 genes as well as the Dmp1 and Dmp2 G5-like genes is presented. The locations of introns in the G5-like and D1-like genes of Ddp5 and in the homologous genes of the Ddp1, Dmp1, and Dmp2 plasmids were identified. These introns all have GU at the 5' intron border and AG at the 3' intron border, are short (59 to 71 nucleotides), and are AT-rich. A conserved HHCC domain was identified in the G5 proteins; this is a putative zinc binding domain and may be involved in protein-DNA interaction.
Collapse
Affiliation(s)
- W K Rieben
- Biology Department, Utah State University, Logan 84322-5305, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sucgang R, Weijer CJ, Siegert F, Franke J, Kessin RH. Null mutations of the Dictyostelium cyclic nucleotide phosphodiesterase gene block chemotactic cell movement in developing aggregates. Dev Biol 1997; 192:181-92. [PMID: 9405107 DOI: 10.1006/dbio.1997.8720] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular cAMP is a critical messenger in the multicellular development of the cellular slime mold Dictyostelium discoideum. The levels of cAMP are controlled by a cyclic nucleotide phosphodiesterase (PDE) that is secreted by the cells. The PDE gene (pdsA) is controlled by three promoters that permit expression during vegetative growth, during aggregation, and in prestalk cells of the older structures. Targeted disruption of the gene aborts development, and complementation with a modified pdsA restores development. Two distinct promoters must be used for full complementation, and an inhibitory domain of the PDE must be removed. We took advantage of newly isolated PDE-null cells and the natural chimerism of the organism to ask whether the absence of PDE affected individual cell behavior. PDE-null cells aggregated with isogenic wild-type cells in chimeric mixtures, but could not move in a coordinated manner in mounds. The wild-type cells move inward toward the center of the mound, leaving many of the PDE-null cells at the periphery of the aggregate. During the later stages of development, PDE-null cells in the chimera segregate to regions which correspond to the prestalk region and the rear of the slug. Participation in the prespore/spore population returns with the restoration of a modified pdsA to the null cells.
Collapse
Affiliation(s)
- R Sucgang
- College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Adenosine 3',5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) are regulators of development in many organisms. Dictyostelium uses cAMP as an extracellular chemoattractant and as an intracellular signal for differentiation. Cells that are mutant in adenylyl cyclase do not develop. Moderate expression of the catalytic subunit of PKA in adenylyl cyclase-null cells led to near-normal development without detectable accumulation of cAMP. These results suggest that all intracellular cAMP signaling is effected through PKA and that signals other than extracellular cAMP coordinate morphogenesis in Dictyostelium.
Collapse
Affiliation(s)
- B Wang
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Tsang A, Bonfils C, Czaika G, Shtevi A, Grant C. A prespore-specific gene of Dictyostelium discoideum encodes the small subunit of ribonucleotide reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:100-8. [PMID: 8950185 DOI: 10.1016/s0167-4781(96)00109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated the gene. rnrB, that encodes the ribonucleotide reductase small subunit of Dictyostelium discoideum. The deduced amino acid sequence of rnrB exhibits about 60% sequence identity with its homologues in other eukaryotes. As demonstrated by RNA blot analysis the rnrB transcript is detected in growing cells and decreases dramatically at the onset of development. The rnrB transcript reappears after the cells have formed multicellular aggregates. To further examine the pattern of expression, we have fused the rnrB promoter and part of its coding sequence to lacZ. The transgenic strain bearing such a reporter construct expresses the fusion gene with a biphasic profile, which is indistinguishable from that of the endogenous rnrB. The multicellular aggregates of Dictyostelium are differentiated along the anterior-posterior axis. Cells in the anterior give rise to the stalk of the fruiting body while cells in the posterior are precursors of spores. Results from histochemical staining show that beta-galactosidase activity is detected exclusively in the posterior two-thirds of the aggregates. These data suggest that rnrB is expressed in prespore cells during postaggregative development and in vegetative cells.
Collapse
Affiliation(s)
- A Tsang
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
21
|
Khosla M, Spiegelman GB, Weeks G. Overexpression of an activated rasG gene during growth blocks the initiation of Dictyostelium development. Mol Cell Biol 1996; 16:4156-62. [PMID: 8754814 PMCID: PMC231412 DOI: 10.1128/mcb.16.8.4156] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transformants that expressed either the wild-type rasG gene, an activated rasG-G12T gene, or a dominant negative rasG-S17N gene, all under the control of the folate-repressible discoidin (dis1gamma) promoter, were isolated. All three transformants expressed high levels of Ras protein which were reduced by growth in the presence of folate. All three transformants grew slowly, and the reduction in growth rate correlated with the amount of RasG protein produced, suggesting that RasG is important in regulating cell growth. The pVEII-rasG transformant containing the wild-type rasG gene developed normally despite the presence of high levels of RasG throughout development. This result indicates that the down regulation of rasG that normally occurs during aggregation of wild-type strains is not essential for the differentiation process. Dictyostelium transformants expressing the dominant negative rasG-S17N gene also differentiated normally. Dictyostelium transformants that overexpressed the activated rasG-G12T gene did not aggregate. The defect occurred very early in development, since the expression of car1 and pde, genes that are normally induced soon after the initiation of development, was repressed. However, when the transformant cells were pulsed with cyclic AMP, expression of both genes returned to wild-type levels. The transformants exhibited chemotaxis to cyclic AMP, and development was synergized by mixing with wild-type cells. Furthermore, cells that were pulsed with cyclic AMP for 4 h before being induced to differentiate by plating on filters produced small, but otherwise normal, fruiting bodies. These results suggest that the rasG-G12T transformants are defective in cyclic AMP production and that RasG - GTP blocks development by interfering with the initial generation of cyclic AMP pulses.
