1
|
Suggs JA, Cammarato A, Kronert WA, Nikkhoy M, Dambacher CM, Megighian A, Bernstein SI. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length. J Mol Biol 2007; 367:1312-29. [PMID: 17316684 PMCID: PMC1965590 DOI: 10.1016/j.jmb.2007.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Models, Biological
- Molecular Sequence Data
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Myosin Heavy Chains/genetics
- Myosin Subfragments/genetics
- Myosin Subfragments/physiology
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Transgenes
Collapse
Affiliation(s)
- Jennifer A. Suggs
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Anthony Cammarato
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - William A. Kronert
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Massoud Nikkhoy
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Corey M. Dambacher
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Aram Megighian
- Department of Human Anatomy and Physiology, University of Padova, 35131 Padova, Italy
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
2
|
Hess NK, Singer PA, Trinh K, Nikkhoy M, Bernstein SI. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene. Gene Expr Patterns 2006; 7:413-22. [PMID: 17194628 PMCID: PMC2002476 DOI: 10.1016/j.modgep.2006.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/21/2022]
Abstract
We show that a 2.6kb fragment of the muscle myosin heavy-chain gene (Mhc) of Drosophila melanogaster (containing 458 base pairs of upstream sequence, the first exon, the first intron and the beginning of the second exon) drives expression in all muscles. Comparison of the minimal promoter to Mhc genes of 10 Drosophila species identified putative regulatory elements in the upstream region and in the first intron. The first intron is required for expression in four small cells of the tergal depressor of the trochanter (jump) muscle and in the indirect flight muscle. The 3'-end of this intron is important for Mhc transcription in embryonic body wall muscle and contains AT-rich elements that are protected from DNase I digestion by nuclear proteins of Drosophila embryos. Sequences responsible for expression in embryonic, adult body wall and adult head muscles are present both within and outside the intron. Elements important for expression in leg muscles and in the large cells of the jump muscle flank the intron. We conclude that multiple transcriptional regulatory elements are responsible for Mhc expression in specific sets of Drosophila muscles.
Collapse
Affiliation(s)
| | | | | | | | - Sanford I. Bernstein
- * Corresponding author. Tel.: +1-619-594-5629; fax: +1-619-594-5676; E-mail address:
| |
Collapse
|
3
|
Miller BM, Zhang S, Suggs JA, Swank DM, Littlefield KP, Knowles AF, Bernstein SI. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics. J Mol Biol 2005; 353:14-25. [PMID: 16154586 DOI: 10.1016/j.jmb.2005.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/29/2022]
Abstract
In Drosophila melanogaster expression of muscle myosin heavy chain isoforms occurs by alternative splicing of transcripts from a single gene. The exon 7 domain is one of four variable regions in the catalytic head and is located near the nucleotide-binding site. To ascribe a functional role to this domain, we created two chimeric myosin isoforms (indirect flight isoform-exon 7a and embryonic-exon 7d) that differ from the native indirect flight muscle and embryonic body-wall muscle isoforms only in the exon 7 region. Germline transformation and subsequent expression of the chimeric myosins in the indirect flight muscle of myosin-null Drosophila allowed us to purify the myosin for in vitro studies and to assess in vivo structure and function of transgenic muscles. Intriguingly, in vitro experiments show the exon 7 domain modulates myosin ATPase activity but has no effect on actin filament velocity, a novel result compared to similar studies with other Drosophila variable exons. Transgenic flies expressing the indirect flight isoform-exon 7a have normal indirect flight muscle structure, and flight and jump ability. However, expression of the embryonic-exon 7d chimeric isoform yields flightless flies that show improvements in both the structural stability of the indirect flight muscle and in locomotor abilities as compared to flies expressing the embryonic isoform. Overall, our results suggest the exon 7 domain participates in the regulation of the attachment of myosin to actin in order to fine-tune the physiological properties of Drosophila myosin isoforms.
