1
|
Pușcașu C, Chiriță C, Negreș S, Blebea NM. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. Int J Mol Sci 2024; 25:11111. [PMID: 39456894 PMCID: PMC11507561 DOI: 10.3390/ijms252011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Neuropathic pain (NeP) is a complex and debilitating condition that impacts millions of people globally. Although various treatment options exist, their effectiveness is often limited, and they can be accompanied by significant side effects. In recent years, there has been increasing interest in targeting the N-methyl-D-aspartate receptor (NMDAR) as a potential therapeutic approach to alleviate different types of neuropathic pain. This narrative review aims to provide a comprehensive examination of NMDAR antagonists, specifically ketamine, memantine, methadone, amantadine, carbamazepine, valproic acid, phenytoin, dextromethorphan, riluzole, and levorphanol, in the management of NeP. By analyzing and summarizing current preclinical and clinical studies, this review seeks to evaluate the efficacy of these pharmacologic agents in providing adequate relief for NeP.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Cornel Chiriță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Simona Negreș
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Nicoleta Mirela Blebea
- Faculty of Pharmacy, “Ovidius” University of Constanța, Căpitan Aviator Al. Şerbănescu 6, 900470 Constanța, Romania;
| |
Collapse
|
2
|
Vender JR, Nair SN, Lehmann JC. MonthlyUpdate—Central & Peripheral Nervous Systems: Pharmacotherapeutic Potential for Compounds Acting at NMDA Receptors: Update 1995. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.5.475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Yang J, Wetterstrand C, Jones RSG. Felbamate but not phenytoin or gabapentin reduces glutamate release by blocking presynaptic NMDA receptors in the entorhinal cortex. Epilepsy Res 2007; 77:157-64. [PMID: 17980555 PMCID: PMC2496957 DOI: 10.1016/j.eplepsyres.2007.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/04/2007] [Accepted: 09/11/2007] [Indexed: 11/29/2022]
Abstract
We have shown that a number of anticonvulsant drugs can reduce glutamate release at synapses in the rat entorhinal cortex (EC) in vitro. We have also shown that presynaptic NMDA receptors (NMDAr) tonically facilitate glutamate release at these synapses. In the present study we determined whether, phenytoin, gabapentin and felbamate may reduce glutamate release by blocking the presynaptic NMDAr. Whole cell patch clamp recordings of spontaneous excitatory postsynaptic currents (sEPSCs) were used as a monitor of presynaptic glutamate release. Postsynaptic NMDAr were blocked with internal dialysis with an NMDAr channel blocker. The antagonist, 2-AP5, reduced the frequency of sEPSCs by blocking the presynaptic facilitatory NMDAr, but did not occlude a reduction in sEPSC frequency by gabapentin or phenytoin. Felbamate also reduced sEPSC frequency, but this effect was occluded by prior application of 2-AP5. Thus, whilst all three drugs can reduce glutamate release, only the action of felbamate seems to be due to interaction with presynaptic NMDAr.
Collapse
Affiliation(s)
- Jian Yang
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | |
Collapse
|
4
|
Banks MK, Besheer J, Szypczak J, Goodpaster LL, Phipps EJ, Garraghty PE. The effects of carbamazepine on an appetitive-to-aversive transfer task: comparison to untreated and phenytoin. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:551-72. [PMID: 11370997 DOI: 10.1016/s0278-5846(00)00175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
1. Concerns over negative consequences resulting from chronic maintenance with antiepileptic medications have led to increased research regarding such impairments, often with disparate results. The authors have previously reported that phenytoin profoundly impairs the ability of adult rats, in comparison to controls. To learn a tone-signaled active avoidance response after learning a tone-signaled appetitive response (Banks et al., 1995; Banks et al., 1999). Such results lend further support to the suggestion that pharmacological treatment itself can produce cognitive difficulties that are comparable to those experienced by epileptic patients (Meador, 1994; Smith et al., 1987). 2. In the present experiments, the authors have continued their investigation of antiepileptic compounds by treating rats with carbamazepine, another commonly prescribed "first-line defense" antiepileptic medication. In comparison to intact animals, carbamazepine-treated rats demonstrate variable deficiencies in the acquisition of the secondarily acquired avoidance response. 3. This result is in agreement with the finding for phenytoin-treated animals, albeit to a lesser degree. Continuing experiments are needed to investigate the relative nature of the deficits produced by such antiepileptic medications, as well as the underlying neurobiological mechanism(s).