Collapse
Affiliation(s)
- M Khosla
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
22
|
Cliften P, Wang Y, Mochizuki D, Miyakawa T, Wangspa R, Hughes J, Takemoto JY. SYR2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):477-484. [PMID: 8868422 DOI: 10.1099/13500872-142-3-477] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Pseudomonas syringae cyclic lipodepsipeptide syringomycin inhibits the growth of Saccharomyces cerevisiae. A novel yeast gene, SYR2, was found to complement two syringomycin-resistant S. cerevisiae mutants. SYR2 was cloned, sequenced, and shown to encode a 349 amino acid protein located in the endoplasmic reticulum. SYR2 was identical to SUR2, which is involved in survival during nutritional starvation. Gene disruption or overexpression of SYR2 did not affect cell viability or ergosterol levels, but did influence cellular phospholipid levels. The findings suggest that phospholipids are important for the growth inhibitory action of syringomycin.
Collapse
Affiliation(s)
- Paul Cliften
- Department of Biology and Program in Molecular Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Yeelan Wang
- Department of Biology and Program in Molecular Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Daisuke Mochizuki
- Department of Fermentation Technology, Hiroshima University, 1-4-1 Higashi-Hiroshima 739, Japan
| | - Tokichi Miyakawa
- Department of Fermentation Technology, Hiroshima University, 1-4-1 Higashi-Hiroshima 739, Japan
| | - Rungrach Wangspa
- Department of Biology and Program in Molecular Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Joanne Hughes
- Department of Biology and Program in Molecular Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Jon Y Takemoto
- Department of Biology and Program in Molecular Biology, Utah State University, Logan, UT 84322-5305, USA
| |
Collapse
|
23
|
Xie Y, Coukell MB, Gombos Z. Antisense RNA inhibition of the putative vacuolar H(+)-ATPase proteolipid of Dictyostelium reduces intracellular Ca2+ transport and cell viability. J Cell Sci 1996; 109 ( Pt 2):489-97. [PMID: 8838672 DOI: 10.1242/jcs.109.2.489] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transport of Ca2+ via a P-type pump into the contractile vacuole of Dictyostelium discoideum appears to be facilitated by vacuolar proton (V-H+) ATPase activity. To investigate the involvement of the V-H(+)-ATPase in this process using molecular techniques, we cloned a cDNA (vatP) encoding the putative proteolipid subunit of this enzyme. The deduced protein product of this cDNA is composed of 196 amino acids with a calculated M(r) of 20,148 and the primary structure exhibits high amino acid sequence identity with V-H(+)-ATPase proteolipids from other organisms. vatP is a single-copy gene and it produces one approximately 900 nt transcript at relatively constant levels during growth and development. Attempts to disrupt the endogenous gene using vatP cDNA were unsuccessful. But, expression of vatP antisense RNA reduced the levels of vatP message and V-H(+)-ATPase activity by 50% or more. These antisense strains grew and developed slowly, especially under acidic conditions, and the cells seemed to have difficulty forming acidic vesicles. During prolonged cultivation, all of the antisense strains either reverted to a wild-type phenotype or died. Thus in Dictyostelium, unlike yeast, the V-H(+)-ATPase seems to be indispensable for cell viability. When different antisense strains were analyzed for Ca2+ uptake by the contractile vacuole, they all accumulated less Ca2+ than control transformants. These results are consistent with earlier pharmacological studies which suggested that the V-H(+)-ATPase functions in intracellular Ca2+ transport in this organism.
Collapse
Affiliation(s)
- Y Xie
- Department of Biology, York University, North York, Ontario, Canada
| | | | | |
Collapse
|
24
|
Reymond CD, Schaap P, Véron M, Williams JG. Dual role of cAMP during Dictyostelium development. EXPERIENTIA 1995; 51:1166-74. [PMID: 8536804 DOI: 10.1007/bf01944734] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
cAMP plays an essential role during Dictyostelium development both outside and inside the cell. Membrane-bound receptors and adenylyl cyclase are responsible for sensing and producing extracellular cAMP, whereas a phosphodiesterase is responsible for maintaining a low basal level. The molecular events underlying this type of hormone like signalling, which are now beginning to be deciphered, will be presented, in the light of cAMP analogue studies. The importance of intracellular cAMP for cell differentiation has been demonstrated by the central role of the cAMP dependent protein kinase. Mutants as well as strains obtained by reverse genetics will be reviewed which lead to our current understanding of the role of intracelluar cAMP in the differentiation of both stalk and spore cells.
Collapse
Affiliation(s)
- C D Reymond
- University of Lausanne, Institut d'Histologie et d'Embryologie, Switzerland
| | | | | | | |
Collapse
|
25
|
Clarke M, Gomer RH. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. EXPERIENTIA 1995; 51:1124-34. [PMID: 8536800 DOI: 10.1007/bf01944730] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Throughout growth and development, Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. Vegetative Dictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used by Dictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.
