1
|
Venzi M, Di Giovanni G, Crunelli V. A critical evaluation of the gamma-hydroxybutyrate (GHB) model of absence seizures. CNS Neurosci Ther 2015; 21:123-40. [PMID: 25403866 PMCID: PMC4335601 DOI: 10.1111/cns.12337] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
Typical absence seizures (ASs) are nonconvulsive epileptic events which are commonly observed in pediatric and juvenile epilepsies and may be present in adults suffering from other idiopathic generalized epilepsies. Our understanding of the pathophysiological mechanisms of ASs has been greatly advanced by the availability of genetic and pharmacological models, in particular the γ-hydroxybutyrate (GHB) model which, in recent years, has been extensively used in studies in transgenic mice. GHB is an endogenous brain molecule that upon administration to various species, including humans, induces not only ASs but also a state of sedation/hypnosis. Analysis of the available data clearly indicates that only in the rat does there exist a set of GHB-elicited behavioral and EEG events that can be confidently classified as ASs. Other GHB activities, particularly in mice, appear to be mostly of a sedative/hypnotic nature: thus, their relevance to ASs requires further investigation. At the molecular level, GHB acts as a weak GABA-B agonist, while the existence of a GHB receptor remains elusive. The pre- and postsynaptic actions underlying GHB-elicited ASs have been thoroughly elucidated in thalamus, but little is known about the cellular/network effects of GHB in neocortex, the other brain region involved in the generation of ASs.
Collapse
Affiliation(s)
- Marcello Venzi
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
| | - Giuseppe Di Giovanni
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
- Department of Physiology and BiochemistryMalta UniversityMsida, Malta
| | - Vincenzo Crunelli
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
| |
Collapse
|
2
|
GHB receptor targets in the CNS: Focus on high-affinity binding sites. Biochem Pharmacol 2014; 87:220-8. [DOI: 10.1016/j.bcp.2013.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 12/13/2022]
|
3
|
Carter LP, Koek W, France CP. Behavioral analyses of GHB: receptor mechanisms. Pharmacol Ther 2008; 121:100-14. [PMID: 19010351 DOI: 10.1016/j.pharmthera.2008.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022]
Abstract
GHB is used therapeutically and recreationally, although the precise mechanism of action responsible for its different behavioral effects is not entirely clear. The purpose of this review is to summarize how behavioral procedures, especially drug discrimination procedures, have been used to study the mechanism of action of GHB. More specifically, we will review several different drug discrimination procedures and discuss how they have been used to qualitatively and quantitatively study different components of the complex mechanism of action of GHB. A growing number of studies have provided evidence that the behavioral effects of GHB are mediated predominantly by GABAB receptors. However, there is also evidence that the mechanisms mediating the effects of GHB and the prototypical GABAB receptor agonist baclofen are not identical, and that other mechanisms such as GHB receptors and subtypes of GABAA and GABAB receptors might contribute to the effects of GHB. These findings are consistent with the different behavioral profile, abuse liability, and therapeutic indications of GHB and baclofen. A better understanding of the similarities and differences between GHB and baclofen, as well as the pharmacological mechanisms of action underlying the recreational and therapeutic effects of GHB, could lead to more effective medications with fewer adverse effects.
Collapse
|
4
|
Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 2005; 68:1479-87. [PMID: 15451390 DOI: 10.1016/j.bcp.2004.07.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The GABA(B) receptor antagonist SGS742 (CGP36742) displays pronounced cognition enhancing effects in mice, young and old rats and in Rhesus monkeys in active and passive avoidance paradigms, in an eight-arm radial maze and a Morris water maze and in a social learning task. SGS742 blocks the late inhibitory postsynaptic potential and the paired-pulse inhibition of population spikes recorded from CA1 pyramidal neurons of the hippocampus of rats in vitro and in vivo. SGS742 significantly enhances the release of glutamate, aspartate, glycine and somatostatin in vivo. Chronic administration of SGS742 causes an up-regulation of GABA(B) receptors in the frontal cortex of rats. Single doses cause a significant enhancement of the mRNA and protein levels of NGF and BDNF in the cortex and hippocampus of rats. The observed antidepressant effects of SGS742 in rats may be explained by these findings. SGS742 was well tolerated in experimental animals as well as in young and elderly human volunteers with an absolute bioavailability in humans of 44%. In a Phase II double-blind, placebo-controlled study in 110 patients with mild cognitive impairment (MCI), oral administration of SGS742 at a dose of 600 mg t.i.d. for 8 weeks significantly improved attention, in particular choice reaction time and visual information processing as well as working memory measured as pattern recognition speed. A second Phase II clinical trial in 280 Alzheimer's disease patients is underway.
