1
|
DeSantis DF, Smith CJ. Tetris in the Nervous System: What Principles of Neuronal Tiling Can Tell Us About How Glia Play the Game. Front Cell Neurosci 2021; 15:734938. [PMID: 34512272 PMCID: PMC8430210 DOI: 10.3389/fncel.2021.734938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
The precise organization and arrangement of neural cells is essential for nervous system functionality. Cellular tiling is an evolutionarily conserved phenomenon that organizes neural cells, ensuring non-redundant coverage of receptive fields in the nervous system. First recorded in the drawings of Ramon y Cajal more than a century ago, we now have extensive knowledge of the biochemical and molecular mechanisms that mediate tiling of neurons. The advent of live imaging techniques in both invertebrate and vertebrate model organisms has enhanced our understanding of these processes. Despite advancements in our understanding of neuronal tiling, we know relatively little about how glia, an essential non-neuronal component of the nervous system, tile and contribute to the overall spatial arrangement of the nervous system. Here, we discuss lessons learned from neurons and apply them to potential mechanisms that glial cells may use to tile, including cell diversity, contact-dependent repulsion, and chemical signaling. We also discuss open questions in the field of tiling and what new technologies need to be developed in order to better understand glial tiling.
Collapse
Affiliation(s)
- Dana F DeSantis
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Cody J Smith
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
2
|
Cebrià F. Planarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support. Front Cell Dev Biol 2016; 4:8. [PMID: 26904543 PMCID: PMC4744845 DOI: 10.3389/fcell.2016.00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
The body-wall musculature of adult planarians consists of intricately organized muscle fibers, which after amputation are regenerated rapidly and with great precision through the proliferation and differentiation of pluripotent stem cells. These traits make the planarian body-wall musculature a potentially useful model for the study of cell proliferation, differentiation, and pattern formation. Planarian body-wall muscle shows some ambiguous features common to both skeletal and smooth muscle cells. However, its skeletal nature is implied by the expression of skeletal myosin heavy-chain genes and the myogenic transcription factor myoD. Where and when planarian stem cells become committed to the myogenic lineage during regeneration, how the new muscle cells are integrated into the pre-existing muscle net, and the identity of the molecular pathway controlling the myogenic gene program are key aspects of planarian muscle regeneration that need to be addressed. Expression of the conserved transcription factor myoD has been recently demonstrated in putative myogenic progenitors. Moreover, recent studies suggest that differentiated muscle cells may provide positional information to planarian stem cells during regeneration. Here, I review the limited available knowledge on planarian muscle regeneration.
Collapse
Affiliation(s)
- Francesc Cebrià
- Department of Genetics, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of BarcelonaBarcelona, Spain
| |
Collapse
|
3
|
Sethi J, Zhao B, Cuvillier-Hot V, Boidin-Wichlacz C, Salzet M, Macagno ER, Baker MW. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration. Mol Cell Neurosci 2010; 45:430-8. [PMID: 20708686 DOI: 10.1016/j.mcn.2010.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/16/2010] [Accepted: 08/01/2010] [Indexed: 01/19/2023] Open
Abstract
LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.
Collapse
Affiliation(s)
- Jasmine Sethi
- Division of Biology, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Grueber WB, Sagasti A. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2010; 2:a001750. [PMID: 20573716 DOI: 10.1101/cshperspect.a001750] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial pattern of branches within axonal or dendritic arbors and the relative arrangement of neighboring arbors with respect to one another impact a neuron's potential connectivity. Although arbors can adopt diverse branching patterns to suit their functions, evenly spread branches that avoid clumping or overlap are a common feature of many axonal and dendritic arbors. The degree of overlap between neighboring arbors innervating a surface is also characteristic within particular neuron types. The arbors of some populations of neurons innervate a target with a comprehensive and nonoverlapping "tiled" arrangement, whereas those of others show substantial territory overlap. This review focuses on cellular and molecular studies that have provided insight into the regulation of spatial arrangements of neurite branches within and between arbors. These studies have revealed principles that govern arbor arrangements in dendrites and axons in both vertebrates and invertebrates. Diverse molecular mechanisms controlling the spatial patterning of sister branches and neighboring arbors have begun to be elucidated.
