1
|
Kassel S, Hanson AJ, Benchabane H, Saito-Diaz K, Cabel CR, Goldsmith L, Taha M, Kanuganti A, Ng VH, Xu G, Ye F, Picker J, Port F, Boutros M, Weiss VL, Robbins DJ, Thorne CA, Ahmed Y, Lee E. USP47 deubiquitylates Groucho/TLE to promote Wnt-β-catenin signaling. Sci Signal 2023; 16:eabn8372. [PMID: 36749823 PMCID: PMC10038201 DOI: 10.1126/scisignal.abn8372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The Wnt-β-catenin signal transduction pathway is essential for embryonic development and adult tissue homeostasis. Wnt signaling converts TCF from a transcriptional repressor to an activator in a process facilitated by the E3 ligase XIAP. XIAP-mediated monoubiquitylation of the transcriptional corepressor Groucho (also known as TLE) decreases its affinity for TCF, thereby allowing the transcriptional coactivator β-catenin to displace it on TCF. Through a genome-scale screen in cultured Drosophila melanogaster cells, we identified the deubiquitylase USP47 as a positive regulator of Wnt signaling. We found that USP47 was required for Wnt signaling during Drosophila and Xenopus laevis development, as well as in human cells, indicating evolutionary conservation. In human cells, knockdown of USP47 inhibited Wnt reporter activity, and USP47 acted downstream of the β-catenin destruction complex. USP47 interacted with TLE3 and XIAP but did not alter their amounts; however, knockdown of USP47 enhanced XIAP-mediated ubiquitylation of TLE3. USP47 inhibited ubiquitylation of TLE3 by XIAP in vitro in a dose-dependent manner, suggesting that USP47 is the deubiquitylase that counteracts the E3 ligase activity of XIAP on TLE. Our data suggest a mechanism by which regulated ubiquitylation and deubiquitylation of TLE enhance the ability of β-catenin to cycle on and off TCF, thereby helping to ensure that the expression of Wnt target genes continues only as long as the upstream signal is present.
Collapse
Affiliation(s)
- Sara Kassel
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alison J. Hanson
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Kenyi Saito-Diaz
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Carly R. Cabel
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Lily Goldsmith
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Muhammad Taha
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Aksheta Kanuganti
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Victoria H. Ng
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - George Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia Picker
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Vivian L. Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David J. Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
- Corresponding authors. (Y.A.), (E.L.)
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Corresponding authors. (Y.A.), (E.L.)
| |
Collapse
|
2
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
3
|
Forristall CA, Stellabotte F, Castillo A, Collazo A. Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal-ventral patterning. Dev Dyn 2014; 243:1262-74. [PMID: 24500889 DOI: 10.1002/dvdy.24116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 01/02/2014] [Accepted: 01/17/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The inner ear develops from an ectodermal thickening known as the otic placode into a complex structure that is asymmetrical along both the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Embryological manipulations in Xenopus allow us to test regenerative potential along specific axes and timing of axis determination. We explore the role of Wnt signaling with gain and loss of function experiments. RESULTS In contrast to A or P half ablations, D or V half ablations almost never result in mirror duplications or normal ears. Instead there is a loss of structures, especially those associated with the ablated region. Rotation experiments inverting the D-V axis reveal that it is determined by stage 24-26 which is just before expression of the dorsal otic marker Wnt3a. Conditional blocking of canonical Wnt signaling results in reductions in the number of sensory organs and semicircular canals which could be placed in one of three categories, the most common phenotypes being similar to those seen after dorsal ablations. CONCLUSIONS There is less regenerative potential along the D-V axis. Wnt3a protein alone is sufficient to rescue the severe loss of inner ear structures resulting from dorsal but not ventral half ablations.
Collapse
|
4
|
Armstrong NJ, Fagotto F, Prothmann C, Rupp RAW. Maternal Wnt/β-catenin signaling coactivates transcription through NF-κB binding sites during Xenopus axis formation. PLoS One 2012; 7:e36136. [PMID: 22590521 PMCID: PMC3348924 DOI: 10.1371/journal.pone.0036136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/31/2012] [Indexed: 12/20/2022] Open
Abstract
Maternal Wnt/β-Catenin signaling establishes a program of dorsal-specific gene expression required for axial patterning in Xenopus. We previously reported that a subset of dorsally expressed genes depends not only on Wnt/β-Catenin stimulation, but also on a MyD88-dependent Toll-like receptor/IL1-receptor (TLR/IL1-R) signaling pathway. Here we show that these two signal transduction cascades converge in the nucleus to coactivate gene transcription in blastulae through a direct interaction between β-Catenin and NF-κB proteins. A transdominant inhibitor of NF-κB, ΔNIκBα, phenocopies loss of MyD88 protein function, implicating Rel/NF-κB proteins as selective activators of dorsal-specific gene expression. Sensitive axis formation assays in the embryo demonstrate that dorsalization by Wnt/β-Catenin requires NF-κB protein activity, and vice versa. Xenopus nodal-related 3 (Xnr3) is one of the genes with dual β-Catenin/NF-κB input, and a proximal NF-κB consensus site contributes to the regional activity of its promoter. We demonstrate in vitro binding of Xenopus β-Catenin to several XRel proteins. This interaction is observed in vivo upon Wnt-stimulation. Finally, we show that a synthetic luciferase reporter gene responds to both endogenous and exogenous β-Catenin levels in an NF-κB motif dependent manner. These results suggest that β-Catenin acts as a transcriptional co-activator of NF-κB-dependent transcription in frog primary embryonic cells.