Collapse
Affiliation(s)
- Becky M Miller
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
5
|
Zhang S, Bernstein SI. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev 2001; 101:35-45. [PMID: 11231057 DOI: 10.1016/s0925-4773(00)00549-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used alternative exon-specific probes to determine the accumulation of transcripts encoding myosin heavy chain (MHC) isoforms in Drosophila melanogaster embryos. Six isoforms accumulate in body wall muscles. Transverse (external) muscles express a different major form than intermediate and internal muscles, suggesting different physiological properties. Cardioblasts express one of the somatic muscle transcripts; visceral muscles express at least two transcript types. The pharyngeal muscle accumulates a unique Mhc transcript, suggesting unique contractile abilities. Mhc transcription begins in stage 12 in visceral and somatic muscles, but as late as stage 15 in cardioblasts. This is the first study of myosin isoform localization during insect embryogenesis, and forms the basis for transgenic and biochemical experiments designed to determine how MHC domains regulate muscle physiology.
Collapse
Affiliation(s)
- S Zhang
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | |
Collapse
|
6
|
Swank DM, Wells L, Kronert WA, Morrill GE, Bernstein SI. Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila. Microsc Res Tech 2000; 50:430-42. [PMID: 10998634 DOI: 10.1002/1097-0029(20000915)50:6<430::aid-jemt2>3.0.co;2-e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drosophila melanogaster is an excellent system for examining the structure/function relationships of myosin. It yields insights into the roles of myosin in assembly and stability of myofibrils, in defining the mechanical properties of muscle fibers, and in dictating locomotory abilities. Drosophila has a single gene encoding muscle myosin heavy chain (MHC), with alternative RNA splicing resulting in stage- and tissue-specific isoform production. Localization of the alternative domains of Drosophila MHC on a three-dimensional molecular model suggests how they may determine functional differences between isoforms. We are testing these predictions directly by using biophysical and biochemical techniques to characterize myosin isolated from transgenic organisms. Null and missense mutations help define specific amino acid residues important in actin binding and ATP hydrolysis and the function of MHC in thick filament and myofibril assembly. Insights into the interaction of thick and thin filaments result from studying mutations in MHC that suppress ultrastructural defects induced by a troponin I mutation. Analysis of transgenic organisms expressing engineered versions of MHC shows that the native isoform of myosin is not critical for myofibril assembly but is essential for muscle function and maintenance of muscle integrity. We show that the C-terminus of MHC plays a pivotal role in the maintenance of muscle integrity. Transgenic studies using headless myosin reveal that the head is important for some, but not all, aspects of myofibril assembly. The integrative approach described here provides a multi-level understanding of the function of the myosin molecular motor.
Collapse
Affiliation(s)
- D M Swank
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
7
|
Cripps RM, Suggs JA, Bernstein SI. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J 1999; 18:1793-804. [PMID: 10202143 PMCID: PMC1171265 DOI: 10.1093/emboj/18.7.1793] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.
Collapse
Affiliation(s)
- R M Cripps
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|
8
|
Hodges D, Cripps RM, O'Connor ME, Bernstein SI. The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA. Genetics 1999; 151:263-76. [PMID: 9872965 PMCID: PMC1460470 DOI: 10.1093/genetics/151.1.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exon 18 of the muscle myosin heavy chain gene (Mhc) of Drosophila melanogaster is excluded from larval transcripts but included in most adult transcripts. To identify cis-acting elements regulating this alternative RNA splicing, we sequenced the 3' end of Mhc from the distantly related species D. virilis. Three noncoding regions are conserved: (1) the nonconsensus splice junctions at either end of exon 18; (2) exon 18 itself; and (3) a 30-nucleotide, pyrimidine-rich sequence located about 40 nt upstream of the 3' splice site of exon 18. We generated transgenic flies expressing Mhc mini-genes designed to test the function of these regions. Improvement of both splice sites of adult-specific exon 18 toward the consensus sequence switches the splicing pattern to include exon 18 in all larval transcripts. Thus nonconsensus splice junctions are critical to stage-specific exclusion of this exon. Deletion of nearly all of exon 18 does not affect stage-specific utilization. However, splicing of transcripts lacking the conserved pyrimidine sequence is severely disrupted in adults. Disruption is not rescued by insertion of a different polypyrimidine tract, suggesting that the conserved pyrimidine-rich sequence interacts with tissue-specific splicing factors to activate utilization of the poor splice sites of exon 18 in adult muscle.