Collapse
Affiliation(s)
- Wolfgang Froestl
- Neuroscience Research, Novartis Pharma AG, WKL-136.5.25, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Brancucci A, Berretta N, Mercuri NB, Francesconi W. Presynaptic modulation of spontaneous inhibitory postsynaptic currents by gamma-hydroxybutyrate in the substantia nigra pars compacta. Neuropsychopharmacology 2004; 29:537-43. [PMID: 14603269 DOI: 10.1038/sj.npp.1300344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of GABA release from the inhibitory input to dopamine cells in the substantia nigra pars compacta (SNc) plays a key role in different reward-related behaviors. Gamma-hydroxybutyrate (GHB) has therapeutical properties in various psychiatric disorders, especially in alcohol abuse. GHB is also used as a drug of abuse, which induces sedation and euphoria. Using whole-cell patch-clamp recordings, we studied the effects of GHB on GABA release in the SNc by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in brain slices of 21- to 25-day-old rats. We found that GHB depressed the frequency and amplitude of sIPSCs, while the frequency and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs), recorded in the presence of TTX, were not affected. However, in the presence of high extracellular potassium (15 mM), which increases the contribution of voltage-dependent calcium channels, GHB induced a reduction in the frequency of the mIPSCs without any effect on their amplitude. All of these effects were GABA(B)-independent and they were blocked by the GHB receptor antagonist NCS-382. The present results indicate that GHB inhibits spontaneous inhibitory synaptic transmission recorded from dopaminergic neurons in the SNc likely by reducing voltage-dependent calcium influx involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Fisiologia e Biochimica 'G Moruzzi', Università di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
6
|
Brancucci A, Berretta N, Mercuri NB, Francesconi W. Gamma-hydroxybutyrate and ethanol depress spontaneous excitatory postsynaptic currents in dopaminergic neurons of the substantia nigra. Brain Res 2004; 997:62-6. [PMID: 14715150 DOI: 10.1016/j.brainres.2003.10.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-hydroxybutyrate (GHB) has been shown to have therapeutical properties in various psychiatric disorders, especially in alcohol abuse, and to mimic different actions of ethanol at the cellular and system level. Using whole-cell patch-clamp recordings on brain slices of 21- to 25-day-old rats, the present study investigated the effects of GHB and ethanol on spontaneous excitatory postsynaptic currents (sEPSCs) in dopaminergic neurons of the substantia nigra pars compacta (SNc). sEPSCs are an index of glutamate release from the excitatory input to dopamine cells, which play a key role in different reward-related behaviors. We found that GHB and ethanol depressed both the frequency and the amplitude of sEPSCs. These effects were GABA(B)-independent and the GHB-induced depression was blocked by the GHB receptor antagonist 6,7,8,9-tetrahydro-5[H]benzocyclohepte-5-ol-4-ylidene acetic acid (NCS-382), pointing to a specific effect of this drug. The effects of ethanol were not affected by NCS-382. This study indicates that GHB and ethanol share the effect of reducing the efficacy of excitatory glutamatergic neurotransmission in the SNc by acting through different mechanisms.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
7
|
Andriamampandry C, Taleb O, Viry S, Muller C, Humbert JP, Gobaille S, Aunis D, Maitre M. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J 2003; 17:1691-3. [PMID: 12958178 DOI: 10.1096/fj.02-0846fje] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gamma-hydroxybutyrate (GHB) is an endogenous neuromodulator with therapeutical applications in anesthesia, sleep disorders, and drug addiction. We report the cloning of a GHB receptor from a rat hippocampal cDNA library. This receptor has a molecular mass of 56 kDa and belongs to the seven-transmembrane receptor family. The peptidic sequence has no significant homology with any known receptor, including GABA(B) receptors. Its mRNA is restricted to the brain and is particularly abundant in the hippocampus, cortex, striatum, thalamus, olfactory bulbs, and cerebellum, matching the distribution of GHB binding sites in rat brain. Southern blot revealed the presence of homologous sequences in several species including the human. Binding assays on transfected CHO cells showed a dissociation constant (Kd) of 426 nM for GHB and no affinity for GABA, baclofen, or glutamate. In patch-clamp experiments, transfected CHO cells revealed a functional G-protein-coupled receptor as demonstrated by GTP-gamma-S-induced irreversible activation. Application of 0.1-15 microM GHB specifically induced an inward current at negative membrane potentials that was not reproduced by application of baclofen (10 microM). CGP-55845, a GABA(B) receptor antagonist, did not inhibit the GHB-induced response nor did the GHB receptor antagonist NCS-382, suggesting that the GHB receptor system includes several subtypes.
Collapse
Affiliation(s)
- Christian Andriamampandry
- Institut de Chimie Biologique and INSERM U-575, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kemmel V, Taleb O, Andriamampandry C, Aunis D, Maitre M. Gamma-hydroxybutyrate receptor function determined by stimulation of rubidium and calcium movements from NCB-20 neurons. Neuroscience 2003; 116:1021-31. [PMID: 12617943 DOI: 10.1016/s0306-4522(02)00662-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gamma-Hydroxybutyrate is derived from GABA in brain and plays specific functional roles in the CNS. It is thought to exert a tonic inhibitory control on dopamine and GABA release in certain brain areas, through specific gamma-hydroxybutyrate receptors. Apart from modifying certain calcium currents, the specific transduction mechanism induced by stimulation of gamma-hydroxybutyrate receptors remains largely unknown. We investigated the possible contribution of K(+) channels to the hyperpolarization phenomena generally induced by gamma-hydroxybutyrate in brain, by monitoring (86)Rb(+) movements in a neuronal cell line (NCB-20 cells), which expresses gamma-hydroxybutyrate receptors. Physiological concentrations of gamma-hydroxybutyrate (5-25 microM) induce a slow efflux of (86)Rb(+), which peaks at 5-15 min and returns to baseline levels 20 min later after constant stimulation. This effect can be reproduced by the gamma-hydroxybutyrate receptor agonist NCS-356 and blocked by the gamma-hydroxybutyrate receptor antagonist 6,7,8,9-tetrahydro-5-[H]-benzocycloheptene-5-ol-4-ylidene. The GABA(B) receptor antagonist CGP 55845 has no effect on gamma-hydroxybutyrate-induced (86)Rb(+) efflux. The pharmacology of this gamma-hydroxybutyrate-dependent efflux of (86)Rb(+) is in favor of the involvement of tetraethylammonium and charybdotoxin insensitive, apamin sensitive Ca(2+) activated K(+) channels, identifying them as small conductance calcium activated channels. We demonstrated a gamma-hydroxybutyrate dose-dependent entry of calcium ions into NCB-20 neuroblastoma cells at resting potential. Electrophysiological data showed that this Ca(2+) entry corresponded mainly to a left-hand shift of the current/voltage relation of the T-type calcium channel. This process must at least partially trigger small conductance calcium activated channel activation leading to gamma-hydroxybutyrate-induced hyperpolarization.