Collapse
Affiliation(s)
- Neil J Armstrong
- Department of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
5
|
Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 2012; 7:e34342. [PMID: 22496792 PMCID: PMC3320641 DOI: 10.1371/journal.pone.0034342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/31/2022] Open
Abstract
The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.
Collapse
Affiliation(s)
- William A. Munoz
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Kyucheol Cho
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Moonsup Lee
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Ilse Hofmann
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg- DKFZ, Mannheim, Germany
| | - Amy Sater
- Biology and Biochemistry Department, University of Houston, Houston, Texas, United States of America
| | - Kris Vleminckx
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology VIB, Ghent, Belgium
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
7
|
Abstract
Wnt10b is a member of the Wnt ligand gene family that encodes for secreted proteins, which activate the ancient and highly conserved Wnt signalling cascade. The Wnt pathway has been shown to be essential for embryonic development, tissue integrity, and stem cell activity, but if deregulated, also causes disease such as cancer. Although the 19 different Wnt ligands found in both human and mouse can activate several branches of the Wnt pathway, WNT10B specifically activates canonical Wnt/β-catenin signalling and thus triggers β-catenin/LEF/TCF-mediated transcriptional programs. In this review, we highlight the unique functions of WNT10B and mechanisms of how WNT10B acts in the immune system, mammary gland, adipose tissue, bone and skin. In these organs, WNT10B has been well established to be involved in signalling networks controlling stemness, pluripotency and cell fate decisions. Deregulation of these processes causes diseases such as breast cancer, obesity and osteoporosis. Compelling evidence suggests that WNT10B is a valuable candidate for the development of therapeutic regimens for human diseases.
Collapse
Affiliation(s)
- P Wend
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, USA
| | | | | | | |
Collapse
|
8
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
9
|
Leonard M, Chan Y, Menko AS. Identification of a novel intermediate filament-linked N-cadherin/gamma-catenin complex involved in the establishment of the cytoarchitecture of differentiated lens fiber cells. Dev Biol 2008; 319:298-308. [PMID: 18514185 PMCID: PMC2518943 DOI: 10.1016/j.ydbio.2008.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Tissue morphogenesis and maintenance of complex tissue architecture requires a variety of cell-cell junctions. Typically, cells adhere to one another through cadherin junctions, both adherens and desmosomal junctions, strengthened by association with cytoskeletal networks during development. Both beta- and gamma-catenins are reported to link classical cadherins to the actin cytoskeleton, but only gamma-catenin binds to the desmosomal cadherins, which links them to intermediate filaments through its association with desmoplakin. Here we provide the first biochemical evidence that, in vivo, gamma-catenin also mediates interactions between classical cadherins and the intermediate filament cytoskeleton, linked through desmoplakin. In the developing lens, which has no desmosomes, we discovered that vimentin became linked to N-cadherin complexes in a differentiation-state specific manner. This newly identified junctional complex was tissue specific but not unique to the lens. To determine whether in this junction N-cadherin was linked to vimentin through gamma-catenin or beta-catenin we developed an innovative "double" immunoprecipitation technique. This approach made possible, for the first time, the separation of N-cadherin/gamma-catenin from N-cadherin/beta-catenin complexes and the identification of multiple members of each of these isolated protein complexes. The study revealed that vimentin was associated exclusively with N-cadherin/gamma-catenin junctions. Assembly of this novel class of cadherin junctions was coincident with establishment of the unique cytoarchitecture of lens fiber cells. In addition, gamma-catenin had a distinctive localization to the vertices of these hexagonally shaped differentiating lens fiber cells, a region devoid of actin; while beta-catenin co-localized with actin at lateral cell interfaces. We believe this novel vimentin-linked N-cadherin/gamma-catenin junction provides the tensile strength necessary to establish and maintain structural integrity in tissues that lack desmosomes.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
10
|
Dominguez I, Mizuno J, Wu H, Song DH, Symes K, Seldin DC. Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev Biol 2004; 274:110-24. [PMID: 15355792 DOI: 10.1016/j.ydbio.2004.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/08/2004] [Accepted: 06/09/2004] [Indexed: 01/14/2023]
Abstract
Dorsal axis formation in Xenopus embryos is dependent upon asymmetrical localization of beta-catenin, a transducer of the canonical Wnt signaling pathway. Recent biochemical experiments have implicated protein kinase CK2 as a regulator of members of the Wnt pathway including beta-catenin. Here, we have examined the role of CK2 in dorsal axis formation. CK2 was present in the developing embryo at an appropriate time and place to participate in dorsal axis formation. Overexpression of mRNA encoding CK2 in ventral blastomeres was sufficient to induce a complete ectopic axis, mimicking Wnt signaling. A kinase-inactive mutant of CK2alpha was able to block ectopic axis formation induced by XWnt8 and beta-catenin and was capable of suppressing endogenous axis formation when overexpressed dorsally. Taken together, these studies demonstrate that CK2 is a bona fide member of the Wnt pathway and has a critical role in the establishment of the dorsal embryonic axis.