Collapse
Affiliation(s)
- Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
5
|
Baker MW, Macagno ER. Expression levels of a LAR-like receptor protein tyrosine phosphatase correlate with neuronal branching and arbor density in the medicinal leech. Dev Biol 2010; 344:346-57. [PMID: 20541541 DOI: 10.1016/j.ydbio.2010.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 12/24/2022]
Abstract
LAR-like receptor protein tyrosine phosphatases (RPTPs), which are reported to be highly expressed in the nervous systems of most bilaterian animals, have been implicated in the regulation of critical developmental processes, such as neuronal pathfinding, cell adhesion and synaptogenesis. Here we report that two LAR-like RPTPs in the medicinal leech, HmLAR1 and HmLAR2, play roles in regulating the size and density of neuronal arbors within the developing nervous system and in the body wall. Employing single-cell RNAi knockdown and transgene expression techniques, we demonstrate that the expression level of HmLAR1 is directly correlated with the density of an identified neuron's arborization. Knocking down HmLAR1 mRNA levels in the mechanosensory pressure (P) neurons produces a reduced central arbor and a smaller arbor in the peripheral body wall, with fewer terminal branches. By contrast, overexpression of this receptor in a P cell leads to extensive neuronal sprouting, including many supernumerary neurites and terminal branches as well as, in some instances, the normal monopolar morphology of the P cell becoming multipolar. We also report that induced neuronal sprouting requires the expression of the receptor's membrane tethered ectodomain, including the NH(2)-Ig domains, but not of the intracellular phosphatase domains of the receptor. Interestingly, sprouting could be elicited upon ectopic expression of HmLAR1 and the related RPTP, HmLAR2 in the P and other neurons, including those that do not normally express either RPTP, suggesting that the substrates involved in HmLAR-induced sprouting are present in most neurons irrespective of whether they normally express these LAR-like RPTPs. Our data are consistent with the hypothesis that the receptors' ectodomains promote an adhesive interaction that enhances the maintenance of new processes.
Collapse
Affiliation(s)
- Michael W Baker
- Division of Biology, University of California, San Diego, CA 92093, USA.
| | | |
Collapse
|
6
|
Baker MW, Peterson SM, Macagno ER. The receptor phosphatase HmLAR2 collaborates with focal adhesion proteins in filopodial tips to control growth cone morphology. Dev Biol 2008; 320:215-25. [PMID: 18582860 DOI: 10.1016/j.ydbio.2008.05.522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 01/15/2023]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) have been shown to play key roles in regulating axon guidance and synaptogenesis. HmLAR2, one of two closely related LAR-like RPTPs in the embryonic leech, is expressed in a few central neurons and in a unique segmentally-iterated peripheral cell, the comb cell (CC). Here we show that tagged HmLAR2-EGFP has a punctate pattern of expression in the growth cones of the CC, particularly at the tips of extending filopodia. Moreover, although expression of the wild-type EGFP-tagged receptor does not affect CC growth cone morphology, expression of a putative dominant-negative mutant of the receptor, CS-HmLAR2, leads to the enlargement of the growth cones, a shortening of filopodia, and errors in cellular tiling. RNAi of several candidate substrate signaling proteins, Lena (leech Ena/Vasp), beta-integrin and paxillin, but not beta-catenin, phenocopies particular aspects of the effects of HmLAR2 RNAi. For paxillin, which co-localizes with HmLAR2 at growth cone puncta, knock-down led to a reduction in the number of such puncta. Together, our data suggests that HmLAR2 regulates the morphology of the growth cone by controlling F-actin polymerization and focal adhesion complexes.
Collapse
Affiliation(s)
- Michael W Baker
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
7
|
Bergter A, Hunnekuhl VS, Schniederjans M, Paululat A. Evolutionary aspects of pattern formation during clitellate muscle development. Evol Dev 2007; 9:602-17. [DOI: 10.1111/j.1525-142x.2007.00184.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Baker MW, Macagno ER. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes. J Comp Neurol 2007; 500:850-62. [PMID: 17177256 DOI: 10.1002/cne.21228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the leech embryo, the peripheral comb cell (CC) sends out many nonoverlapping, growth cone-tipped processes that grow in parallel and serve as a scaffold for the migrating myocytes of the later-developing oblique muscle layer. To explore how the parallel arrangement is generated we first examined the arrangement of CC cytoskeletal components by expressing a tubulin-binding protein and actin, both tagged with fluorescent reporters. This revealed that the growth cones were compartmentalized into F-actin-rich filopodia and a microtubule-rich central region. Time-lapse analysis with a 2-photon laser scanning microscope revealed that the growth cones of the CC are highly dynamic, undergoing rapid filopodial extension and retraction. Measurements of filopodial lifespan and length revealed that most filopodia at the leading edge of the growth cone achieved significantly longer lifespans and length than lateral filopodia. Furthermore, for the short-lived lateral filopodia, apparent interaction with a neighboring process was found to be a significant predictor of their nearly immediate (within 2-4 minutes) retraction. When contact was experimentally prevented by ablating individual CCs, the filopodia from the growth cones of adjacent segmental neighbors were found to be significantly lengthened in the direction of the removed homolog. Treatment with low doses of cytochalasin D to disrupt F-actin assembly led to filopodial retraction and growth cone collapse and resulted in the bifurcation of many CC processes, numerous crossover errors, and the loss of parallelism. These findings indicate the existence of a contact-mediated repulsive interaction between processes of the CC.