Collapse
Affiliation(s)
- M Clarke
- Oklahoma Medical Research Foundation, Program in Molecular and Cell Biology, Oklahoma City 73104, USA
| | | |
Collapse
|
26
|
Moniakis J, Coukell MB, Forer A. Molecular cloning of an intracellular P-type ATPase from Dictyostelium that is up-regulated in calcium-adapted cells. J Biol Chem 1995; 270:28276-81. [PMID: 7499325 DOI: 10.1074/jbc.270.47.28276] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Results from a number of laboratories suggest that intracellular Ca2+ is involved in the regulation of Dictyostelium discoideum growth and development. To learn more about the regulation and function of intracellular Ca2+ in this organism, we have cloned and sequenced cDNAs that encode a putative P-type Ca2+ ATPase designated patA. The deduced protein product of this gene (PAT1) has a calculated molecular mass of 120,718 daltons. It exhibits about 46% amino acid identity with Ca2+ ATPases of the plasma membrane Ca2+ ATPase family and lower identity with sarco(endo)plasmic reticulum Ca2+ ATPase family members and monovalent cation pumps. However, PAT1 lacks the highly conserved calmodulin-binding domain present in the C-terminal region of most plasma membrane Ca2+ ATPase-type enzymes. When Dictyostelium amoebae are adapted to grow in the presence of 80 mM CaCl2, both the patA message and protein product are up-regulated substantially. These cells also exhibit an increase in the rate and magnitude of intracellular P-type Ca2+ uptake activity. Immunofluorescence analysis indicates that PAT1 colocalizes with bound calmodulin to intracellular membranes, probably components of the contractile vacuole complex. The presence of PAT1 on the contractile vacuole suggests that in Dictyostelium this organelle might function in Ca2+ homeostasis as well as in water regulation.
Collapse
Affiliation(s)
- J Moniakis
- Department of Biology, York University, North York, Ontario, Canada
| | | | | |
Collapse
|
27
|
Coukell B, Moniakis J, Grinberg A. Cloning and expression in Escherichia coli of a cDNA encoding a developmentally regulated Ca(2+)-binding protein from Dictyostelium discoideum. FEBS Lett 1995; 362:342-6. [PMID: 7729526 DOI: 10.1016/0014-5793(95)00272-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have cloned a full-length cDNA from Dictyostelium discoideum which encodes a new Ca(2+)-binding protein. The deduced protein (termed CBP1) is composed of 156 amino acids and contains four consensus metal-ligating loop sequences found in helix-loop-helix motifs of many Ca(2+)-binding proteins. When expressed in bacteria as a GST fusion protein, CBP1 binds Ca2+ in a 45Ca2+ overlay assay. CBP1 exhibits little amino acid sequence homology with Dictyostelium calmodulin or calfumirin-1 (CAF-1) except in the putative Ca(2+)-binding regions. Moreover, unlike calmodulin and CAF-1 expression, CBP1 mRNA is expressed preferentially during the multicellular stages of development.
Collapse
Affiliation(s)
- B Coukell
- Department of Biology, York University, Ont., Canada
| | | | | |
Collapse
|
28
|
Burdine V, Clarke M. Genetic and physiologic modulation of the prestarvation response in Dictyostelium discoideum. Mol Biol Cell 1995; 6:311-25. [PMID: 7612966 PMCID: PMC301190 DOI: 10.1091/mbc.6.3.311] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Throughout vegetative growth, Dictyostelium amoebae secrete an autocrine factor, prestarvation factor, PSF, which accumulates in proportion to cell density. During late exponential growth, PSF induces the expression of several genes whose products are needed for cAMP signaling and cell aggregation. Among these genes are discoidin-I and the 2.4-kb transcript of cyclic nucleotide phosphodiesterase (PDE). We have identified several parameters that modulate expression of one or both of these prestarvation response genes; all effects were monitored in cells growing exponentially on bacteria. Under these conditions, axenic mutants produce higher levels of PSF activity than wild-type cells. Consistent with the high PSF levels, the 2.4-kb PDE transcript is more abundant in axenic strains than wild-type cells at the same cell density. In contrast, the density-dependent induction of discoidin-I is greatly delayed in axenic strains, occurring only at the very end of exponential growth. Analysis of axenic strains of independent origin suggested that this negative effect on discoidin-I expression is attributable to the axenic mutations themselves. The effects of two environmental factors that inhibit the prestarvation response (the bacteria upon which the cells feed and a bacterial product, folic acid) were also analyzed. We found that folate does not account for the inhibitory effect of bacteria. Cells deficient in the G-protein beta subunit, which is thought to be common to all heterotrimeric G-proteins in Dictyostelium, respond to PSF in the same manner as G beta+ cells, and this response is inhibited by bacteria. However, folate has no inhibitory effect on g beta- cells, indicating that folate inhibition is mediated by a heterotrimeric G-protein. In cells lacking the catalytic subunit of protein kinase A, the prestarvation response is severely impaired, but about 3% of the pka- cells manifest an apparently normal density-dependent induction of discoidin-I. This behavior and the heterogeneity of the prestarvation response in wild-type cells lead us to speculate that protein kinase A may not be required for PSF signal transduction per se, but rather may render the cells responsive to PSF. Based on analysis of adenylyl cyclase mutants (aca-), the effect of protein kinase A is not cAMP-dependent.