Collapse
Affiliation(s)
- Isabel Dominguez
- Section of Hematology-Oncology Department of Medicine, Boston University School of Medicine, Boston MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Yukita A, Michiue T, Fukui A, Sakurai K, Yamamoto H, Ihara M, Kikuchi A, Asashima M. XSENP1, a novel sumo-specific protease inXenopus, inhibits normal head formation by down-regulation of Wnt/β-catenin signalling. Genes Cells 2004; 9:723-36. [PMID: 15298680 DOI: 10.1111/j.1356-9597.2004.00757.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small ubiqutin-related modifier (SUMO), which is responsible for the ubiquitination-like post-translational modification 'sumoylation', regulates a number of biological processes including, in particular, transcription. The rat protein Axam, which possesses SUMO-specific protease activity, was shown to inhibit the Wnt signalling pathway. Several other components of the pathway are also sumoylated, so the mechanism of this modification has itself been linked to Wnt signalling. However, the functional interactions between SUMO and Wnt signalling are not well understood. This study identified a novel SUMO-specific protease in Xenopus, which was denoted XSENP1. The C-terminus of XSENP1 is highly conserved across the SUMO-specific protease family, and in vitro XSENP1 possesses hydrolase and desumoylation activity. Over-expression of XSENP1 in vivo inhibited dorso-anterior development of Xenopus embryos and suppressed Wnt signalling target gene expression in a manner similar to Axam. Deletion analysis of XSENP1 showed that inhibition of the Wnt signalling pathway requires protease activity. Moreover, XSENP1 inhibits ectopic axis induction by Dvl, beta-catenin and the constitutively active form of beta-catenin, but not by siamois. These results indicate that the dorsal expression of XSENP1 obstructs head development in Xenopus laevis and that this effect may result from inhibition of the canonical Wnt pathway downstream of beta-catenin, but upstream of siamois.
Collapse
Affiliation(s)
- Akira Yukita
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, 7-8-1, Hongo, Bunkyo-ku, 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Xenopus has been widely used to study early embryogenesis because the embryos allow for efficient functional assays of gene products by the overexpression of RNA. The first asymmetry of the embryo is initiated during oogenesis and is manifested by the darkly pigmented animal hemisphere and lightly pigmented vegetal hemisphere. Upon fertilization a second asymmetry, the dorsal-ventral asymmetry, is established, with the sperm entry site defining the prospective ventral region. During the cleavage stage, a vegetal cortical cytoplasm (VCC)/beta-catenin signaling pathway is differentially activated on the prospective dorsal side of the embryo. The overlapping of the VCC/beta-catenin and transforming growth factor beta (TGF-beta) pathways in the dorsal vegetal quadrant specifies dorsal-vental axis formation by regulating formation of the Spemann organizer, including the anterior endomesoderm. The organizer initiates gastrulation to form a triploblastic embryo in which the mesoderm layer is located between the ectoderm layer and the endoderm layer. The interplay between maternal and zygotic TGF-beta s and the T-box transcription factors in the vegetal hemisphere initiates the specification of germ-layer lineages. TGF-beta signaling originating from the vegetal region induces mesoderm in the equatorial region, and initiates endoderm differentiation directly in the vegetal region. The ectoderm develops from the animal region, which does not come into contact with the vegetal TGF-beta signals. A large number of the downstream components and transcriptional targets of early developmental pathways have been identified and characterized. This review gives an overview of recent advances in the understanding of the functional roles and interactions of the molecular players important for axis determination and germ-layer specification during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- A P Chan
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
13
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
14
|
Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B. Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol 2000; 11:291-9. [PMID: 10966863 DOI: 10.1006/scdb.2000.0179] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tight junction formation during development is critical for embryonic patterning and organization. We consider mechanisms of junction biogenesis in cleaving mouse and Xenopus eggs. Junction assembly follows the establishment of cell polarity at 8-cell (mouse) or 2-cell (Xenopus) stages, characterized by sequential membrane delivery of constituents, coordinated by embryonic (mouse) or maternal (Xenopus) expression programmes. Cadherin adhesion is permissive for tight junction construction only in the mouse. Occludin post-translational modification and membrane delivery, mediated by delayed ZO-1 alpha(+)isoform expression in the mouse, provides a mechanism for completion of tight junction biogenesis and sealing, regulating the timing of blastocoel cavitation.
Collapse
Affiliation(s)
- T P Fleming
- Division of Cell Sciences, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | |
Collapse
|
15
|
Guger KA, Gumbiner BM. A mode of regulation of beta-catenin signaling activity in Xenopus embryos independent of its levels. Dev Biol 2000; 223:441-8. [PMID: 10882528 DOI: 10.1006/dbio.2000.9770] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The signaling activity of beta-catenin is thought to be regulated by phosphorylation of a cluster of N-terminal serines, putative sites for GSK3beta. In the prevailing model in the literature, GSK3beta-dependent phosphorylation of these sites targets beta-catenin for ubiquitin-mediated degradation. Wnt signaling inhibits GSK3beta activity and this blocks degradation, allowing beta-catenin to accumulate and signal. We show here that beta-catenin activity is not regulated solely by protein stability. Mutations in the putative GSK3beta phosphorylation sites of beta-catenin enhance its signaling activity, but this cannot be accounted for by accumulation of either total or cadherin-free protein. Instead, the mutant protein has a threefold higher specific activity than the wild type both in vivo and in an in vitro signaling assay. We conclude that the N-terminal serines convey a layer of regulation upon beta-catenin signaling in addition to the effects these sites exert upon protein stability.