Collapse
Affiliation(s)
- V Kemmel
- Institut de Chimie Biologique and INSERM U-338, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
9
|
Maitre M, Andriamampandry C, Kemmel V, Schmidt C, Hodé Y, Hechler V, Gobaille S. Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol 2000; 20:277-83. [PMID: 10869870 DOI: 10.1016/s0741-8329(99)00092-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gamma-hydroxybutyric acid was synthesized 35 years ago to obtain a GABAergic substance that penetrates the brain freely. Since then, gamma-hydroxybutyric acid has been used in human beings for its sedative and anesthetic properties when administered at high doses, and most of the studies on gamma-hydroxybutyric acid have focused on its pharmacological effects. However, gamma-hydroxybutyric acid is also an endogenous substance, which is synthesized and released in the brain by specific neuronal pathways, implicated in the control of the GABAergic, dopaminergic, and opioid systems. This control is mediated by specific gamma-hydroxybutyric acid receptors with a unique distribution in brain and a specific ontogenesis and pharmacology. Stimulation of these receptors induces specific cellular responses. Taken together, these results suggest that gamma-hydroxybutyric acid possesses most of the properties required of a neurotransmitter/neuromodulator in the brain.
Collapse
Affiliation(s)
- M Maitre
- Institute of Biochemistry and ER 2072 CNRS Faculty of Medicine, 11 Rue Humann, 67085, Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cash CD, Gobaille S, Kemmel V, Andriamampandry C, Maitre M. Gamma-hydroxybutyrate receptor function studied by the modulation of nitric oxide synthase activity in rat frontal cortex punches. Biochem Pharmacol 1999; 58:1815-9. [PMID: 10571257 DOI: 10.1016/s0006-2952(99)00265-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous results have shown that stimulation of the gamma-hydroxybutyrate (GHB) receptor modulates Ca2+ channel permeability in cell cultures. In order to confirm this result, we investigated the consequence of GHB receptor stimulation on nitric oxide synthase (NOS) activity in rat brain cortical punches rich in GHB receptors. The stimulation of these receptors by increasing amounts of GHB induced a progressive decrease in NOS activity. However, for GHB doses above 10 microM, this reduction was progressively lost, either after receptor desensitization or after stimulation of an additional class of GHB receptor having lower affinity. The effect of GHB was reproduced by the GHB receptor agonist NCS-356 and blocked by the GHB receptor antagonist NCS-382. The GHB-induced effect on Ca2+ movement was additive to those produced by veratrine, indicating that GHB modulates a specific Ca2+ conductance, which explains the modification in NOS activity and the increase in cyclic guanosine monophosphate levels previously reported.
Collapse
Affiliation(s)
- C D Cash
- Institut de Chimie Biologique and ER 2072 CNRS, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Berton F, Brancucci A, Beghè F, Cammalleri M, Demuro A, Francesconi W, Gessa GL. Gamma-Hydroxybutyrate inhibits excitatory postsynaptic potentials in rat hippocampal slices. Eur J Pharmacol 1999; 380:109-16. [PMID: 10513569 DOI: 10.1016/s0014-2999(99)00515-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-Hydroxybutyrate (GHB) has been shown to mimic different central actions of ethanol, to suppress alcohol withdrawal syndrome, and to reduce alcohol consumption both in rats and in humans. The aim of the present study was to determine if GHB shared with alcohol the ability to inhibit glutamate action at both NMDA and AMPA/kainate receptors. The NMDA or the AMPA/kainate receptors-mediated postsynaptic potentials were evoked in CA1 pyramidal neurons by stimulation of Schaffer-collateral commissural fibers in the presence of CGP 35348, bicuculline to block the GABA(B) and GABA(A) receptors, and 10 microM 6,7-dinitroquinoxaline-2,3-dione (DNQX) or 30 microM DL-2-amino-5-phosphonovalerate (d-APV) to block AMPA/kainate or NMDA receptors, respectively. GHB (600 microM) produced a depression of both NMDA and AMPA/kainate receptors-mediated excitatory postsynaptic potentials with recovery on washout. The GHB receptors antagonist, NCS-382, at the concentration of 500 microM had no effect per se on these responses but prevented the depressant effect of GHB (600 microM) on the NMDA and AMPA/kainate-mediated responses. In the paired-pulse experiments, GHB (600 microM) depressed the amplitude of the first and the second evoked AMPA/kainate excitatory postsynaptic potentials, and significantly increased the paired-pulse facilitation (PPF). These results suggest that GHB inhibits excitatory synaptic transmission at Schaffer-collateral commissural-pyramidal neurons synapses by decreasing the probability of release of glutamate.