Collapse
Affiliation(s)
- M K Banks
- Department of Psychology, Indiana University, Bloomington, USA
| | | | | | | | | | | |
Collapse
|
5
|
Churchill JD, Green JT, Voss SE, Manley E, Steinmetz JE, Garraghty PE. Discrimination reversal conditioning of an eyeblink response is impaired by NMDA receptor blockade. Integr Psychol Behav Sci 2001; 36:62-74. [PMID: 11484997 DOI: 10.1007/bf02733947] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study we examined the effects of the specific NMDA receptor antagonist CPP on discrimination reversal learning in rabbits. We report two primary findings. First, the institution of NMDA receptor blockade had no effect on a learned discrimination. Second, after stimulus reversal, CPP treatment impaired acquisition of the discrimination reversal. This impairment manifested itself early in training as a retardation in acquisition of a CR to the new CS+ and late in training as an inability to suppress responsiveness to the new CS-. Given the comparability of the present results with previously published results for phenytoin-treated rabbits, we suggest that the effects of phenytoin on learning in this paradigm is at least in part mediated by its effects on NMDA receptors. We further suggest that these findings emphasize the need to better define the role of NMDA receptor activation and hippocampally-mediated circuits in a variety of associative learning paradigms.
Collapse
Affiliation(s)
- J D Churchill
- Program in Neural Science, Department of Psychology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
6
|
Laschet J, Trottier S, Leviel V, Guibert B, Bansard JY, Chauvel P, Bureau M. Heterogeneous distribution of polyamines in temporal lobe epilepsy. Epilepsy Res 1999; 35:161-72. [PMID: 10372569 DOI: 10.1016/s0920-1211(99)00009-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polyamine contents were determined in human temporal lobe epilepsy. In the seven patients studied, stereoelectroencephalography (SEEG) located the epileptogenic focus in Ammon's horn and neuropathological findings were limited to hippocampal gliosis and sclerosis. Each polyamine exhibited a specific regional distribution. The most important variations were observed for spermidine and spermine while putrescine levels varied less. The regional variation was predominant in middle > posterior > anterior parts of the temporal lobe. Spermine contents and the spermidine/spermine (SPD/SPM) index varied especially in the middle and posterior parts of the hippocampus. Metabolic SPD/SPM index and spermidine levels were found to be drastically increased in almost all limbic parts when compared to neocortical regions. The opposite was observed for spermine. The heterogeneous distribution of polyamines was compared to abnormal electrical activities recorded by SEEG: SPD/SPM index and spermidine levels were sharply increased in seizure onset areas and high levels of spermine were detected in temporal cortex propagation areas. The presently reported heterogeneity of polyamine contents might contribute to modulate differentially the local control of excitability in human temporal epilepsy.
Collapse
Affiliation(s)
- J Laschet
- Laboratory of Neurosciences, School of Medicine, University of Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Churchill JD, Voss SE, Miller DP, Steinmetz JE, Garraghty PE. Phenytoin blocks the reversal of a classically conditioned discriminative eyeblink response in rabbits. Epilepsia 1998; 39:584-9. [PMID: 9637599 DOI: 10.1111/j.1528-1157.1998.tb01425.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Cognitive deficits associated with chronic treatment with phenytoin (PHT) have been reported. PHT blocks transfer from a signaled appetitive bar press to an active avoidance response in rats. We investigated the effects of PHT and the prodrug fosphenytoin in rabbits required to learn a discrimination and reversal of a classical eyeblink conditioning paradigm. METHODS Before drug treatment was started, rabbits were trained to produce a discriminated eyeblink response. PHT (n = 7) was administered centrally or the prodrug fosphenytoin (n = 2) was given systemically. Control animals were similarly treated centrally with either saline (n = 3) or no drug treatment (n = 13). Rabbits were then challenged with a stimulus reversal while being maintained on the respective drug. RESULTS On the first day of reversal training, control animals typically displayed high response rates to both tones, followed by a reduction in responsiveness to the new conditioned stimulus (CS-) in the ensuing days. In contrast, PHT-treated animals failed to suppress responsiveness to the new CS-. CONCLUSIONS The response patterns observed are similar to those observed in rabbits with hippocampal ablations, leading us to suggest that the adverse effects of phenytoin may be due to actions in the hippocampus.