Collapse
Affiliation(s)
- K A Guger
- Cellular Biochemistry and Biophysics, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
| | | |
Collapse
|
16
|
Abstract
The armadillo gene is a segment polarity gene of Drosophila involved in signal transduction through wingless. Since the mid-1980s, a growing number of related proteins have been identified based on sequence homologies. These proteins share a central domain that is composed of a series of imperfect 45 amino acid repeats. Armadillo family members reveal diverse cellular locations reflecting their diverse functions. A single protein exerts several functions through interactions of its armadillo repeat domain with diverse binding partners. The proteins combine structural roles as cell-contact and cytoskeleton-associated proteins and signaling functions by generating and transducing signals affecting gene expression. The study of armadillo family members has made it increasingly clear that a distinction between structural proteins on the one hand and signaling molecules on the other is rather artificial. Instead armadillo family members exert both functions by interacting with a number of distinct cellular-binding partners.
Collapse
Affiliation(s)
- M Hatzfeld
- Molecular Biology Group, Medical Faculty, University of Halle, Germany
| |
Collapse
|
17
|
Abstract
Cellular mechanisms for the transport and localization of Wnt signaling components are important for the propagation, distribution, and polarization of Wnt signals in embryonic tissues. Wnt signals are distributed through tissues by vesicular transport of Wnt proteins, localized in embryos by directed transport of cytoplasmic Wnt-signaling components, and propagated asymmetrically during cell division.
Collapse
Affiliation(s)
- B M Gumbiner
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
18
|
Moon RT, Kimelman D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 1998; 20:536-45. [PMID: 9723002 DOI: 10.1002/(sici)1521-1878(199807)20:7<536::aid-bies4>3.0.co;2-i] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
After fertilization of Xenopus eggs, the cortex rotates relative to the cytoplasm, resulting in the formation of a cytoplasmic and transplantable dorsal-determining activity opposite the sperm entry point. This activity induces the dorsal expression of regulatory genes, which in turn establishes the Spemann organizer at the start of gastrulation. There has been considerable debate as to whether Vg1, or components of the Wnt-1 signaling pathway, normally function as this early dorsal determinant. Experiments now support the hypothesis that beta-catenin, a component of the Wnt pathway, provides the initial dorsoventral polarity to the embryo, and that Vg1 functions at a subsequent step in development. Specifically, beta-catenin is required for formation of the endogenous axes, and it is expressed at greater levels in dorsal cells during the early cleavage stages. Moreover, on the dorsal side of the embryo, complexes of beta-catenin and Tcf-3 directly bind the promoter of the dorsal regulatory genes siamois and twin and facilitate their expression, thereby contributing to the subsequent formation of the Spemann organizer. On the ventral side of the embryo, Tcf-3 likely works in the absence of beta-catenin as a transcriptional repressor of siamois. These and other data are considered in the context of how the initial polarization of the fertilized egg by the localized accumulation of beta-catenin establishes a range of subsequent dorsoventral asymmetries in the embryo.
Collapse
Affiliation(s)
- R T Moon
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA.
| | | |
Collapse
|
19
|
Abstract
The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach.
Collapse
Affiliation(s)
- T C Dale
- Developmental Biology Team, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, U.K
| |
Collapse
|
20
|
Grunwald GB. Chapter 3 Cadherin Cell adhesion molecules in development and disease. Dev Biol 1998. [DOI: 10.1016/s1569-2582(98)80018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Sehgal RN, Gumbiner BM, Reichardt LF. Antagonism of cell adhesion by an alpha-catenin mutant, and of the Wnt-signaling pathway by alpha-catenin in Xenopus embryos. J Cell Biol 1997; 139:1033-46. [PMID: 9362521 PMCID: PMC2139960 DOI: 10.1083/jcb.139.4.1033] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1997] [Revised: 07/14/1997] [Indexed: 02/05/2023] Open
Abstract
In Xenopus laevis development, beta-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell-cell adhesion and can modulate beta-catenin signaling. alpha-catenin links beta-catenin to the actin-based cytoskeleton. To study the role of endogenous alpha-catenin in early development, we have made deletion mutants of alphaN-catenin. The binding domain of beta-catenin has been mapped to the NH2-terminal 210 amino acids of alphaN-catenin. Overexpression of mutants lacking the COOH-terminal 230 amino acids causes severe developmental defects that reflect impaired calcium-dependent blastomere adhesion. Lack of normal adhesive interactions results in a loss of the blastocoel in early embryos and ripping of the ectodermal layer during gastrulation. The phenotypes of the dominant-negative mutants can be rescued by coexpressing full-length alphaN-catenin or a mutant of beta-catenin that lacks the internal armadillo repeats. We next show that coexpression of alphaN-catenin antagonizes the dorsalizing effects of beta-catenin and Xwnt-8. This can be seen phenotypically, or by studying the effects of expression on the downstream homeobox gene Siamois. Thus, alpha-catenin is essential for proper morphogenesis of the embryo and may act as a regulator of the intracellular beta-catenin signaling pathway in vivo.