Collapse
Affiliation(s)
- F Berton
- Department of Physiology and Biochemistry G Moruzzi, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Kemmel V, Taleb O, Perard A, Andriamampandry C, Siffert JC, Mark J, Maitre M. Neurochemical and electrophysiological evidence for the existence of a functional gamma-hydroxybutyrate system in NCB-20 neurons. Neuroscience 1998; 86:989-1000. [PMID: 9692734 DOI: 10.1016/s0306-4522(98)00085-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clonal neurohybridoma NCB-20 cells express a valproate-insensitive succinic semialdehyde reductase activity that transforms succinic semialdehyde into gamma-hydroxybutyrate. This activity (1.14+/-0.16 nmol/min/mg protein) was similar to the lowest activity existing in adult rat brain. [3H]gamma-Hydroxybutyrate labels a homogeneous population of sites on NCB-20 cell membranes (Kd=250+/-44.4nM, Bmax=180+/-16.2fmol/mg protein) that apparently represents specific gamma-hydroxybutyrate binding sites characterized previously on brain cell membranes. Finally, an Na+-dependent uptake of [3H]gamma-hydroxybutyrate was expressed in NCB-20 cells with a Km of 35+21.1 microM and a Vmax of 80+/-14.2 pmol/min/mg protein. A three-day treatment with 1 mM dibutyryl-cyclic-AMP induced a three-fold increase in the cellular succinic semialdehyde reductase activity. In parallel, a K+-evoked release of [3H]gamma-hydroxybutyrate occurred. This release was Ca2+ dependent and was not present in undifferentiated cells. Cyclic-AMP treatment induced a decrease of [3H]gamma-hydroxybutyrate binding sites, which could be due to spontaneous gamma-hydroxybutyrate release. Patch-clamp experiments carried out on differentiated NCB-20 cells revealed the presence of Ca2+ conductances which were partially inhibited by 50 microM gamma-hydroxybutyrate. This gamma-hydroxybutyrate-induced effect was blocked by the gamma-hydroxybutyrate receptor antagonist NCS-382, but not by the GABA(B) antagonist CGP-55845. These results demonstrate the presence of an active gamma-hydroxybutyratergic system in NCB-20 cells which possesses the ability to release gamma-hydroxybutyrate. These cells express specific gamma-hydroxybutyrate receptors which modulate Ca2+ currents independently of GABA(B) receptors.
Collapse
Affiliation(s)
- V Kemmel
- Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 CNRS, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 1997; 51:337-61. [PMID: 9089792 DOI: 10.1016/s0301-0082(96)00064-0] [Citation(s) in RCA: 367] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
gamma-Hydroxybutyrate is a metabolite of GABA which is synthesized and accumulated by neurons in brain. This substance is present in micromolar quantities in all brain regions investigated as well as in several peripheral organs. Neuronal depolarization releases gamma-hydroxybutyrate into the extracellular space in a Ca(2+)-dependent manner. Gamma-hydroxybutyrate high-affinity receptors are present only in neurons, with a restricted specific distribution in the hippocampus, cortex and dopaminergic structures of rat brain (the striatum in general, olfactory bulbs and tubercles, frontal cortex, dopaminergic nuclei A9, A10 and A12). Stimulation of these receptors with low amounts of gamma-hydroxybutyrate induces in general hyperpolarizations in dopaminergic structures with a reduction of dopamine release. However, in the hippocampus and the frontal cortex, it seems that gamma-hydroxybutyrate induces depolarization with an accumulation of cGMP and an increase in inositol phosphate turnover. Some of the electrophysiological effects of GHB are blocked by NCS-382, a gamma-hydroxybutyrate receptor antagonist while some others are strongly attenuated by GABAB receptors antagonists. Gamma-hydroxybutyrate penetrates freely into the brain when administered intravenously or intraperitoneally. This is a unique situation for a molecule with signalling properties in the brain. Thus, the gamma-hydroxybutyrate concentration in brain easily can be increased more than 100 times. Under these conditions, gamma-hydroxybutyrate receptors are saturated and probably desensitized and down-regulated. It is unlikely that GABAB receptors could be stimulated directly by GHB. Most probably, GABA is released in part under the control of GHB receptors in specific pathways expressing GABAB receptors. Alternatively, GABAB receptors might be specifically stimulated by the GABA formed via the metabolism of gamma-hydroxybutyrate in brain. In animals and man, these GHBergic and GABAergic potentiations induce dopaminergic hyperactivity (which follows the first phase of dopaminergic terminal hyperpolarization), a strong sedation with anaesthesia and some EEG changes with epileptic spikes. It is presumed that, under pathological conditions (hepatic failure, alcoholic intoxication, succinic semialdehyde dehydrogenase defects), the rate of GHB synthesis or degradation in the peripheral organ is modified and induces increased GHB levels which could interfere with the normal brain mechanisms. This pathological status could benefit from treatments with gamma-hydroxybutyric and/or GABAB receptors antagonists. Nevertheless, the regulating properties of the endogenous gamma-hydroxybutyrate system on the dopaminergic pathways are a cause for the recent interest in synthetic ligands acting specifically at gamma-hydroxybutyrate receptors and devoid of any role as metabolic precursor of GABA in brain.
Collapse
Affiliation(s)
- M Maitre
- Centre de Neurochimie, Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 CNRS, Strasbourg, France.
| |
Collapse
|
14
|
Abstract
Gamma hydroxybutyrate (GHB) is primarily known and used as a relatively specific inhibitor of central DA release. However, it is also widely assumed to be an agonist or prodrug of gamma-aminobutyric acid (GABA) and its central activity has been attributed to an action exerted at GABA receptors. Nevertheless, there is compelling evidence that: (1) GHB formation may occur independently of GABA; (2) GHB is behaviorally, biochemically and physiologically distinct from GABA in many ways, and does not consistently effect GABAA or GABAB agonist induced responses; (3) GHB has little effect on either GABAA or GABAB receptors at less than millimolar concentrations. Consequently, GHB does not appear to be either a GABA prodrug or a GABA agonist. However, the GHB metabolite gamma butyrolactone (GBL) may possess some limited GABA agonist activity.