Collapse
Affiliation(s)
- V Burdine
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
29
|
Bonfils C, Greenwood M, Tsang A. Expression and characterization of a Dictyostelium discoideum annexin. Mol Cell Biochem 1994; 139:159-66. [PMID: 7862106 DOI: 10.1007/bf01081739] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The annexins are calcium-dependent phospholipid-binding proteins. Recently the gene encoding the homologue of a mammalian annexin has been identified in Dictyostelium discoideum. Analysis of cDNA and genomic clones showed that the transcript for Dictyostelium annexin is alternatively spliced (Greenwood, M. and Tsang, A. (1991) Biochim. Biophys. Acta 1088, 429-432; Döring, V., Schleicher, M and Noegel, A. (1991) J. Biol. Chem. 266, 17509-17515). Here, we showed that the Dictyostelium annexin DNA hybridized to two populations of transcripts. We used a recombinant annexin polypeptide to raise polyclonal antibody. Immunoblot analysis revealed that the antibody recognized two polypeptides of 48 kDa and 54 kDa in developing D. discoideum cells. The molecular sizes of these polypeptides correspond well with the expected sizes of the alternatively spliced products. The 48-kDa and 54-kDa polypeptides were purified by isoelectric focusing to more than 70% homogeneity. The partially purified proteins were found to associate with phosphatidylserine vesicles in a calcium-dependent manner. These results suggest that the 48- and 54-kDa polypeptides are the products of alternative splicing of the annexin transcripts. During development the two polypeptides accumulate at different rates to about 60 times the level detected in vegetative cells. On the other hand, RNA blot analysis showed that the level of the annexin transcripts in multicellular aggregates was about 5 times that of vegetative cells.
Collapse
Affiliation(s)
- C Bonfils
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Coukell MB, Cameron AM, Adames NR. Involvement of intracellular calcium in protein secretion in Dictyostelium discoideum. J Cell Sci 1992; 103 ( Pt 2):371-80. [PMID: 1478940 DOI: 10.1242/jcs.103.2.371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that Ca2+ depletion of Dictyostelium discoideum cells severely inhibits extracellular cyclic nucleotide phosphodiesterase (PD) synthesis at a post-transcriptional step. In this study, further experiments were performed to learn more about the nature of this phenomenon. Examination of the polysomal distribution of PD transcripts in control cells and in cells depleted of Ca2+ by incubation with EGTA and A23187 (EA) suggested that inhibition of PD production does not involve translational control. Kinetic analysis of this inhibitory process revealed that soluble, intracellular PD activity, synthesized from either the 2.4 or 1.9 kb PD mRNA, decreased very rapidly upon addition of EA. Furthermore, this decrease in activity was accompanied by the preferential loss of PD-related polypeptides, indicating a proteolytic event. EA-induced PD degradation required cellular energy and concomitant protein synthesis but was unaffected by most of the lysosomotropic agents tested. Therefore, PD proteolysis might not occur in the lysosome. In cell fractionation experiments, the EA-sensitive, intracellular PD activity comigrated with a rough ER marker in Percoll/KCl gradients. In addition to its effect on the PD, EA were also observed to inhibit production and rapidly lower the intracellular levels of another secreted glycoprotein, the PD inhibitor. Together, these results suggest that depletion of some intracellular Ca2+ store(s) in Dictyostelium, possibly the ER, disrupts the normal function of the secretory pathway, resulting in selective degradation of certain proteins.
Collapse
Affiliation(s)
- M B Coukell
- Department of Biology, York University, Ontario, Canada
| | | | | |
Collapse
|
31
|
Franke J, Kessin RH. The cyclic nucleotide phosphodiesterases of Dictyostelium discoideum: molecular genetics and biochemistry. Cell Signal 1992; 4:471-8. [PMID: 1329901 DOI: 10.1016/0898-6568(92)90016-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J Franke
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | |
Collapse
|
32
|
McPherson CE, Singleton CK. V4, a gene required for the transition from growth to development in Dictyostelium discoideum. Dev Biol 1992; 150:231-42. [PMID: 1312963 DOI: 10.1016/0012-1606(92)90238-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The V4 gene of Dictyostelium discoideum is regulated in a nutrient-dependent manner and is deactivated immediately upon the onset of development. V4 is expressed only during growth, but its expression is not required for growth. We propose that the V4 gene product plays a role in the transition from growth to development. We have tested this hypothesis by antisense mutagenesis. Cells transformed with a V4 antisense construct contained no detectable endogenous V4 mRNA. These cells grew normally, but they failed to aggregate. Under conditions which normally promote development, V4 antisense transformants failed to deactivate vegetative-specific genes. These cells also were unable to induce the expression of the cAMP cell surface receptor, the cyclic nucleic phosphodiesterase, and contact sites A, all of which are normally induced under such conditions. Surprisingly, cells transformed with a V4 sense construct displayed a similar morphological and biochemical phenotype as the antisense cells, whereas cells transformed with the parental vector exhibited a normal biochemical and morphological phenotype. These results demonstrate that expression of the V4 gene during growth is required for the proper initiation of development.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Dictyostelium/genetics
- Dictyostelium/growth & development
- Genes, Fungal
- Molecular Sequence Data
- Plasmids
- Promoter Regions, Genetic
- RNA, Antisense
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Messenger/genetics
- Receptors, Cyclic AMP/genetics
- Recombinant Proteins/metabolism
- Restriction Mapping
Collapse
Affiliation(s)
- C E McPherson
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|
33
|
Rathi A, Clarke M. Expression of early developmental genes in Dictyostelium discoideum is initiated during exponential growth by an autocrine-dependent mechanism. Mech Dev 1992; 36:173-82. [PMID: 1315152 DOI: 10.1016/0925-4773(92)90068-u] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Throughout growth, Dictyostelium cells continuously produce an autocrine factor, PSF, that accumulates in proportion to cell density. Production of PSF declines rapidly when cells are shifted to starvation conditions, and the properties of PSF are distinct from those of regulatory factors produced by starving cells. During late exponential growth, PSF induces expression of several early developmental genes, including those for proteins important in cAMP signaling and cell aggregation. Examples are the aggregation stage cAMP receptor (cAR1), the aggregation-specific form of cyclic nucleotide phosphodiesterase, and gp24 (contact sites B). Through PSF, growing cells detect environmental conditions (cell number high, food approaching depletion) that are appropriate for production of the gene products needed to initiate aggregation and development.