Collapse
Affiliation(s)
- R N Sehgal
- Cell Biology Program, Department of Biochemistry and Biophysics, and Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0724, USA
| | | | | |
Collapse
|
22
|
Abstract
Epithelia can be defined morphologically as tissues that line surfaces, and ultrastructurally with reference to their cells' apico-basal polarity and possession of specific cell-cell junctions. Defining the epithelial phenotype at a molecular level is more problematic--while it is easy to name proteins (e.g. keratins) expressed by a 'typical' epithelium, no known molecules are expressed by every epithelium but by no other tissues. Cells can differentiate to and from the epithelial state as part of normal development, as a response to disease or when manipulated in culture. Many factors (matrix components, adhesion molecules, growth factors, transcription factors) have been identified that can trigger these transitions of phenotype in specific cases, but to date no general master regulators of the epithelial state have been found. The epithelial state may therefore be controlled by multiple regulatory genes so that there is no single molecule responsible for all of the diverse types of epithelium that exist in higher animals.
Collapse
Affiliation(s)
- J A Davies
- Department of Anatomy, University of Edinburgh Medical School, UK.
| | | |
Collapse
|
23
|
Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 1997; 136:1123-36. [PMID: 9060476 PMCID: PMC2132470 DOI: 10.1083/jcb.136.5.1123] [Citation(s) in RCA: 346] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1996] [Revised: 11/05/1996] [Indexed: 02/03/2023] Open
Abstract
Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on beta-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that beta-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with beta-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32-cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous beta-catenin. Steady-state levels and nuclear accumulation of beta-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased beta-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of beta-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in beta-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in beta-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3.
Collapse
Affiliation(s)
- C A Larabell
- Lawrence Berkeley National Laboratory, University of California at Berkeley, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, Larabell CA. Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci U S A 1997; 94:1224-9. [PMID: 9037034 PMCID: PMC19772 DOI: 10.1073/pnas.94.4.1224] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dorsal-ventral axis in frog embryos is specified during the first cell cycle, when the cortex rotates relative to the cytoplasmic core along parallel microtubules associated with the core. Cytoplasmic transfer experiments suggest that dorsal determinants are transported 90 degrees from the vegetal pole to the dorsal equator, even though the cortex rotates only 30 degrees. Here we show that, during rotation, small endogenous organelles are rapidly propelled along the subcortical microtubules toward the future dorsal side and that fluorescent carboxylated beads injected into the vegetal pole are transported at least 60 degrees toward the equator. We also show that deuterium oxide, which broadens the zone of dorsalization even though it reduces the extent of rotation and is known to randomize the microtubules, also randomizes the direction of organelle transport. Moreover, beta-catenin, a component of the Wnt signaling pathway that possesses dorsalizing activity in Xenopus, colocalizes with subcortical microtubules at the dorsal side of the egg at the end of rotation. We propose that cortical rotation functions to align subcortical microtubules, which then mediate the transport of dorsal determinants toward their plus ends on one side of the egg.
Collapse
Affiliation(s)
- B A Rowning
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
25
|
Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 1996; 10:2527-39. [PMID: 8895655 DOI: 10.1101/gad.10.20.2527] [Citation(s) in RCA: 550] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J R Miller
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle 98195-7370, USA
| | | |
Collapse
|
26
|
Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, Joseph E, Heasman J. Maternal beta-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 1996; 122:2987-96. [PMID: 8898213 DOI: 10.1242/dev.122.10.2987] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous work, we demonstrated that maternally encoded beta-catenin, the vertebrate homolog of armadillo, is required for formation of dorsal axial structures in early Xenopus embryos (Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., Kintner, C., Yoshida-Noro, C. and Wylie, C. (1994). Cell 79, 791–803). Here we investigated, firstly, the role(s) of beta-catenin in spatial terms, in different regions of the embryo, by injecting beta-catenin mRNA into individual blastomeres of beta-catenin-depleted embryos at the 32 cell stage. The results indicate that beta-catenin can rescue the dorsal axial structures in a non-cell-autonomous way and without changing the fates of the injected cells. This suggests that cells overexpressing beta-catenin send a ‘dorsal signal’ to other cells. This was confirmed by showing that beta-catenin overexpressing animal caps did not cause wild-type caps to form mesoderm, but did cause isolated beta-catenin-deficient marginal zones to form dorsal mesoderm. Furthermore beta-catenin-deficient vegetal masses treated with overexpressing caps regained their ability to act as Nieuwkoop Centers. Secondly, we studied the temporal activity of beta-catenin. We showed that zygotic transcription of beta-catenin starts after the midblastula transition (MBT), but does not rescue dorsal axial structures. We further demonstrated that the vegetal mass does not release a dorsal signal until after the onset of transcription, at the midblastula stage, suggesting that maternal beta-catenin protein is required at or before this time. Thirdly we investigated where, in relationship to other gene products known to be active in axis formation, beta-catenin is placed. We find that BVg1, bFGF, tBR (the truncated form of BMP2/4R), siamois and noggin activities are all downstream of beta-catenin, as shown by the fact that injection of their mRNAs rescues the effect of depleting maternally encoded beta-catenin. Interference with the action of glycogen synthase kinase (GSK), a vertebrate homolog of the Drosophila gene product, zeste white 3 kinase, does not rescue the effect, suggesting that it is upstream.