Collapse
Affiliation(s)
- J J Feigenbaum
- American Institute of Biotechnology, Department of Research and Development, Elk Grove Village, IL 60007, USA
| | | |
Collapse
|
15
|
Ratomponirina C, Hodé Y, Hechler V, Maitre M. gamma-Hydroxybutyrate receptor binding in rat brain is inhibited by guanyl nucleotides and pertussis toxin. Neurosci Lett 1995; 189:51-3. [PMID: 7603625 DOI: 10.1016/0304-3940(95)11434-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
gamma-Hydroxybutyrate is an endogenous substance of mammalian brain which is primarily derived from GABA. This compound exhibits neuromodulatory influences on dopamine and serotonin synthesis and release in rat brain. These effects are mediated by specific brain receptors which are mainly distributed in the hippocampus, cortex and striatum. In order to characterize this type of receptor, we have studied the possibility that guanosine triphosphate (GTP) and/or pertussis toxin mediated modification of the affinity for gamma-hydroxybutyrate binding to the receptor. Results presented in this paper favor the presence of guanine nucleotide binding proteins (G0 or Gi family), which are coupled to the gamma-hydroxybutyrate receptor, modifying the high-affinity gamma-hydroxybutyrate binding. We conclude that the gamma-hydroxybutyrate receptor in brain belongs to the G-protein family of receptors.
Collapse
|
16
|
Brankack J, Lahtinen H, Koivisto E, Riekkinen PJ. Epileptogenic spikes and seizures but not high voltage spindles are induced by local frontal cortical application of gamma-hydroxybutyrate. Epilepsy Res 1993; 15:91-9. [PMID: 8370355 DOI: 10.1016/0920-1211(93)90090-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Combining the methods of microdialysis and EEG recording, we have examined the effect of unilaterally, intracortically applied gamma-hydroxybutyrate (GHB) on frontal cortical EEG activity in freely moving rats. GHB, a natural endogenous GABA metabolite, is known to induce rhythmic spike and wave activity, resembling generalized petit mal epilepsy. Without GHB, spontaneous high voltage spindles (HVS, 6-9 Hz) were observed during awake and immobile behavior in most of the animals (HVS rats), while others never had any HVS. In those both groups of animals intracortical application of GHB induced epileptogenic spikes (< 0.5 Hz) behaviorally accompanied by occasional myoclonic jerks and epileptic discharges (< 2 Hz) with behavioral convulsions and contraversive movements towards the left hindlimb (seizures) but did not induce HVS or spike and waves, as reported after systemic application. In the group of rats with spontaneous occurring HVS the amplitude of the HVS on the side of the microdialysis probe was suppressed by GHB and GHB-induced spikes invading the contralateral cortex frequently triggered and terminated local HVS. The results point to different neural mechanisms for the generation of HVS and spikes and epileptic discharges (seizures) induced after local intracortical application of GHB.
Collapse
Affiliation(s)
- J Brankack
- Department of Neurology, University of Kuopio, Finland
| | | | | | | |
Collapse
|
17
|
Snead OC, Liu CC. GABAA receptor function in the gamma-hydroxybutyrate model of generalized absence seizures. Neuropharmacology 1993; 32:401-9. [PMID: 8388552 DOI: 10.1016/0028-3908(93)90163-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
gamma-Hydroxybutyric acid (GHB) produces absence-like seizures when given to animals. One of the distinguishing characteristics of experimental generalized absence seizures is that they are exacerbated by GABAA agonists. Therefore, the hypothesis that GHB-induced absence seizures result from an interaction between GHB and the GABAA receptor complex was tested. The effect of GHB on the function of various components of the GABAA receptor complex in the cortex of the rat, was determined in a series of in vitro experiments. Similar studies were carried out at various times following systemic administration of the prodrug of GHB, gamma-butyrolactone (GBL) and changes in the GABAA receptor were correlated with electrographic and behavioral changes. gamma-Hydroxybutyric acid had no effect on the binding of [3H]muscimol, [3H]flunitrazepam and [35S]t-butylbicyclophosphorothionate (TBPS) or on the uptake of 36Cl- into synaptoneurosomes in the in vitro studies. Nor were changes observed after the administration of GBL before the onset of GHB-induced absence seizures. However, at the onset of GHB-induced spike wave discharge, there was a significant (P < 0.04) decrease in the binding of [35S]TBPS, associated with a significant decrease in muscimol-stimulated uptake of 36Cl- with no other biochemical change. One minute after onset of GHB-induced absence seizure, a significant (P < 0.05) increase in the binding of [3H]muscimol was noted. Ten minutes later the decrease in muscimol-stimulated uptake of 36Cl- had normalized, while the changes in binding of [3H]muscimol and [35S]TBPS persisted. Because GABAA function remained unchanged in the in vitro studies, as well as prior to the onset of GHB-induced absence seizures in the in vivo experiments, these studies do not support the hypothesis that GHB interacts directly with the GABAA receptor complex to produce absence-like seizures.
Collapse
Affiliation(s)
- O C Snead
- Division of Neurology, Childrens Hospital Los Angeles, California
| | | |
Collapse
|
18
|
Lahtinen H, Brankack J, Koivisto E, Riekkinen PJ. Somatostatin release in rat neocortex during gamma-hydroxybutyrate-provoked seizures: Microdialysis combined with EEG recording. Brain Res Bull 1992; 29:837-41. [PMID: 1361875 DOI: 10.1016/0361-9230(92)90152-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gamma-hydroxybutyrate (GHB) was intracortically applied in two doses (first 10 and then 20 mg/ml) to awake Wistar rats using microdialysis. Simultaneously, EEG and the release of somatostatin-like immunoreactivity (SLI) were measured from the frontal cortex. Intracerebrally administered GHB induced cortical epileptogenic spikes, but not high voltage spindles (HVS) as reported after systemic administration, and seizures with myoclonic jerks and contraversive head movements. Compared to the basal level, GHB (10 mg/ml) initially increased the release of SLI (p < 0.05). However, when the frequency of spikes and seizures rose rapidly (p < 0.001), SLI release decreased significantly (p < 0.001). Minimum release of SLI occurred when seizures were most frequent (during perfusion with 20 mg/ml GHB), while after removal of the drug it rose above the basal level (p < 0.05). According to these results, intracortically applied GHB increases the release of SLI in the surrounding tissue. However, further exposure of GHB leads to a manifestation of epileptic spikes and seizures, during which the release of SLI is significantly attenuated. This suggests that release of somatostatin is affected during epileptic phenomena induced also by intracortical GHB application.