Collapse
Affiliation(s)
- Michael W Baker
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0376, USA.
| | | |
Collapse
|
9
|
Bergter A, Paululat A. Pattern of body-wall muscle differentiation during embryonic development ofEnchytraeus coronatus (Annelida: Oligochaeta; Enchytraeidae). J Morphol 2007; 268:537-49. [PMID: 17437296 DOI: 10.1002/jmor.10532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The plesiomorphic arrangement of body-wall musculature within the annelids is still under discussion. While polychaete groups show a great variety of patterns in their somatic muscles, the musculature of soil-living oligochaetes was thought to represent the characteristic pattern in annelids. Oligochaete body-wall muscles consist of an outer continuous layer of circular and an inner continuous layer of longitudinal muscles, forming a closed tube. Since designs of adult body musculature are influenced by evolutionary changes, additional patterns found during embryogenesis can give further information about possible plesiomorphic features. In oligochaetes, detailed cell-lineage analyses document the origin of the mesoderm and consequently the muscles, but later processes of muscle formation remain unclear. In the present work, body-wall muscle differentiation was monitored during embryogenesis of thesoil-living oligochaete Enchytraeus coronatus (Annelida) by phalloidin staining. Primary circular muscles form in a discrete anterior-to-posterior segmental pattern, whereas emerging longitudinal muscles are restricted to one ventral and one dorsal pair of primary strands, which continuously elongate towards posterior. These primary muscles establish an initial muscle-template. Secondary circular and longitudinal muscles subsequently differentiate in the previous spaces later in development. The prominent ventral primary longitudinal muscle strands on both sides eventually meet at the ventral midline due to neurulation, which moves the ventral nerve cord into a coelomic position, closing the muscle layers into a complete tube. This early embryonic pattern in E. coronatus resembles the adult body-wall muscle arrangements in several polychaete groups as well as muscle differentiation during embryonic development of the polychaete Capitella sp. I.
Collapse
Affiliation(s)
- Annette Bergter
- Department of Zoology, University of Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany
| | | |
Collapse
|
10
|
Venkitaramani DV, Wang D, Ji Y, Xu YZ, Ponguta L, Bock K, Zipser B, Jellies J, Johansen KM, Johansen J. Leech filamin and Tractin: markers for muscle development and nerve formation. ACTA ACUST UNITED AC 2004; 60:369-80. [PMID: 15281074 DOI: 10.1002/neu.20035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Lan3-14 and Laz10-1 monoclonal antibodies recognize a 400 kDa antigen that is specifically expressed by all muscle cells in leech. We show that the antigen recognized by both antibodies is a member of the filamin family of actin binding proteins. Leech filamin has two calponin homology domains and 35 filamin/ABP-repeat domains. In addition, we used the Laz10-1 antibody to characterize the development of the segmentally iterated dorsoventral flattener muscles. We demonstrate that the dorsoventral flattener muscle develops as three discrete bundles of myofibers and that CNS axons pioneering the DP nerve extend only along the middle bundle. Interestingly, the middle dorsoventral muscle anlage is associated with only non-neuronal expression of the L1-family cell adhesion molecule Tractin. This expression is transient and occurs at the precise developmental stages when DP nerve formation takes place. Based on these findings we propose that the middle dorsoventral muscle anlagen provides a substrate for early axonal outgrowth and nerve formation and that this function may be associated with differential expression of distinct cell adhesion molecules.
Collapse
Affiliation(s)
- Deepa V Venkitaramani
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The nervous system of the leech has been the subject of numerous studies since its "rediscovery" in the 1960s as a unique system for the study of the properties of glial cells. Subsequently, anatomical, physiological, and embryological studies of identified neurons have yielded a wealth of information about the differentiation of neuronal structure and function. In recent years, cellular approaches to the development of identified central and peripheral neurons have been complemented by molecular studies that promise to reveal the mechanisms by which neurons form their complex arbors and innervate specific targets.