Collapse
Affiliation(s)
- A Rathi
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | |
Collapse
|
34
|
|
35
|
DeSilver DA, Benedict MA, Ratner DI. Effects of protein synthesis inhibition on the transcription and transcript stability of Dictyostelium prespore genes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:309-19. [PMID: 1859834 DOI: 10.1016/0167-4781(91)90170-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in vivo accumulation of several prespore transcripts of Dictyostelium discoideum has previously been shown to depend upon concomitant protein synthesis (Ratner, D.I., Pentz, W.H. and Pelletier, D.A. (1989) Biochim. Biophys. Acta 1008, 71-78). Measurements of in vivo mRNA decay and nuclear run-on transcription assays have now been used to learn whether protein synthesis is required primarily for mRNA synthesis or transcript stability. The translational inhibitors cycloheximide and pactamycin stabilized existing prespore transcripts, despite their effect upon mRNA accumulation. Transcriptional assays, performed at intervals throughout the developmental cycle, demonstrated that temporal changes in the abundance of several cell-specific transcripts correlated closely with changes in their rates of synthesis. Finally, blocking protein synthesis strongly inhibited the transcription of the prespore genes examined. These results imply that one or more developmentally regulated, labile proteins are needed for the activation of prespore gene transcription.
Collapse
Affiliation(s)
- D A DeSilver
- Department of Biology, Amherst College, MA 01002
| | | | | |
Collapse
|
36
|
Benedict MA, Desilver DA, Pelletier DE, Pentz WH, Ratner DI. Developmental protein synthesis is required for the transcription of Dictyostelium prespore genes. DEVELOPMENTAL GENETICS 1991; 12:113-22. [PMID: 2049871 DOI: 10.1002/dvg.1020120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been established previously that the maintenance of expression of prespore-specific genes of Dictyostelium discoideum is prevented by the translational inhibitor cycloheximide. The drug had no effect upon the level of transcripts of the other genes examined, prestalk-specific or cell type-nonspecific. However, the interpretation of this result is open to question, because of possible nonspecific effects of cycloheximide. We have now characterized the cellular specificity and temporal profiles of mRNA accumulation of additional Dictyostelium cDNA clones, and have examined other inhibitors of in vivo protein synthesis. Four structurally and mechanistically distinct translational inhibitors each prevented the reaccumulation of prespore transcripts in cyclic AMP-primed, disaggregated amoebae. These results establish the importance of developmental protein synthesis in the accumulation of prespore gene transcripts. Nuclear run-on transcription assays were used to learn whether protein synthesis is required primarily for mRNA synthesis or transcript stability. A transcriptional time course first demonstrated that the abundance of these cell-specific transcripts during development mirrors their rates of synthesis. Significantly, the protein synthesis requirement of the prespore genes examined also occurs at the level of mRNA transcription, implying the existence of one or more developmentally regulated transcriptional activators.