Collapse
Affiliation(s)
- H Lahtinen
- Department of Neurology, University of Kuopio, Finland
| | | | | | | |
Collapse
|
19
|
Abstract
1. Administration of the endogenous compound gamma-hydroxybutyric acid (GHB) can induce a sleep-like state in experimental animals and, indeed, it has been used as a general anaesthetic in clinical medicine. 2. Although GHB appears to be a CNS depressant, there is evidence it possesses epileptiform activity resembling petit mal epilepsy. In the brain GHB is evidently derived from GABA, the final step being catalyzed by succinic semialdehyde reductase, a cytosolic NADP(+)-dependent enzyme. 3. Two different oxidoreductases, GHB dehydrogenase and hydroxyacid-ketoacid dehydrogenase, acting independently, are responsible for the reverse reaction when GHB is being metabolically inactivated. 4. Brain contains a Na(+)-dependent GHB uptake system which exhibits two components, one with a Km of 46 microM and the other with a Km of 325 microM. GHB also binds to receptor sites in brain homogenates and exhibits two distinct affinities. One binding site displays a Kd of 95 nM whereas the second site has a Kd of 16 microM. Binding to both sites is inhibited in the presence of NCS-382, a GHB receptor antagonist. 5. GHB might play a role as a neurotransmitter, particularly being involved in influencing dopamine release in the substantia nigra.
Collapse
Affiliation(s)
- G Tunnicliff
- Laboratory of Neurochemistry, Indiana University School of Medicine, Evansville 47712
| |
Collapse
|
20
|
Xie X, Smart TG. Gamma-hydroxybutyrate hyperpolarizes hippocampal neurones by activating GABAB receptors. Eur J Pharmacol 1992; 212:291-4. [PMID: 1318216 DOI: 10.1016/0014-2999(92)90347-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
gamma-Hydroxybutyrate, a naturally occurring substance present in the mammalian central nervous system caused a dose-dependent (0.25-10 mM) hyperpolarization and small membrane conductance increase when applied to hippocampal CA1 pyramidal neurones in vitro. This action was reversibly inhibited by the GABAB antagonist, CGP 35348 (20-100 microM) and divalent cations, Zn2+ and Ba2+, but not by the GABAA antagonist bicuculline (50 microM). These results suggest that GABAB receptors may mediate the actions of gamma-hydroxybutyrate.
Collapse
Affiliation(s)
- X Xie
- Department of Pharmacology, School of Pharmacy, London, U.K
| | | |
Collapse
|
21
|
Snead OC, Nichols AC, Liu CC. gamma-Hydroxybutyric acid binding sites: interaction with the GABA-benzodiazepine-picrotoxin receptor complex. Neurochem Res 1992; 17:201-4. [PMID: 1311434 DOI: 10.1007/bf00966800] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of three compounds known to allosterically modulate binding to the GABA/benzodiazepine/picrotoxin receptor complex on 4-hydroxy-2,3 [3H]butyric acid (GHB) binding was investigated. Pentobarbital, pentylenetetrazole, and picrotoxin enhanced [3H]GHB binding in a dose dependent fashion. Pentobarbital enhanced 4-hydroxy-2,3 [3H]butyric acid binding was associated with an increase in Bmax while pentylenetetrazole and picrotoxin altered the affinity of GHB for its binding site producing a decrease in Kd. These findings suggest that the GHB and GABA receptor complex may share certain moieties in common.
Collapse
Affiliation(s)
- O C Snead
- Division of Neurology, Childrens Hospital, Los Angeles, California
| | | | | |
Collapse
|
22
|
Diana M, Mereu G, Mura A, Fadda F, Passino N, Gessa G. Low doses of gamma-hydroxybutyric acid stimulate the firing rate of dopaminergic neurons in unanesthetized rats. Brain Res 1991; 566:208-11. [PMID: 1814536 DOI: 10.1016/0006-8993(91)91700-b] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In unanesthetized rats the intravenous (i.v.) administration of gamma-hydroxybutyric acid (GHB) at the doses of 50-400 mg/kg produced a dose-related stimulation (10-56%) of the firing rate of dopaminergic (DA) neurons in the pars compacta of the substantia nigra. Doses of 1000 and 1500 mg/kg inhibited the firing rate almost completely. In unanesthetized rats the intraperitoneal injection of GHB at the dose of 750 mg/kg produced a brief initial stimulation (23%) followed by a modest reduction in the firing rate (29%). On the other hand, in chloral hydrate-anesthetized rats the i.v. administration of GHB at cumulative doses of up to 200 mg/kg failed to modify the firing rate of DA neurons, while a cumulative dose of 400 mg/kg suppressed neuronal firing. The results indicate that sub-anesthetic doses of GHB stimulate the firing rate of DA neurons in unanesthetized rats.