Collapse
|
12
|
Baker MW, Rauth SJ, Macagno ER. Possible role of the receptor protein tyrosine phosphatase HmLAR2 in interbranch repulsion in a leech embryonic cell. JOURNAL OF NEUROBIOLOGY 2000; 45:47-60. [PMID: 10992256 DOI: 10.1002/1097-4695(200010)45:1<47::aid-neu5>3.0.co;2-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Accumulating evidence indicates that receptor protein tyrosine phosphatases (rPTPs) play major roles in growth cone migration. We have previously shown that the growth cones of the multiple parallel processes of an identified leech embryonic cell, the Comb cell (CC), express high levels of a leukocyte antigen-related (LAR)-like rPTP, HmLAR2. Embryonic injection of a polyclonal antibody to the receptor's ectodomain resulted in reduced process outgrowth and in processes crossing over each other, a behavior that is seldom observed in normal or control animals. Here we present results of injecting a soluble Fc-HmLAR2 ectodomain fusion protein into embryos in order to bind the endogenous ligands of HmLAR2. Single injections of the Fc-chimeric protein into the developing embryo resulted, 12 to 24 h postinjection, in clear morphological abnormalities, ranging from abnormally directed CC processes and crossovers to apparent growth cone collapse. At later times, 2 to 5 days post injection, growth cones appeared to have recovered and processes had continued to extend, but effects of the earlier guidance errors remained, with the CCs displaying a relatively high incidence of proximal guidance errors. When injected into the germinal plate of developing embryos, the fusion protein was found to bind selectively to the processes of the CCs themselves, in contrast to control injections of Fc alone or closely related Fc-tagged proteins, which did not decorate the CCs. Double-labeling experiments revealed an early phase of Fc-HmLAR2 labeling (within 20 min after application), during which the growth cones and filopodia of the CC showed significant binding of the receptor ectodomain, and a later phase (1-2 h after injection), when most of the label was redistributed away from the growth cones and into the proximal processes of the CC. In culture, HmLAR2-transfected COS cells were found to selectively bind the Fc-recombinant protein, but not Fc-tagged proteins bearing other closely related receptor ectodomains, demonstrating that the HmLAR2 ectodomain is capable of interacting homophilically. Together, our observations demonstrate that the rPTP HmLAR2 is critically involved in CC process extension through its participation in the regulation of growth cone structure, migration, and navigation. Moreover, since our experiments also indicate that HmLAR2 can bind to itself, we hypothesize that HmLAR2 has a key role in the mechanism of mutual repulsion that maintains the parallel growth of adjacent CC projections.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, 1011 Fairchild Center for the Life Sciences, New York City, New York 10027, USA
| | | | | |
Collapse
|
13
|
Baker MW, Macagno ER. RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr Biol 2000; 10:1071-4. [PMID: 10996077 DOI: 10.1016/s0960-9822(00)00674-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are important for growth-cone migration [1-5], but their specific roles have yet to be defined. Previously, we showed that the growth cones of the Comb cell, an embryonic cell in the leech, express high levels of an RPTP called HmLAR2 [6,7]. Here, we report the use of RNA interference (RNAi) to block expression of HmLAR2 in individual Comb cells in the developing embryo. HmLAR2 mRNA levels were reduced in the soma, processes and growth cones of Comb cells injected with double-stranded RNA (dsRNA) for HmLAR2, but no decrease was detected when control dsRNAs were injected. Consistent with this observation, the level of phosphotyrosine increased significantly in the growth cones of Comb cells injected with HmLAR2 dsRNA. Within 24 hours, the growth cones of treated cells showed a distinct collapsed phenotype, with sharp reductions in lamellipodial surface area and in numbers of filopodia. These experiments indicate a key role for LAR-like RPTPs in maintaining the integrity of the growth cone.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
14
|
Baker MW, Macagno ER. The role of a LAR-like receptor tyrosine phosphatase in growth cone collapse and mutual-avoidance by sibling processes. JOURNAL OF NEUROBIOLOGY 2000; 44:194-203. [PMID: 10934322 DOI: 10.1002/1097-4695(200008)44:2<194::aid-neu9>3.0.co;2-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Among the many cells or parts of cells that a growth cone may encounter during its embryonic migrations are other processes or parts of its parent cell. Such an event can be expected to be relatively frequent in the genesis of neuronal arbors, for instance, where the density of innervation of a target region can be quite high. Few experimental studies have addressed the very interesting question of whether a process "recognizes" siblings in some unique way, in a manner that can be distinguished from, say, how it interacts with unrelated cells. One example can be found in the leech, where sibling branches in the terminal fields of identified mechanosensory cells avoid each other strictly while permitting some significant continuing contact and overlap with homologues, a phenomenon that has been dubbed "self-avoidance." Another example has been reported in cultured Helisoma neurons, where severing a branch of a neuron allows sibling neurites to form electrical junctions with it, although normally sibling neurites do not do so. In both of these instances, coincidental activity was proposed as one means to achieve recognition of self and as possibly leading to the blocking of a continuing interaction among the parts, although alternative explanations were indeed considered possible.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