Collapse
Affiliation(s)
- C Wylie
- Institute of Human Genetics, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- M Kühl
- Department of Biochemistry, University of Ulm, Germany
| | | |
Collapse
|
28
|
Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996; 6:1302-6. [PMID: 8939578 DOI: 10.1016/s0960-9822(02)70716-1] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Wnts are secreted proteins implicated in cell-cell interactions during embryogenesis and tumorigenesis, but receptors involved in transducing Wnt signals have not yet been definitively identified. Members of a large family of putative transmembrane receptors homologous to the frizzled protein in Drosophila have been identified recently in both vertebrates and invertebrates, raising the question of whether they are involved in transducing signals for any known signaling factors. RESULTS To test the potential involvement of frizzled homologs in Wnt signaling, we examined the effects of overexpressing rat frizzled-1 (Rfz-1) on the subcellular distribution of Wnts and of dishevelled, a cytoplasmic component of the Wnt signalling pathway. We demonstrate that ectopic expression of Rfz-1 recruits the dishevelled proten-as well as Xenopus Wnt-8 (Xwnt-8), but not the functionally distinct Xwnt-5A-to the plasma membrane. Moreover, Rfz-1 is sufficient to induce the expression of two Xwnt-8-responsive genes, siamois and Xnr-3, in Xenopus explants in a manner which is antagonized by glycogen synthase kinase-3, which also antagonizes Wnt signaling. When Rfz-1 and Xwnt-8 are expressed together in this assay, we observe greater induction of these genes, indicating that Rfz-1 can synergize with a Wnt. CONCLUSIONS The results demonstrate that a vertebrate frizzled homolog is involved in Wnt signaling in a manner which discriminates between functionally distinct Wnts, which involves translocation of the dishevelled protein to the plasma membrane, and which works in a synergistic manner with Wnts to induce gene expression. These data support the likely function of frizzled homologs as Wnt receptors, or as components of a receptor complex.
Collapse
Affiliation(s)
- J Yang-Snyder
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
29
|
Klingensmith J, Yang Y, Axelrod JD, Beier DR, Perrimon N, Sussman DJ. Conservation of dishevelled structure and function between flies and mice: isolation and characterization of Dvl2. Mech Dev 1996; 58:15-26. [PMID: 8887313 DOI: 10.1016/s0925-4773(96)00549-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The segment polarity gene dishevelled (dsh) of Drosophila is required for pattern formation of the embryonic segments and the adult imaginal discs. dsh encodes the earliest-acting and most specific known component of the signal transduction pathway of Wingless, an extracellular signal homologous to Wnt1 in mice. We have previously described the isolation and characterization of the Dvl1 mouse dsh homolog. We report here the isolation of a second mouse dsh homolog, Dvl2, which maps to chromosome 11. The Dvl2 amino acid sequence is equally related to the dsh sequence as is that of Dvl1, but Dvl2 is most similar to the Xenopus homolog Xdsh. However, unlike the other vertebrate dsh homologs. Like the other genes, Dvl2 is ubiquitously expressed throughout most of embryogenesis and is expressed in many adult organs. We have developed an assay for dsh function in fly embryos, and show that Dvl2 can partially rescue the segmentation defects of embryos devoid of dsh. Thus, Dvl2 encodes a mammalian homolog of dsh which can transduce the Wingless signal.
Collapse
Affiliation(s)
- J Klingensmith
- Samuel Lunenfeld Research Institute, Mount Sinat Hospital, Toronto, ON Canada
| | | | | | | | | | | |
Collapse
|
30
|
Ohsugi M, Hwang SY, Butz S, Knowles BB, Solter D, Kemler R. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev Dyn 1996; 206:391-402. [PMID: 8853988 DOI: 10.1002/(sici)1097-0177(199608)206:4<391::aid-aja5>3.0.co;2-d] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied transcription, expression, and membrane localization of components of the E-cadherin-catenin complex stage by stage during mouse preimplantation development. Maternal E-cadherin and alpha- and beta-catenin are stored as mRNA and/or protein in unfertilized eggs and are already assembled into a protein complex at this stage. After fertilization, it is likely that they mediate adhesion of early-stage blastomeres. Biosynthesis of plakoglobin is delayed relative to the other components. The temporal mRNA and protein expression patterns of the components of the cadherin-catenin complex correlate with the presence or absence of potential cytoplasmic polyadenylation elements (CPEs) in the 3'-UTRs of the respective cDNAs. Our results suggest that the components of the E-cadherin-catenin complex derived from both maternal and zygotic gene activity are increasingly accumulated and stored in a nonfunctional form during early cleavage stages and are ready to be used for compaction and the formation of the trophectodermal cell layer.