Collapse
Affiliation(s)
- M A Benedict
- Department of Biology, Amherst College, MA 01002
| | | | | | | | | |
Collapse
|
37
|
Franke J, Faure M, Wu L, Hall AL, Podgorski GJ, Kessin RH. Cyclic nucleotide phosphodiesterase of Dictyostelium discoideum and its glycoprotein inhibitor: structure and expression of their genes. DEVELOPMENTAL GENETICS 1991; 12:104-12. [PMID: 2049870 DOI: 10.1002/dvg.1020120118] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genes coding for the cyclic nucleotide phosphodiesterase (PD) and the PD inhibitory glycoprotein (PDI) have been cloned and characterized. The PDI gene was isolated as a 1.6 kb genomic fragment, which included the coding sequence containing two small introns and 510 nucleotides of non-translated 5' sequence. From the deduced amino acid sequence we predict a protein with a molecular weight (MW) of 26,000 that, in agreement with previous data, contains 15% cysteine residues. Genomic Southern blot analysis indicates that only one gene encodes the inhibitor. Northern blot analysis shows a single transcript of 0.95 kb. The PDI gene is expressed early in development with little transcript remaining following aggregation. The appearance of PDI mRNA is prevented by the presence of cAMP, but when cAMP is removed the transcript appears within 30 minutes. When cAMP is applied to cells expressing PDI the transcript disappears with a half-life of less than 30 minutes. The PD gene of D. discoideum is transcribed into three mRNAs: a 1.9 kb mRNA specific for growth, a 2.4 kb mRNA specific for aggregation, and a 2.2 kb mRNA specific for late development. The 2.2 kb mRNA is also specific for prestalk cells, and is induced by differentiation-inducing factor. All three mRNAs contain the same coding sequence, and differ only in their 5' non-coding sequences. Each mRNA is transcribed from a different promoter, and by using the chloramphenicol acyltransferase gene as a reporter, we have shown that each promoter displays the same regulation as its cognate mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Fungal
- Dictyostelium/enzymology
- Dictyostelium/genetics
- Exons
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Molecular Sequence Data
- Phosphodiesterase Inhibitors/metabolism
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Transformation, Genetic
Collapse
Affiliation(s)
- J Franke
- Dept. of Anatomy and Cell Biology, Columbia University, New York, NY 10032
| | | | | | | | | | | |
Collapse
|
38
|
Rathi A, Kayman SC, Clarke M. Induction of gene expression in Dictyostelium by prestarvation factor, a factor secreted by growing cells. DEVELOPMENTAL GENETICS 1991; 12:82-7. [PMID: 2049883 DOI: 10.1002/dvg.1020120115] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During growth, Dictyostelium cells continuously secrete a factor, PSF, that accumulates in proportion to cell density. At sufficient concentration, it triggers the production of discoidin I and certain lysosomal enzymes. Our earlier studies demonstrated these effects of PSF on protein and enzyme levels [Clarke et al., Differentiation 34:79-87, 1987; Clarke et al., Dev Genet 9: 315-326, 1988]. In the present study, we have examined whether PSF induces increased mRNA levels. By Northern blot analysis, we have found that discoidin I mRNA accumulates in exponentially growing NC4 cells as the cells reach high density; significant levels of mRNA are detectable in cells growing either on plates or in suspension, beginning about four generations before the end of exponential growth. High levels of discoidin I mRNA are also found in low-density cells grown in the presence of buffer conditioned by high-density cells. These results indicate that PSF induces the accumulation of discoidin I mRNA. Other "early developmental" genes, pCZ22 and the early I genes (16, 18, and 111), are also expressed in exponentially growing cells at high density or in the presence of conditioned buffer. We conclude that several genes previously found to be preferentially expressed very early in development are actually induced during late exponential growth by PSF.
Collapse
Affiliation(s)
- A Rathi
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | |
Collapse
|
39
|
Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 1990; 347:494-6. [PMID: 2215665 DOI: 10.1038/347494a0] [Citation(s) in RCA: 295] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indirect evidence has implicated an interaction between the cytoskeleton and the protein synthetic machinery. Two recent reports have linked the elongation factor 1a (EF-1a) which is involved in protein synthesis, with the microtubular cytoskeleton. In situ hybridization has, however, revealed that the messages for certain cytoskeletal proteins are preferentially associated with actin filaments. ABP-50 is an abundant actin filament bundling protein of native relative molecular mass 50,000 (50K) isolated from Dictyostelium discoideum. Immunofluorescence studies show that ABP-50 is present in filopodia and other cortical regions that contain actin filament bundles. In addition, ABP-50 binds to monomeric actin in the cytosol of unstimulated cells and the association of ABP-50 with the actin cytoskeleton is regulated during chemotaxis. Through complementary DNA sequencing and subsequent functional analysis, we have identified ABP-50 as D. discoideum EF-1a. The ability of EF-1a to bind reversibly to the actin cytoskeleton upon stimulation could provide a mechanism for spatially and temporally regulated protein synthesis in eukaryotic cells.
Collapse
Affiliation(s)
- F Yang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
40
|
Parissenti AM, Coukell MB. Effects of DNA and synthetic oligodeoxyribonucleotides on the binding properties of a cGMP-binding protein from Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1040:294-300. [PMID: 2169308 DOI: 10.1016/0167-4838(90)90090-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we identified a cGMP-binding protein (cGBP) in Dictyostelium discoideum that can exist in two forms: a fast-dissociating (F-type) activity and a slow-dissociating (S-type) activity. Moreover, the F-type activity was converted effectively to S-type by the addition of nucleic acids, especially DNA (Parissenti, A.M. and Coukell, M. B. (1989) J. Cell Sci. 92, 291-301). In this study, we examined the effects of heterologous DNA and various synthetic homo-oligodeoxyribonucleotides on the cGMP-binding properties of partially purified F-type activity. Equilibrium and kinetic binding experiments revealed that DNA increased the affinity of the protein for cGMP without altering the number of binding sites. However, the presence of DNA decreased only slightly the apparent Kd of the protein for cGMP because the nucleic acid also reduced the rate of cGMP association. Addition of oligo(dGMP)8 or oligo(dCMP)8 to the protein increased both total cGMP binding and the conversion of F-type activity to S-type; in contrast, oligo(dAMP)8 or oligo(dTMP)8, at the same concentration, had no effect. Oligodeoxycytidylic acids with chain lengths less than about eight nucleotides were also ineffective or inhibitory. Analysis of cGMP binding to intact, filipin-permeabilized cells revealed a binding activity with association and dissociation rates comparable to isolated S-type activity. This observation suggests that in vivo the cGBP might exist in its S-form.