15
|
Jie C, Xu Y, Wang D, Lukin D, Zipser B, Jellies J, Johansen KM, Johansen J. Posttranslational processing and differential glycosylation of Tractin, an Ig-superfamily member involved in regulation of axonal outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:1-14. [PMID: 11004526 DOI: 10.1016/s0167-4838(00)00030-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tractin is a novel member of the Ig-superfamily which has a highly unusual structure. It contains six Ig domains, four FNIII-like domains, an acidic domain, 12 repeats of a novel proline- and glycine-rich motif with sequence similarity to collagen, a transmembrane domain, and an intracellular tail with an ankyrin and a PDZ domain binding motif. By generating domain-specific antibodies, we show that Tractin is proteolytically processed at two cleavage sites, one located in the third FNIII domain, and a second located just proximal to the transmembrane domain resulting in the formation of four fragments. The most NH(2)-terminal fragment which is glycosylated with the Lan3-2, Lan4-2, and Laz2-369 glycoepitopes is secreted, and we present evidence which supports a model in which the remaining fragments combine to form a secreted homodimer as well as a transmembrane heterodimer. The extracellular domain of the dimers is mostly made up of the collagen-like PG/YG-repeat domain but also contains 11/2 FNIII domain and the acidic domain. The collagen-like PG/YG-repeat domain could be selectively digested by collagenase and we show by yeast two-hybrid analysis that the intracellular domain of Tractin can interact with ankyrin. Thus, the transmembrane heterodimer of Tractin constitutes a novel protein domain configuration where sequence that has properties similar to that of extracellular matrix molecules is directly linked to the cytoskeleton through interactions with ankyrin.
Collapse
Affiliation(s)
- C Jie
- Department of Zoology and Genetics, Iowa State University, AMes 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ladurner P, Rieger R. Embryonic muscle development of Convoluta pulchra (Turbellaria-acoelomorpha, platyhelminthes). Dev Biol 2000; 222:359-75. [PMID: 10837125 DOI: 10.1006/dbio.2000.9715] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the embryonic development of body-wall musculature in the acoel turbellarian Convoluta pulchra by fluorescence microscopy using phalloidin-bound stains for F-actin. During stage 1, which we define as development prior to 50% of the time between egg-laying and hatching, actin was visible only in zonulae adhaerentes of epidermal cells. Subsequent development of muscle occurred in two distinct phases: first, formation of an orthogonal grid of early muscles and, second, differentiation of other myoblasts upon this grid. The first elements of the primary orthogonal muscle grid appeared as short, isolated, circular muscle fibers (stage 2; 50% developmental time), which eventually elongated to completely encircle the embryo (stage 3; at 60% of total developmental time). The first primary longitudinal fibers appeared later, along with some new primary circular fibers, by 60-63% of total developmental time (stage 4). From 65 to 100% of total developmental time (stages 5 to 7), secondary fibers, using primary fibers as templates, arose; the number of circular and longitudinal muscles thus increased, and at the same time parenchymal muscles began appearing. Hatchlings (stage 8) possessed about 25 circular and 30 longitudinal muscles as well as strong parenchymal muscles. The remarkable feature of the body wall of many adult acoel flatworms is that longitudinal muscles bend medially and cross each other behind the level of the mouth. We found that this development starts shortly after the appearance of the ventral mouth opening within the body wall muscle grid. The adult organization of the body-wall musculature consists of a grid of several hundred longitudinal and circular fibers and a few diagonal muscles. Musculature of the reproductive organs developed after hatching. Thus, extensive myogenesis must occur also during postembryonic development. Comparison between the turbellarians and the annelids suggests that formation of a primary orthogonal muscle grid and its subsequent use as a template for myoblast differentiation are the two basic developmental phases in vermiform Spiralia if not in the Bilateria as a whole. Finally, our new data suggest that for the Acoela the orthogonal primary patterning of longitudinal and circular muscles in the body wall is achieved without using originally positional information of the nervous system.