Collapse
Affiliation(s)
- D Hodges
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | |
Collapse
|
9
|
Morgan NS. The myosin superfamily in Drosophila melanogaster. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1995; 273:104-17. [PMID: 7595276 DOI: 10.1002/jez.1402730204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N S Morgan
- Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
10
|
Miedema K, Hanske M, Akhmanova A, Bindels P, Hennig W. Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene. Mech Dev 1995; 51:67-81. [PMID: 7669694 DOI: 10.1016/0925-4773(95)00356-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Searching for structural proteins involved in spermatogenesis of Drosophila, we found a novel myosin isoform in the testis of Drosophila hydei and D. melanogaster. The transcript encoding this isoform, which we called 'minor-myosin', initiates within the intron between exons 12 and 13 of the muscle myosin heavy chain (mMHC) gene. Minor-myosin contains a common myosin tail but no ordinary myosin head domain. Instead, it has a short N-terminal domain which displays similarity with the N-termini of certain myosin light chain proteins. Western blots with male germ line mutants showed that the novel mMHC isoform is synthesized in the male germ cells, mainly postmeiotically. However, minor-myosin is not testis-specific, as it is expressed at a low level in the fly carcasses. The possible functions of the myosin isoform in the male germ line are discussed.
Collapse
Affiliation(s)
- K Miedema
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Genetic and transgenic approaches to dissecting muscle development and contractility using the Drosophila model system. Trends Cardiovasc Med 1994; 4:243-50. [DOI: 10.1016/1050-1738(94)90027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Crough EM, Kazzaz JA, Rozek CE. Tissue specific distribution of Drosophila sarcomeric myosin heavy-chain protein isoforms. INSECT MOLECULAR BIOLOGY 1994; 3:15-26. [PMID: 8069412 DOI: 10.1111/j.1365-2583.1994.tb00146.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The sarcomeric myosin heavy-chain (sMHC) gene of Drosophila is single-copy and RNA transcription from this gene is developmentally regulated. Numerous sMHC mRNAs that differ in exon composition can be formed by alternate RNA processing. These transcriptional events result in the presence of multiple sMHC isoforms in the developing organism. We have developed and characterized two antibodies which are specific for different types of sarcomeric myosin heavy-chain protein isoforms in Drosophila and have begun to examine the tissue distribution and function of these various protein isoforms. One of the antibodies (anti-A) is capable of distinguishing between two classes of sMHC protein isoforms which differ in their carboxy terminal amino acid sequences. The second antibody (anti-MHC) recognizes a separate and distinct domain in sMHC protein isoforms. We demonstrate the specificity and the utility of these antibodies in examining the developmental and tissue-specific expression of sMHC protein isoforms in the developing fly.
Collapse
Affiliation(s)
- E M Crough
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
13
|
Hodges D, Bernstein SI. Genetic and biochemical analysis of alternative RNA splicing. ADVANCES IN GENETICS 1994; 31:207-81. [PMID: 8036995 DOI: 10.1016/s0065-2660(08)60399-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D Hodges
- Biology Department, San Diego State University, California 92182-0057
| | | |
Collapse
|
14
|
Bernstein SI, O'Donnell PT, Cripps RM. Molecular genetic analysis of muscle development, structure, and function in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:63-152. [PMID: 8449665 DOI: 10.1016/s0074-7696(08)61874-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S I Bernstein
- Department of Biology, San Diego State University, California 92182
| | | | | |
Collapse
|
15
|
Abstract
The analysis of both naturally occurring and experimentally induced mutants has greatly advanced our understanding of muscle development. Molecular biological techniques have led to the isolation of genes associated with inherited human diseases that affect muscle tissues. Analysis of the encoded proteins in conjunction with the mutant phenotypes can provide powerful insights into the function of the protein in normal muscle development. Systematic searches for muscle mutations have been made in experimental systems, most notably the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. In addition, known muscle protein genes from other organisms have been used to isolate homologs from genetically manipulatable organisms, allowing mutant analysis and the study of protein function in vivo. Mutations in transcription factor genes that affect mesoderm development have been isolated and genetic lesions affecting myofibril assembly have been identified. Genetic experiments inducing mutations and rescuing them by transgenic methods have uncovered functions of myofibrillar protein isoforms. Some isoforms perform muscle-specific functions, whereas others appear to be replaceable by alternative isoforms. Mutant analysis has also uncovered a relationship between proteins at the cell membrane and the assembly and alignment of the myofibrillar apparatus. We discuss examples of each of these genetic approaches as well as the developmental and evolutionary implications of the results.