Collapse
Affiliation(s)
- A M Parissenti
- Department of Biology, York University, North York, Ontario, Canada
| | | |
Collapse
|
41
|
Wu L, Franke J. A developmentally regulated and cAMP-repressible gene of Dictyostelium discoideum: cloning and expression of the gene encoding cyclic nucleotide phosphodiesterase inhibitor. Gene 1990; 91:51-6. [PMID: 2169446 DOI: 10.1016/0378-1119(90)90161-j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 1.6-kb genomic fragment containing the coding region for the inhibitor (PDI) of cyclic nucleotide phosphodiesterase (PD) was isolated and sequenced. The genomic sequence includes 510 nucleotides (nt) of 5'-noncoding sequence and the full coding sequence, which contains two small introns. From the deduced amino acid (aa) sequence we predict a 26-kDa protein that, in agreement with previous data, contains approximately 15% Cys residues. The PDI possesses a hydrophobic leader sequence, five potential glycosylation sites, and three internal repeats. Northern-blot analysis showed a single transcript of 0.95 kb. The gene encoding PDI (pdi) was expressed early in development with little transcript remaining following aggregation. The appearance of pdi transcript was inhibited by cAMP, but when cAMP was removed the transcript appeared within 30 min. When cAMP was applied to cells containing pdi mRNA, the transcript disappeared with a half-life of less than 30 min.
Collapse
Affiliation(s)
- L Wu
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | |
Collapse
|
42
|
Riley BB, Barclay SL. Conditions that alter intracellular cAMP levels affect expression of the cAMP phosphodiesterase gene in Dictyostelium. Proc Natl Acad Sci U S A 1990; 87:4746-50. [PMID: 2162056 PMCID: PMC54194 DOI: 10.1073/pnas.87.12.4746] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined expression of the Dictyostelium cAMP phosphodiesterase (PDE) gene under conditions that alter intracellular cAMP levels during in vitro differentiation of wild-type strain V12M2 and a sporogenous derivative, HB200. In control cultures, cellular PDE activity peaked at 6 hr and declined by 8 hr, while secreted PDE activity continued to increase through 8 hr. Lowering intracellular cAMP levels with caffeine or progesterone increased cellular and secreted PDE activities 2-fold, increased stalk cell differentiation, and inhibited spore differentiation. In contrast, exposure to 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP; a membrane-permeable cAMP analog) or ammonia (which promotes intracellular cAMP accumulation in V12M2 and HB200 cells) lowered PDE activities by as much as 45%, decreased stalk cell differentiation, and increased spore differentiation. Simultaneous exposure to 8-Br-cAMP and caffeine gave intermediate PDE activities as would be expected if 8-Br-cAMP entered the cell and bypassed the caffeine-mediated block to adenylate cyclase activation. In all cases, we observed commensurate changes in developmental PDE transcript levels. The developmental time course of expression was not significantly altered by these treatments. These results suggest that the magnitude of PDE gene expression is negatively regulated by intracellular cAMP levels and provide evidence for one of the earliest changes in gene expression that is consistent with cell-type specificity. These results are discussed in terms of a bistable switch employing intracellular cAMP as a regulator of cell fate.
Collapse
Affiliation(s)
- B B Riley
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
43
|
Firtel RA, Chapman AL. A role for cAMP-dependent protein kinase A in early Dictyostelium development. Genes Dev 1990; 4:18-28. [PMID: 1968413 DOI: 10.1101/gad.4.1.18] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Dictyostelium, cAMP functions as an extracellular regulatory molecule that controls aggregation, expression of a number of classes of genes, and cellular differentiation by binding to cell-surface receptors that activate intracellular signal transduction pathways. To investigate possible roles for intracellular cAMP, we have overexpressed the wild-type mouse type-I regulatory subunit (RI) of cAMP-dependent protein C (PKA) in Dictyostelium cells, as well as mutant forms of the subunit that are altered in their ability to bind cAMP. We show that overexpression of a mutated RI, which lacks both cAMP-binding sites and presumably forms a complex with the endogenous Dictyostelium catalytic subunit that cannot be activated by cAMP, results in cells that do not aggregate or express sets of genes that are normally induced in the multicellular stages. Transformations that express the mutant subunit at low levels show no observable phenotype. We show that these cells can respond to pulses of cAMP and activate cAMP receptor/G protein-mediated processes, including the activation of adenylate and guanylate cyclases and the induction of a class of genes known to be regulated through the receptor-mediated pathways; however, the cells do show an altered pattern of expression of other genes normally active during the preaggregation/interphase and aggregation stages. Of interest is a substantial overexpression of the developmentally regulated PDE mRNA. Cell lines carrying constructs encoding the wild-type subunit or mutant subunits lacking one of the two binding sites show no visual phenotype. The results suggest that PKA-mediated functions, presumably controlled by increases in intracellular cAMP, are essential for Dictyostelium aggregation.