Collapse
Affiliation(s)
- P Ladurner
- Institute of Zoology and Limnology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | | |
Collapse
|
17
|
The establishment of peripheral sensory arbors in the leech: in vivo time-lapse studies reveal a highly dynamic process. J Neurosci 1999. [PMID: 9065502 DOI: 10.1523/jneurosci.17-07-02408.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pressure-sensitive (P) neurons located in the leech CNS form elaborate terminal arbors in the body wall of the animal during mid-embryogenesis. In the experiments discussed here, arbor development in the target region was studied in intact, unanesthetized leech embryos using time-lapse video microscopy of individual, fluorescently stained P neurons. Analysis of time-lapse recordings made over a period of several days revealed that arbor formation is a very dynamic process. At any particular time, most high-order terminal branches were either extending or retracting, in approximately equal numbers and at very similar rates. Many branches underwent several rounds of extension and retraction every hour. Net arbor growth occurred at a much lower rate than the extension and retraction rates of individual branches. Process retraction sometimes resulted in an apparent change in the topological order of processes. Significantly, the initiation of new branches was restricted to a few locations along the parent process, which were termed "hot spots." Moreover, the capacity to generate high-order branches correlated with parent process stability. The target region of the growing P cell arbor in the body wall was subsequently examined using confocal microscopy in fixed preparations. The arbor expanded between the longitudinal and circular muscle layers, a region occupied by small unidentified cells. Simultaneous imaging of the dye-labeled terminal arbor and the surrounding tissue at two different wavelengths suggested that the high-order processes were navigating around these cells, which sometimes forced the growing processes to assume a bent form. These observations suggest that the formation of the P cell arbor can be best described as a "dynamically unstable" process that is constrained by interactions with its environment.
Collapse
|
18
|
Reynolds SA, French KA, Baader A, Kristan WB. Staging of middle and late embryonic development in the medicinal leech,Hirudo medicinalis. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<155::aid-cne2>3.0.co;2-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
|
20
|
Abstract
Invertebrates have proved to be important experimental systems for examining questions related to growth cone navigation and nerve formation, in large part because of their simpler nervous systems. However, such apparent simplicity can be deceiving because the final stereotyped patterns may be the result of multiple developmental mechanisms and not necessarily the sole consequence of the pathway choices of individual growth cones. We have examined the normal sequence of events that are involved in the formation of the major peripheral nerves in leech embryos by employing (1) an antibody directed against acetylated tubulin to label neurons growing out from the central nervous system, (2) the Lan3-2 antibody to label a specific population of peripheral neurons growing into the central nervous system, and (3) intracellular dye filling of single cells. We found that the mature pattern of nerves was characterized by a pair of large nerve roots, each of which branched into two major tracts. The earliest axonal projections did not, however, establish this pattern definitively. Rather, each of the four nerves initially formed as discrete, roughly parallel tracts without bifurcation, with the final branching pattern of the nerve roots being generated by a secondary condensation. In addition, we found that some of the nerves were pioneered in different ways and by different groups of neurons. One of the nerves was established by central neurons growing peripherally, another by peripheral neurons growing centrally. These results suggest that the formation of common nerves and neuronal pathfinding in the leech involves multiple sets of growth cone guidance strategies and morphogenetic mechanisms that belie its apparent simplicity.
Collapse
Affiliation(s)
- J Jellies
- Department of Biological Sciences, Western Michigan University, Kalamazoo 49008, USA.
| | | | | | | |
Collapse
|
21
|
Jellies J, Johansen J. Multiple strategies for directed growth cone extension and navigation of peripheral neurons. JOURNAL OF NEUROBIOLOGY 1995; 27:310-25. [PMID: 7673891 DOI: 10.1002/neu.480270305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leeches have a diverse constellation of peripheral neural elements that are challenged to extend growth cones in highly specific ways in a constantly changing embryonic environment. Two major systems are reviewed here. In one, peripheral afferents extend growth cones toward the central nervous system (CNS), forming common pathways, and then segregate into particular tracts within the CNS. A majority of these afferents depend on CNS-derived guidance cues and projections from the CNS to guide their way. However, not all of the nerves are established this way and at least one of the peripheral nerves is likely to be pioneered by sensillar sensory afferents. The distribution of particular antigens (such as the lan3-2 antigen) suggests the identity of molecules involved in homophilic adhesion along common pathways, whereas others (such as the lan4-2 and 3-6 antigens) are candidates for mediating specific pathway choices. In the second system, the myo-organizing Comb cell (C cell) projects multiple growth cones simultaneously along oblique trajectories not influenced by segmental or midline boundaries. Its parallel growth cones exhibit space-filling as well as directional growth and are guided by local cues to extend in discrete phases that are coordinated with the development of the environment. Both systems exhibit highly directed outgrowth orchestrated by a hierarchy of cues, establish patterns of neurites used to direct later migrating cells, and seem to be regulated temporally and spatially by interactions with the embryonic environment. These systems illustrate the strengths of examining neural development in vivo across several levels of analysis.