Collapse
Affiliation(s)
- H F Epstein
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
16
|
Hodges D, Bernstein SI. Suboptimal 5' and 3' splice sites regulate alternative splicing of Drosophila melanogaster myosin heavy chain transcripts in vitro. Mech Dev 1992; 37:127-40. [PMID: 1498040 DOI: 10.1016/0925-4773(92)90075-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using a Drosophila cell-free system, we have analyzed the regulation of alternative splicing of Drosophila muscle myosin heavy chain (MHC) transcripts. Splicing of MHC 3' end transcripts results in exclusion of adult-specific alternative exon 18, as is observed in embryonic and larval muscle in vivo. Mutations that strengthen either the 5' or the 3' splice sites of exon 18 do not promote inclusion of this exon. However, strengthening both splice junctions results in efficient removal of both introns and completely inhibits skip splicing. Our data suggest that the affinity of exons 17 and 19, as well as failure of constitutive splicing factors to recognize exon 18 splice sites, causes the exclusion of exon 18 in wild-type transcripts processed in vitro.
Collapse
Affiliation(s)
- D Hodges
- Biology Department, San Diego State University, CA 92182
| | | |
Collapse
|
17
|
Hess NK, Bernstein SI. Developmentally regulated alternative splicing of Drosophila myosin heavy chain transcripts: in vivo analysis of an unusual 3' splice site. Dev Biol 1991; 146:339-44. [PMID: 1907580 DOI: 10.1016/0012-1606(91)90235-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 3' penultimate exon (exon 18) of transcripts from the muscle myosin heavy chain (MHC) gene of Drosophila melanogaster is excluded from mRNAs of embryonic and larval muscle, while it is included in mRNAs of adult thoracic muscles. By transforming organisms with the MHC gene 5' end, linked in-frame to the MHC gene 3' end, we were able to generate correct tissue-specific expression of this minigene and stage-specific splicing of exon 18, indicating that all the cis-acting sequences necessary for alternative splicing are contained within the construct. The 3' splice site that precedes exon 18 is unusually purine-rich, may form a stem-loop structure with the 5' splice site following exon 18, and is conserved relative to the splice site of an alternative exon of the Drosophila alkali myosin light chain gene. We converted the MHC gene 3' splice junction to a consensus splice site and also inserted the branchpoint and 3' splice site of a constitutively spliced intron in its place. These alterations had no effect on the splicing pathway in vivo, ruling out the possibility that the unusual splice junction, or secondary structures that involve this splice junction, directly regulate alternative splicing of exon 18.