Collapse
Affiliation(s)
- R A Firtel
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
44
|
The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989. [PMID: 2779573 DOI: 10.1128/mcb.9.9.3938] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
|
45
|
Podgorski GJ, Franke J, Faure M, Kessin RH. The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989; 9:3938-50. [PMID: 2779573 PMCID: PMC362456 DOI: 10.1128/mcb.9.9.3938-3950.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
Affiliation(s)
- G J Podgorski
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
46
|
Faure M, Camonis JH, Jacquet M. Molecular characterization of a Dictyostelium discoideum gene encoding a multifunctional enzyme of the pyrimidine pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:345-58. [PMID: 2917570 DOI: 10.1111/j.1432-1033.1989.tb14560.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have isolated and characterized a Dictyostelium discoideum gene (PYR1-3) encoding a multifunctional protein that carries the three first enzymatic activities of the de novo pyrimidine biosynthetic pathway. The PYR1-3 gene is adjacent to another gene of the pyrimidine biosynthetic pathway (PYR4); the two genes are separated by a 1.5-kb non-coding sequence and transcribed divergently. The PYR1-3 gene is transcribed to form a 7.5-kb polyadenylated mRNA. As with the other genes of the pyrimidine biosynthetic pathway, the PYR1-3 mRNA level is high during growth and decreases sharply during development. We have determined the nucleotide sequence of 63% of the coding region of the PYR1-3 gene. We have identified the activities of the protein encoded by the D. discoideum PYR1-3 gene by comparison of amino acid sequences with the products of genes of known function. The PYR1-3 gene contains four distinct regions that probably correspond to four domains in the protein. From the NH2 extremity to the COOH extremity, these domains are: glutamine amidotransferase, carbamoylphosphate synthetase, dihydroorotase and aspartate transcarbamylase. This organization is identical to the one found in the rudimentary gene of Drosophila. The evolutionary implications of this finding are discussed.
Collapse
Affiliation(s)
- M Faure
- Laboratoires de Biologie Expérimentale, Université Paris-Sud
| | | | | |
Collapse
|
47
|
Faure M, Podgorski GJ, Franke J, Kessin RH. Rescue of a Dictyostelium discoideum mutant defective in cyclic nucleotide phosphodiesterase. Dev Biol 1989; 131:366-72. [PMID: 2536338 DOI: 10.1016/s0012-1606(89)80010-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the developmentally induced gene products that is essential for chemotaxis of Dictyostelium amoebae is a cyclic nucleotide phosphodiesterase. The enzyme can be secreted or exist in a membrane bound form. This enzyme is missing in the mutant HPX235 which, as a consequence, does not aggregate unless exogenous cAMP phosphodiesterase is supplied. We have introduced multiple copies of the cloned phosphodiesterase gene into mutant amoebae and restored aggregation. The formation of anatomically correct fruiting bodies, which does not occur when exogenous enzyme is added, is also restored by transformation with the gene. The construct that we have used gives rise only to secreted phosphodiesterase and therefore the membrane bound form of the enzyme is not absolutely required for normal aggregation and morphogenesis.
Collapse
Affiliation(s)
- M Faure
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
48
|
Faure M, Podgorski GJ, Franke J, Kessin RH. Disruption of Dictyostelium discoideum morphogenesis by overproduction of cAMP phosphodiesterase. Proc Natl Acad Sci U S A 1988; 85:8076-80. [PMID: 2847151 PMCID: PMC282357 DOI: 10.1073/pnas.85.21.8076] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The development and cellular differentiation of Dictyostelium discoideum are disrupted in transformants secreting high levels of the cyclic nucleotide phosphodiesterase. The aggregation of these cells in the early stage of development proceeds rapidly and without the formation of organized streams. The later stages of development, in which differentiation into stalk and spore cells normally takes place, are completely blocked so that the transformants remain in spherical clusters of undifferentiated cells that do not elaborate the tip structure that regulates morphogenesis. These effects are due to overproduction of extracellular phosphodiesterase and demonstrate the role of cAMP during the aggregation phase of development as well as in the control of differentiation and pattern formation.
Collapse
Affiliation(s)
- M Faure
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | | | |
Collapse
|
49
|
Knecht DA, Loomis WF. Developmental consequences of the lack of myosin heavy chain in Dictyostelium discoideum. Dev Biol 1988; 128:178-84. [PMID: 3384173 DOI: 10.1016/0012-1606(88)90280-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two different Dictyostelium discoideum cell lines that lack myosin heavy chain protein (MHC A) have been previously described. One cell line (mhcA) was created by antisense RNA inactivation of the endogenous mRNA and the other (HMM) by insertional mutagenesis of the endogenous myosin gene. The two cell lines show similar developmental defects; they are delayed in aggregation and become arrested at the mound stage. However, when cells that lack myosin heavy chain are mixed with wild-type cells, some of the mutant cells are capable of completing development to form mature spores. The pattern of expression of a number of developmentally regulated genes has been examined in both mutant cell lines. Although morphogenesis becomes aberrant before aggregation is completed, all of the markers that we have examined are expressed normally. These include genes expressed prior to aggregation as well as prespore genes expressed later in development. It appears that the signals necessary for cell-type differentiation are generated in the aborted structures formed by cells lacking MHC A. The mhcA cells have negligible amounts of MHC A protein while the HMM cells express normal amounts of a fragment of the myosin heavy chain protein similar to heavy meromyosin (HMM). The expression of myosin light chain was examined in these two cell lines. HMM cells accumulate normal amounts of the 18,000-D light chain, while the amount of light chain in mhcA cells is dramatically reduced. It is likely that the light chains assemble normally with the HMM fragment in HMM cells, while in cells lacking myosin heavy chain (mhcA) the light chains are unstable.
Collapse
Affiliation(s)
- D A Knecht
- Center for Molecular Genetics, University of California San Diego, La Jolla 92093
| | | |
Collapse
|
50
|
|