Collapse
Affiliation(s)
- M Ohsugi
- Max-Planck-Institut für Immunbiologie, Freiburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
31
|
Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10:1443-54. [PMID: 8666229 DOI: 10.1101/gad.10.12.1443] [Citation(s) in RCA: 927] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The serine/threonine kinase Xgsk-3 and the intracellular protein beta-catenin are necessary for the establishment of the dorsal-ventral axis in Xenopus. Although genetic evidence from Drosophila indicates that Xgsk-3 is upstream of beta-catenin, direct interactions between these proteins have not been demonstrated. We demonstrate that phosphorylation of beta-catenin in vivo requires an in vitro amino-terminal Xgsk-3 phosphorylation site, which is conserved in the Drosophila protein armadillo. beta-catenin mutants lacking this site are more active in inducing an ectopic axis in Xenopus embryos and are more stable than wild-type beta-catenin in the presence of Xgsk-3 activity, supporting the hypothesis that Xgsk-3 is a negative regulator of beta-catenin that acts through the amino-terminal site. Inhibition of endogenous Xgsk-3 function with a dominant-negative mutant leads to an increase in the steady-state levels of ectopic beta-catenin, indicating that Xgsk-3 functions to destabilize beta-catenin and thus decrease the amount of beta-catenin available for signaling. The levels of endogenous beta-catenin in the nucleus increases in the presence of the dominant-negative Xgsk-3 mutant, suggesting that a role of Xgsk-3 is to regulate the steady-state levels of beta-catenin within specific subcellular compartments. These studies provide a basis for understanding the interaction between Xgsk-3 and beta-catenin in the establishment of the dorsal-ventral axis in early Xenopus embryos.
Collapse
Affiliation(s)
- C Yost
- Department of Biochemistry, University of Washington School of Medicine, Seattle, 98195-7370, USA
| | | | | | | | | | | |
Collapse
|
32
|
Klymkowsky MW. Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. Curr Top Dev Biol 1996; 31:455-86. [PMID: 8746673 DOI: 10.1016/s0070-2153(08)60236-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M W Klymkowsky
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| |
Collapse
|
33
|
Kelly GM, Erezyilmaz DF, Moon RT. Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin. Mech Dev 1995; 53:261-73. [PMID: 8562427 DOI: 10.1016/0925-4773(95)00442-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Formation of the vertebrate axis may involve a Wnt signaling cascade similar to the Drosophila wingless pathway. Zebrafish wnt8 is a candidate for involvement in axis specification insofar as it is expressed maternally and when overexpressed it can induce goosecoid, a transcription factor normally expressed in the embryonic shield. In this study we demonstrate that beta-catenin, a cadherin associated protein in the Wnt pathway, is expressed maternally in zebrafish and is widely distributed in the early embryo. Overexpressing beta-catenin in early zebrafish embryos induces goosecoid and ntl, ultimately leading to a duplication of a complete secondary axis. These data are consistent with the involvement of beta-catenin in a Wnt signaling pathway which is involved in mesoderm induction in zebrafish.
Collapse
Affiliation(s)
- G M Kelly
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195-7370, USA
| | | | | |
Collapse
|
34
|
Karnovsky A, Klymkowsky MW. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc Natl Acad Sci U S A 1995; 92:4522-6. [PMID: 7753837 PMCID: PMC41976 DOI: 10.1073/pnas.92.10.4522] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.
Collapse
Affiliation(s)
- A Karnovsky
- University of Colorado, Boulder 80309-0347, USA
| | | |
Collapse
|
35
|
Fagotto F, Gumbiner BM. Beta-catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries. Development 1994; 120:3667-79. [PMID: 7821229 DOI: 10.1242/dev.120.12.3667] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
beta-catenin is a cytoplasmic protein associated with cadherin adhesion molecules and has been implicated in axis formation in Xenopus (McCrea, P. D., Brieher, W. M. and Gumbiner, B. M. (1993) J. Cell Biol. 127, 477–484). We have studied its distribution in Xenopus embryos by immunofluorescence on frozen sections. Consistent with its function in cell-cell adhesion, beta-catenin is present in every cell. However, high levels are expressed in certain regions and different tissues of the embryo. No simple correlation appears to exist between the levels of beta-catenin with the expected strength of adhesion. High levels of beta-catenin were found in regions undergoing active morphogenetic movements, such as the marginal zone of blastulae and gastrulae. This suggests that high expression of beta-catenin could be involved in dynamic adhesion events. Surprisingly, beta-catenin also accumulates on plasma membranes that probably do not establish direct or strong contacts with other cells. In particular, high amounts of beta-catenin are found transiently at boundaries between tissue anlagen and at the intersomitic boundaries. This unexpected pattern of beta-catenin expression raises the possibility that this molecule participates in developmental processes, perhaps independently of its classical role in cell-cell adhesion.
Collapse
Affiliation(s)
- F Fagotto
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | |
Collapse
|
36
|
Abstract
A variety of experimental approaches have underscored the critical role played by secreted polypeptide factors, such as those encoded by members of the Wnt gene family, in many aspects of vertebrate embryogenesis. Recent papers have revealed restricted patterns of Wnt gene expression that delineate important subdivisions within the early forebrain and spinal cord, demonstrated that Wnt gene products can regulate mesoderm formation and gastrulation, and investigated how Wnt protein signaling may affect cell adhesion.