Collapse
Affiliation(s)
- N K Hess
- Department of Biology, San Diego State University, California 92182
| | | |
Collapse
|
18
|
Hastings GA, Emerson CP. Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila. J Cell Biol 1991; 114:263-76. [PMID: 2071673 PMCID: PMC2289080 DOI: 10.1083/jcb.114.2.263] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Drosophila 36B muscle myosin heavy chain (MHC) gene has five sets of alternatively spliced exons that encode functionally important domains of the MHC protein and provide a combinatorial potential for expression of as many as 480 MHC isoforms. In this study, in situ hybridization analysis has been used to examine the complexity and muscle specificity of MHC isoform expression in the fibrillar indirect flight muscle (IFM), the tubular direct flight muscles (DFM) and tubular tergal depressor of the trochanter muscle (TDT), and the visceral esophageal muscle in the adult thorax. Our results show that alternative splicing of the MHC gene transcripts is precisely regulated in these thoracic muscles, which express three MHC isoforms. Individual thoracic muscles each express transcripts of only one isoform, as detectable by in situ hybridization. An apparently novel fourth MHC isoform, with sequence homology to the rod but not to the head domain of the 36B MHC, is expressed in two direct flight muscles. These findings form a basis for transgenic experiments designed to analyze the muscle-specific functions of MHC domains encoded by alternative exons.
Collapse
Affiliation(s)
- G A Hastings
- Biology Department, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
19
|
Collier VL, Kronert WA, O'Donnell PT, Edwards KA, Bernstein SI. Alternative myosin hinge regions are utilized in a tissue-specific fashion that correlates with muscle contraction speed. Genes Dev 1990; 4:885-95. [PMID: 2116987 DOI: 10.1101/gad.4.6.885] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By comparing the structure of wild-type and mutant muscle myosin heavy chain (MHC) genes of Drosophila melanogaster, we have identified the defect in the homozygous-viable, flightless mutant Mhc10. The mutation is within the 3' splice acceptor of an alternative exon (exon 15a) that encodes the central region of the MHC hinge. The splice acceptor defect prevents the accumulation of mRNAs containing exon 15a, whereas transcripts with a divergent copy of this exon (exon 15b) are unaffected by the mutation. In situ hybridization and Northern blot analysis of wild-type organisms reveals that exon 15b is used in larval MHCs, whereas exons 15a and/or 15b are used in adult tissues. Because Mhc10 mutants fail to accumulate transcripts encoding MHC protein with hinge region a, analysis of their muscle-specific reduction in thick filament number serves as a sensitive assay system for determining the pattern of accumulation of MHCs with alternative hinge regions. Electron microscopic comparisons of various muscles from wild-type and Mhc10 adults reveals that those that contract rapidly or develop high levels of tension utilize only hinge region a, those that contract at moderate rates accumulate MHCs of both types, and those that are slowly contracting have MHCs with hinge region b. The presence of alternative hinge-coding exons and their highly tissue-specific usage suggests that this portion of the MHC molecule is important to the isoform-specific properties of MHC that lead to the different physiological and ultrastructural characteristics of various Drosophila muscle types. The absence of other alternative exons in the rod-coding region, aside from those shown previously to encode alternative carboxyl termini, demonstrates that the bulk of the myosin rod is not involved in the generation of isoform-specific properties of the MHC molecule.
Collapse
Affiliation(s)
- V L Collier
- Biology Department, San Diego State University, California 92182
| | | | | | | | | |
Collapse
|
20
|
Petschek JP, Mahowald AP. Different requirements for l(1) giant in two embryonic domains of Drosophila melanogaster. DEVELOPMENTAL GENETICS 1990; 11:88-96. [PMID: 2113845 DOI: 10.1002/dvg.1020110110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
l(1) giant is a zygotic lethal mutation which affects the embryonic development of both the labial/thoracic segments and a subset of posterior abdominal segments. Using antibodies specific for proteins encoded by several Drosophila genes to identify the compartmental origin of the defects, we show that the requirement of giant activity is different in these two embryonic domains. Anteriorly, the posterior compartment of the labial segment is missing at the blastoderm stage. Posteriorly, cells are specifically deleted by cell death within the anterior compartments of abdominal segments 5-7 during germ band elongation. In mature embryos, posterior compartment structures of the peripheral nervous system of A5-7 are fused. In addition to a different pattern of defect in the two parts of the embryo, the kind of action appears different. Anteriorly, giant resembles a gap mutation in that a particular region is missing from the blastoderm fate map, whereas in the abdominal domain, giant affects the development of anterior compartment-specific structures.
Collapse
Affiliation(s)
- J P Petschek
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|