Collapse
Affiliation(s)
- J Jellies
- Neurobiology Research Center, University of Alabama at Birmingham, USA
| | | |
Collapse
|
22
|
Gilchrist LS, Klukas KA, Jellies J, Rapus J, Eckert M, Mesce KA. Distribution and developmental expression of octopamine-immunoreactive neurons in the central nervous system of the leech. J Comp Neurol 1995; 353:451-63. [PMID: 7751442 DOI: 10.1002/cne.903530312] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Octopamine, a biogenic amine analogous to norepinephrine, plays an important role in the orchestration and modulation of invertebrate behavior. In the leech, the behavioral actions of octopamine have been demonstrated; however, identification of octopaminergic neurons had not been determined by using immunohistochemical techniques. Thus, we used an antibody highly specific to octopamine to examine the distribution of octopamine-immunoreactive neurons in the segmental ganglia of American and European medicinal leeches (Macrobdella decora and Hirudo medicinalis). One pair of octopamine-immunoreactive neurons was located in the dorsolateral ganglionic region of anterior ganglia 1-6 and posterior ganglia 15-21. No corresponding octopamine-immunoreactive neurons were found in midbody ganglia 7-14. Using Neutral Red staining in combination with intracellular Neurobiotin injections and octopamine immunostaining, we determined the identity of the dorsolateral octopamine-immunoreactive cells. The dorsolateral octopamine-immunoreactive neuron (the DLO) was not cell 21, the only previously reported Neutral Red staining neuron in the dorsolateral position. We also determined that the Leydig neuron was not octopamine immunoreactive in either of the two medicinal leech species. Octopamine immunostaining in the sex ganglia revealed hundreds of immunoreactive neurons in sexually mature leeches. Such neurons were not observed in juvenile leeches. The developmental time course of octopamine immunoreactivity in the dorsolateral octopamine-immunoreactive neurons was also investigated by staining embryonic Hirudo medicinalis. Octopamine expression occurred relatively late as compared with the detectable onset of serotonin expression. Octopamine expression in the dorsolateral octopamine-immunoreactive cells was not detectable at early to mid-embryonic stages, and must commence during late embryonic to early juvenile stages. The identification of octopamine-immunoreactive cells now sets the stage for further investigations into the functional role of octopamine in leech behavior and the development of behavior.
Collapse
Affiliation(s)
- L S Gilchrist
- Graduate Program in Neuroscience, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jellies J, Johansen K, Johansen J. Specific pathway selection by the early projections of individual peripheral sensory neurons in the embryonic medicinal leech. JOURNAL OF NEUROBIOLOGY 1994; 25:1187-99. [PMID: 7815053 DOI: 10.1002/neu.480251002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with antibody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3-2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable of sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferents. In the sensillum studied here, we found examples of sensory neurons extending axons into one of all the available fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons.
Collapse
Affiliation(s)
- J Jellies
- University of Alabama at Birmingham, Neurobiology Research Center 35294
| | | | | |
Collapse
|
24
|
Kopp DM, Jellies J. Ultrastructure of an identified array of growth cones and possible substrates for guidance in the embryonic medicinal leech, Hirudo medicinalis. Cell Tissue Res 1994; 276:281-93. [PMID: 8020064 DOI: 10.1007/bf00306114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The oblique muscle organizer (Comb- or C-cell) in the embryonic medicinal leech, Hirudo medicinalis, provides an amenable situation to examine growth cone navigation in vivo. Each of the segmentally iterated C-cells extends an array of growth cones through the body wall along oblique trajectories. C-cell growth cones undergo an early, relatively slow period of extension followed by later, protracted and rapid directed outgrowth. During such transitions in extension, guidance might be mediated by a number of factors, including intrinsic constraints on polarity, spatially and temporally regulated cell and matrix interactions, physical constraints imposed by the environment, or guidance along particular cells in advance of the growth cones. Growth cones and their environment were examined by transmission electron microscopy to define those factors that might play a significant role in migration and guidance in this system. The ultrastructural examination has made the possibility very unlikely that simple, physical constraints play a prominent role in guiding C-cell growth cones. No anatomically defined paths or obliquely aligned channels were found in advance of these growth cones, and there were no identifiable physical boundaries, which might constrain young growth cones to a particular location in the body wall before rapid extension. There were diverse associations with many matrices and basement membranes located above, below, and within the layer in which growth cones appear to extend at the light level. Additionally, a preliminary examination of myocyte assembly upon processes proximal to the growth cones further implicates a role for matrix-associated interactions in muscle histogenesis as well as process outgrowth during embryonic development.