Collapse
Affiliation(s)
- M Diana
- Dipartimento di Neuroscienze B.B. Brodie, Università di Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Serra M, Sanna E, Foddi C, Concas A, Biggio G. Failure of gamma-hydroxybutyrate to alter the function of the GABAA receptor complex in the rat cerebral cortex. Psychopharmacology (Berl) 1991; 104:351-5. [PMID: 1718012 DOI: 10.1007/bf02246035] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was designed to evaluate the possible interaction of gamma-hydroxybutyrate (GHB) with the GABAA receptor complex in the rat cerebral cortex. To this purpose we studied the effect of in vitro addition and in vivo administration of GHB on the biochemical parameters currently used to evaluate the function of the GABAergic system. In vitro addition of increasing concentrations of GHB failed to modify [3H]flunitrazepam ([3H]FNZ) binding and the modulatory action of GABA on this binding. Moreover, unlike diazepam, GHB did not modify in vitro both muscimol-stimulated 36Cl- uptake and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat cerebral cortex. In vivo administration of sedative and hypnotic doses of GHB (300-750 mg/kg IP) failed to induce in 60 min any significant change in the [35S]TBPS binding to unwashed cortical membranes. Moreover, GHB also failed to antagonize the increase in [35S]TBPS binding (+55%) induced by isoniazid (350 mg/kg SC). In contrast, at the highest doses used, this drug completely antagonized the seizure activity induced by isoniazid. In conclusion, our data show that GHB fails to alter the function of the GABAA/benzodiazepine/ionophore receptor complex in the rat cerebral cortex.
Collapse
Affiliation(s)
- M Serra
- Department of Experimental Biology, University of Cagliari, Bernardo Loddo, Italy
| | | | | | | | | |
Collapse
|
24
|
Abstract
Gammahydroxybutyrate is a naturally occurring metabolite of many mammalian tissues. Although its administration produces a wide range of pharmacological effects, its normal function has never been clearly defined. GHB can induce NREM and REM sleep, anaesthesia, hypothermia, and a trance-like state which has been considered a model for petit mal epilepsy. It markedly increases brain dopamine levels. It has been touted as a central neurotransmitter or neuromodulator, and high affinity brain receptors, as well as central mechanisms for its synthesis, uptake and release have been demonstrated in support of this. But GHB is also found in many peripheral tissues and in some of these in higher concentrations than in the brain. No explanation has been offered for its presence in these tissues. A number of studies indicate that GHB can reduce energy substrate consumption in both brain and peripheral tissues, and that it can protect these tissues from the damaging effects of anoxia or excessive metabolic demand. Indeed there is some evidence to suggest that endogenous GHB levels rise under these circumstances. GHB appears to act through the endogenous opioid system, since in the brain, at least, GHB raises dynorphin levels and its metabolic and pharmacological effects can be blocked by naloxone. These, and other observations detailed in this review, suggest that GHB may function naturally in the induction and maintenance of physiological states, like sleep and hibernation, in which energy utilization is depressed. GHB may also function naturally as an endogenous protective agent when tissue energy supplies are limited.
Collapse
Affiliation(s)
- M Mamelak
- Department of Psychiatry, Sunnybrook Medical Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
Harris NC, Webb C, Greenfield SA. The effects of gamma-hydroxybutyrate on the membrane properties of guinea-pig pars compacta neurons in the substantia nigra in vitro. Neuroscience 1989; 31:363-70. [PMID: 2797441 DOI: 10.1016/0306-4522(89)90380-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of gamma-hydroxybutyrate have been studied on the membrane properties of pars compacta neurons within the guinea-pig substantia nigra maintained in vitro. The effects of gamma-hydroxybutyrate are to (i) lower input resistance, (ii) hyperpolarize the cell membrane in a dose-dependent manner and (iii) facilitate calcium conductances. These effects are resistant to the blockade of sodium channels with tetrodotoxin and blockade of potassium channels with tetraethylammonium or 4-aminopyridine. Furthermore, these effects are only partially blocked by high doses of the GABA receptor antagonist bicuculline: indeed the effects of the GABA receptor agonist muscimol can be differentiated from those of gamma-hydroxybutyrate in that the latter is sensitive to application of barium ions. The results suggest that gamma-hydroxybutyrate acts to increase utilization of calcium, which in turn leads to an initiation of calcium-dependent events. The functional consequences of these effects of gamma-hydroxybutyrate are discussed with regard to its possible endogenous modulatory actions.
Collapse
Affiliation(s)
- N C Harris
- University Department of Pharmacology, Oxford, U.K
| | | | | |
Collapse
|
26
|
Snead OC, Nichols AC. gamma-Hydroxybutyric acid binding sites: evidence for coupling to a chloride anion channel. Neuropharmacology 1987; 26:1519-23. [PMID: 2446189 DOI: 10.1016/0028-3908(87)90173-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of eight anions, including chloride, on the binding of gamma-hydroxy[2,3-3H]butyric acid (GHB) to synaptosomal membranes of rat and human brain was ascertained, as was the effect of a number of other allosteric modulators of the GABA/benzodiazepine/picrotoxin complex. All ions which were active at the chloride ion channel, inhibited the binding of [3H]GHB in a dose-dependent manner, with maximum inhibition of binding being 60% of 300 mM concentration of anion. Inactive ions in this binding system included sulfate, acetate and fluoride, all impermeable to the chloride ion channel. The inhibition of binding was temperature-dependent, being abolished at 37 degrees C and was independent of the cation used. The binding of [3H]GHB was also enhanced by pentobarbital, picrotoxin and diazepam but unchanged in the presence of GABA, muscimol, bicuculline, baclofen or strychnine. These data raise the possibility that the epileptogenic effect of GHB may be modulated by an action on the chloride ion channel, that is tightly coupled to the GABA/benzodiazepine/picrotoxin and/or GHB receptor complex.