Collapse
Affiliation(s)
- B A Parr
- Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
37
|
McCrea PD, Brieher WM, Gumbiner BM. Induction of a secondary body axis in Xenopus by antibodies to beta-catenin. J Cell Biol 1993; 123:477-84. [PMID: 8408227 PMCID: PMC2119835 DOI: 10.1083/jcb.123.2.477] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have obtained evidence that a known intracellular component of the cadherin cell-cell adhesion machinery, beta-catenin, contributes to the development of the body axis in the frog Xenopus laevis. Vertebrate beta-catenin is homologous to the Drosophila segment polarity gene product armadillo, and to vertebrate plakoglobin (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science (Wash. DC). 254: 1359-1361.). Beta-Catenin was found present in all Xenopus embryonic stages examined, and associated with C-cadherin, the major cadherin present in early Xenopus embryos. To test beta-catenin's function, affinity purified Fab fragments were injected into ventral blastomeres of developing four-cell Xenopus embryos. A dramatic phenotype, the duplication of the dorsoanterior embryonic axis, was observed. Furthermore, Fab injections were capable of rescuing dorsal features in UV-ventralized embryos. Similar phenotypes have been observed in misexpression studies of the Wnt and other gene products, suggesting that beta-catenin participates in a signaling pathway which specifies embryonic patterning.
Collapse
Affiliation(s)
- P D McCrea
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York 10021
| | | | | |
Collapse
|
38
|
Rosenthal E. Identification of homologues to beta-catenin/plakoglobin/armadillo in two invertebrates, Urechis caupo and Tripneustes gratilla. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:337-41. [PMID: 8318544 DOI: 10.1016/0167-4781(93)90134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
beta-Catenin and plakoglobin are intracellular proteins that participate in cell-cell adhesion, probably through interaction with the cadherin family of transmembrane adhesion proteins. They are also homologous to the segment polarity gene, armadillo, from Drosophila. I have cloned and sequenced armadillo/beta-catenin/plakoglobin homologues from two other invertebrates, Urechis caupo and Tripneustes gratilla, and shown that the mRNA is present in oocytes, eggs and early embryos. In Urechis, the mRNA is particularly abundant in oocytes, but is not translated until after fertilization. These results provide further indications that cell adhesion proteins play a key role during embryogenesis.
Collapse
Affiliation(s)
- E Rosenthal
- Pacific Biomedical Research Center, University of Hawaii, Honolulu
| |
Collapse
|
39
|
Schneider S, Herrenknecht K, Butz S, Kemler R, Hausen P. Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system. Development 1993; 118:629-40. [PMID: 8223282 DOI: 10.1242/dev.118.2.629] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the course of an analysis of cell-cell adhesion in the Xenopus embryo, antibodies directed against alpha- and beta-catenin were applied to investigate their relation to the cadherins occurring early in this system. The results demonstrate that alpha- and beta-catenin are provided maternally and increase in amount throughout embryogenesis. Immunoprecipitations indicate that both of the catenins are complexed to U-cadherin in the early phase of embryogenesis and to E-cadherin, when it appears during gastrulation. An excess of alpha-catenin occurs in free form in the early embryo, whereas all of the beta-catenin seems to be complexed to cadherin. Synthesis of the two components throughout early embryogenesis and their binding to newly synthesized cadherins were demonstrated by metabolic labelling. The spatial distribution of alpha-catenin was analysed by immunohistology. During cleavage alpha-catenin is deposited evenly along the plasma membranes within the embryo, while the cell peripheries at the surface of the embryo remain devoid of alpha-catenin. At later stages, the pattern of alpha-catenin distribution becomes more complex. Quantitative differences in the intensity of staining along the plasma membranes in the different regions of the embryo can be distinguished. Particularly the appearance of E-cadherin in the gastrula ectoderm is accompanied by conspicuous depositions of alpha-catenin along the respective plasma membranes in this layer. All cells in the later embryo, apart from the neural crest cells, carry alpha-catenin on their plasma membranes indicating the universal character of cadherin-mediated cell-cell adhesion in the Xenopus embryo.
Collapse
Affiliation(s)
- S Schneider
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG
| | | | | | | | | |
Collapse
|
40
|
Moon RT. In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis. Bioessays 1993; 15:91-7. [PMID: 8471061 DOI: 10.1002/bies.950150204] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Wnts are a recently described family of secreted glycoproteins related to the Drosophila segment polarity gene, wingless, and to the proto-oncogene, int-1. Wnts are thought to function as developmental modulators, with signalling distances of only a few cell diameters. In Xenopus, at least six Wnts, including Xwnts-1, -3A, and -4, are expressed initially in the developing central nervous system, with some regions expressing multiple Xwnts. Xwnt-8 is expressed by mid-blastula stage, in ventral and lateral mesoderm. Xwnt-5A mRNAs are stored in the egg, and later are expressed throughout the embryo in both ectoderm and mesoderm, but with a pronounced enrichment in the head and tail. Recent studies in Xenopus have pursued the diverse roles of Xwnts in early development, the mechanisms by which Xwnts signal information between cells, and the cell physiological responses to Xwnt signals.
Collapse
Affiliation(s)
- R T Moon
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195
| |
Collapse
|