Collapse
Affiliation(s)
- D M Kopp
- Department of Physiology and Biophysics, University of Alabama at Birmingham 35294
| | | |
Collapse
|
25
|
Johansen J, Johansen KM, Briggs KK, Kopp DM, Jellies J. Hierarchical guidance cues and selective axon pathway formation. PROGRESS IN BRAIN RESEARCH 1994; 103:109-20. [PMID: 7886199 DOI: 10.1016/s0079-6123(08)61131-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Johansen
- Department of Zoology and Genetics, Iowa State University, Ames 50011
| | | | | | | | | |
Collapse
|
26
|
Kopp DM, Jellies J. Multimorphic growth cones in the embryonic medicinal leech: relationship between shape changes and outgrowth transitions. J Comp Neurol 1993; 328:393-405. [PMID: 8440787 DOI: 10.1002/cne.903280306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Comparative studies of growth cone morphology may provide insight into the mechanisms underlying motility and navigation in vivo. Here we analyzed the morphology of a unique set of growth cones in the embryonic medicinal leech, Hirudo medicinalis. The comb or C-cell is a transient cell found as a bilateral pair in each midbody segment. Early in development, from embryonic day (E)7 to E11, each C-cell adds and orients about 70 parallel growth cones that remain relatively nonmotile until E12 when rapid process outgrowth is initiated. Individual C-cells from E10 to E14 were injected with Lucifer yellow and growth cones were traced with a camera lucida. Growth cone morphology was quantified from the drawings. Lamellar regions increased in area with age and change in extension rate. Young, relatively nonmotile growth cones had numerous short filopodia in many orientations, while at highly motile stages filopodial number decreased, length increased, and orientation became more restricted in the direction of outgrowth. Thus, while filopodia were distributed symmetrically, such that the average filopodial angle was predictive of the direction of outgrowth at all stages, younger (relatively nonmotile) growth cones project more filopodia in many directions than do older more motile growth cones. These results suggest that: (1) alterations in morphology may reflect developmentally regulated changes in extension and the local environment, (2) these growth cones maintain a large area for environmental sampling as they increase extension rate, even as filopodia become more restricted in orientation, and (3) C-cell growth cones might progressively alter their affinity for local cellular cues as they initiate rapid and directed outgrowth. The C-cell of embryonic leech may provide a relatively simple system in which to test these ideas experimentally.
Collapse
Affiliation(s)
- D M Kopp
- Department of Physiology and Biophysics, University of Alabama, Birmingham 35294
| | | |
Collapse
|
27
|
French KA, Jordan SM, Loer CM, Kristan WB. Mesenchyme of embryonic reproductive ducts directs process outgrowth of Retzius neurons in the medicinal leech. Dev Biol 1992; 153:122-40. [PMID: 1516742 DOI: 10.1016/0012-1606(92)90097-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the two segments of the medicinal leech (Hirudo medicinalis) that contain the male (segment 5) and the female (segment 6) reproductive ducts, the paired Retzius (Rz) neurons are distinguished by several unique properties. For example, the muscles and glands of the body wall are the primary peripheral targets of Rz neurons in standard segments [Rz(X)], whereas the muscles and glands of the reproductive ducts are the primary peripheral targets of Rz neurons in the two reproductive segments [Rz(5,6)]. In this paper, we show that organogenesis and differentiation, which generate an epithelial tube surrounded by mesenchymal cells, occur in the embryonic reproductive ducts at approximately the time when Rz processes first contact these structures. The growth cones leading one branch of the posterior axon of Rz(5,6) contact the duct mesenchymal cells. Following initiation of this contact, these posterior growth cones enlarge and send out numerous filopodia. Secondarily, growth cones leading the anterior axon of each Rz(5,6) also modify their shapes and trajectories. When embryonic reproductive ducts were transplanted into posterior (nonreproductive) segments, the branch of the posterior Rz axon near the ectopic reproductive tissue produced enlarged growth cones and extended several secondary branches into the mesenchyme of the ectopic tissue. This result suggests that the reproductive mesenchyme is attractive to, and can modify the growth of, all Rz neurons. The behavior of Rz(5,6) growth cones suggests that the reproductive mesenchyme cells provide guidance cues that control the location in which Rz axons elaborate their peripheral arborization and form synapses, and that the mesenchyme may also stimulate the production of a densely branched arbor.
Collapse
Affiliation(s)
- K A French
- Department of Biology, UCSD, La Jolla 92093
| | | | | | | |
Collapse
|