Collapse
Affiliation(s)
- O C Snead
- Department of Pediatrics, University of Alabama, School of Medicine, Birmingham
| | | |
Collapse
|
27
|
|
28
|
Hechler V, Bourguignon JJ, Wermuth CG, Mandel P, Maitre M. gamma-Hydroxybutyrate uptake by rat brain striatal slices. Neurochem Res 1985; 10:387-96. [PMID: 4000394 DOI: 10.1007/bf00964607] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
gamma-Hydroxybutyrate uptake by rat brain striatal slices was studied. The uptake was saturable with a Km of 702 +/- 107.10(-6) M. gamma-Hydroxybutyrate uptake was sodium dependent and inhibited by the omission of potassium. In addition, the effect of ouabain suggests that the transport is dependent on a cation gradient. Several analogues of gamma-hydroxybutyrate inhibit the transport system. GABA has no significant effect. This energy and cation dependent transport system is in favor of a transmitter or modulator role of gamma-hydroxybutyrate in the rat brain striatum.
Collapse
|
29
|
Abstract
Three problems with the dopamine hypothesis of major psychosis are pointed out: the long time-course of neuroleptic therapy; the absence of tolerance to the antipsychotic effects of neuroleptic drugs, or of a supersensitivity psychosis on drug withdrawal; and the absence of potent psychotogenic properties in the direct dopamine agonists. A resolution of these paradoxes is suggested relying on a role for dopamine in learning processes at a relatively high (cognitive) functional level. The hypothesis proposed is also used to explain the origin of some of the more distinctive psychotic symptoms.
Collapse
|
30
|
Hösli L, Hösli E, Lehmann R, Schneider J, Borner M. Action of gamma-hydroxybutyrate and GABA on neurones of cultured rat central nervous system. Neurosci Lett 1983; 37:257-60. [PMID: 6310452 DOI: 10.1016/0304-3940(83)90440-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
gamma-Hydroxybutyrate (GHB) and GABA caused a hyperpolarization of cultured spinal, brainstem and cerebellar neurones. When KCl electrodes were used, the hyperpolarizations were reversed to depolarizations, suggesting that the actions of GHB and GABA are associated with an increase in conductance for chloride ions. Both the hyperpolarizations and depolarizations by these compounds were accompanied by an increase in membrane conductance and were reversibly blocked by the GABA antagonist bicuculline. It is suggested that GHB might either exert its effects by mimicking the action of GABA, or act as neurotransmitter or neuromodulator in the mammalian CNS.
Collapse
|
31
|
Snead OC. On the sacred disease: the neurochemistry of epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1983; 24:93-180. [PMID: 6140245 DOI: 10.1016/s0074-7742(08)60221-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
|
33
|
Benavides J, Rumigny JF, Bourguignon JJ, Cash C, Wermuth CG, Mandel P, Vincendon G, Maitre M. High affinity binding sites for gamma-hydroxybutyric acid in rat brain. Life Sci 1982; 30:953-61. [PMID: 7070203 DOI: 10.1016/0024-3205(82)90624-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The existence of a specific synthesizing enzyme for gamma-hydroxybutyric acid in rat brain has recently been reported. Here, for the first time, we demonstrate the presence of a high affinity, apparently specific binding site for this compound in the same tissue. This binding does not require Na+ and takes place optimally at pH 5.5. The bound gamma-hydroxybutyric acid is not displacable by GABA or baclofen. We report here on some structurally related compounds of GHB with a similar or better binding capacity than GHB itself. The number of binding sites increases with age up to adulthood and differs depending on the brain region. In primary tissue cultures of pure chicken neurones and glia, gamma-hydroxybutyric acid binding occurs exclusively in the neuronal preparations.
Collapse
|
34
|
Björkman S, Lewander T, Karlsson JA, Koskinen LO, Zetterström T. Thermic and tremorogenic effects of thyroliberin (TRH) in reserpine-treated mice--the non-involvement of GABA-ergic mechanisms. J Pharm Pharmacol 1981; 33:580-5. [PMID: 6117636 DOI: 10.1111/j.2042-7158.1981.tb13870.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Administration of thyroliberin (TRH) to reserpinized mice causes tremor and counteracts the hypothermia in a dose-dependent fashion. The thyroliberin response is inhibited by gamma-hydroxybutyric acid (GHB) and baclofen, but not by other, more specific GABA-ergic agents, such as THIP, gamma-acetylenic GABA, and sodium valproate. Picrotoxin neither potentiates nor inhibits the thyroliberin actions. Nor are the thyroliberin effects dependent on cholinergic, monoaminergic or histaminergic mechanisms. The results repudiate a current hypothesis, that the peptide actions may be mediated by GABA-ergic pathways in the brain.
Collapse
|
35
|
Abstract
Fourteen rats were trained to discriminate the effects of gamma-hydroxybutyrate (GHB) (sodium salt, 200 mg/kg) and saline in a two-lever choice task using a fixed ratio 10 schedule of water reinforcement. Intermediate responding, i.e., responding not fully appropriate for either training condition was observed in tests following morphine, lysergic acid diethylamide, chlordiazepoxide, and the presumed GABA-mimetics muscimol, gamma-butyrolactone, baclofen, and 3-aminopropane sulfonic acid. Naloxone blocked the intermediate results following morphine, but had no effect on GBH-induced stimulus control. The GABA antagonist bicuculline partially blocked GHB, but pizotyline, phentolamine, and butaclamol were without effect. It is concluded that the compound stimulus produced by GHB is most closely associated with GABAergic systems, but that minor opiate and serotonergic components are present as well.
Collapse
|