Collapse
Affiliation(s)
- J D Churchill
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | | | | | | | |
Collapse
|
8
|
Phillips I, Martin KF, Thompson KS, Heal DJ. Weak blockade of AMPA receptor-mediated depolarisations in the rat cortical wedge by phenytoin but not lamotrigine or carbamazepine. Eur J Pharmacol 1997; 337:189-95. [PMID: 9430413 DOI: 10.1016/s0014-2999(97)01291-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of the anticonvulsants, lamotrigine, phenytoin and carbamazepine, were investigated on NMDA and non-NMDA receptor agonist-evoked responses and against spontaneous epileptiform discharges, in the in vitro rat cortical wedge. Lamotrigine weakly attenuated responses to (RS)-alpha-amino-3-hydroxy-5-methoxy-4-isoxazole propionic acid (AMPA) and quisqualate (IC50 values >> 100 microM), but was without effect on responses to NMDA. Phenytoin weakly, but concentration-dependently, attenuated responses to AMPA and quisqualate, but much less potently attenuated responses to NMDA (IC50 values 163, 248 and >> 300 microM, respectively). Carbamazepine (3-100 microM) significantly attenuated responses to NMDA and at 100 microM attenuated responses to AMPA and quisqualate. These effects were not concentration dependent, with the IC50 values >> 100 microM. Lamotrigine and phenytoin weakly, but concentration-dependently, reduced the frequency (IC50 values 254 and > 300 microM, respectively) and amplitude (IC50 values 141 and > 300 microM, respectively) of spontaneous epileptiform discharges, whereas carbamazepine had no effect. The results show that the anticonvulsant effects of these antiepileptics are unlikely to involve antagonism of ionotropic glutamate receptors, although blockade of non-NMDA responses may play a role in the anticonvulsant profile of phenytoin. Furthermore, the data show that clinically effective anticonvulsants do not necessarily attenuate spontaneous epileptiform discharges in the rat cortical wedge.
Collapse
Affiliation(s)
- I Phillips
- CNS Biology, Knoll Pharmaceuticals Research and Development, Nottingham, UK
| | | | | | | |
Collapse
|
9
|
Ko GY, Brown-Croyts LM, Teyler TJ. The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the rat hippocampus. Brain Res Bull 1997; 42:297-302. [PMID: 9043716 DOI: 10.1016/s0361-9230(96)00268-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of phenobarbital, phenytoin, and valproic acid on pharmacologically isolated NMDA-EPSP, AMPA-EPSP, and GABA-IPSPs were examined in rat hippocampal slices. Phenobarbital (0.05 mg/ml) had no effect on the NMDA-EPSP, but decreased the slope of the AMPA-EPSP by 13.4% and facilitated the GABA-IPSP slope by 77.12%. Phenytoin (0.02 mg/ml) had no effects on the NMDA-EPSP, AMPA-EPSP, or GABA-IPSP. Valproic acid (0.1 mg/ml) decreased the NMDA-EPSP slope by 14.3%, increased the GABA-IPSP slope by 54.34%, and had no effect on the AMPA-EPSP. These data suggest that the mechanisms of action of these anticonvulsant drugs may be via their actions on different neurotransmitter systems or ion channels.
Collapse
Affiliation(s)
- G Y Ko
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA
| | | | | |
Collapse
|
10
|
Abstract
1. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy, for over 50 years. Its mechanism of action, however, is still open to interpretation. 2. Several potential targets for phenytoin action have been identified within the central nervous system. These include the Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites. 3. To date, though, the best evidence hinges on the inhibition of voltage-sensitive Na+ channels in the plasma membrane of neurons undergoing seizure activity. Quieter nerve cells are far less affected. Moreover, the fact that phenytoin also has important cardiac antiarrhythymic effects and can inhibit Na+ influx into cardiac cells supports the idea that the primary target of phenytoin is, indeed, the Na+ channel.
Collapse
Affiliation(s)
- G Tunnicliff
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Evansville 47712, USA.
| |
Collapse
|
11
|
Lee GY, Brown LM, Teyler TJ. The effects of anticonvulsant drugs on long-term potentiation (LTP) in the rat hippocampus. Brain Res Bull 1996; 39:39-42. [PMID: 8846106 DOI: 10.1016/0361-9230(95)02041-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In hippocampal CA1 area, there are at least two forms of long-term potentiation (LTP): one is N-methyl-D-aspartate (NMDA) receptor-dependent LTP (NMDA LTP), which is induced with a 25 Hz tetanus and blocked by 50 microM 2-amino-5-phosphonovaleric acid (APV); the other is NMDA receptor-independent LTP (VDCC LTP), which is induced by 200 Hz tetanus stimulation in the presence of APV and blocked by nifedipine, a voltage-dependent Ca++ channel (VDCC) blocker, or by the intracellular injection of 1,2-bis(2-Aminophenoxoy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The effects of anticonvulsant drugs phenobarbital, phenytoin, and valproic acid on both NMDA LTP and VDCC LTP were investigated in rat hippocampal slices. The results showed that 0.1 mg/ml valproic acid significantly altered baseline population spike amplitude by 34.6%, but the other drugs had no significant effect on the baseline population spike amplitude. Phenobarbital (0.025 mg/ml) potently blocked NMDA LTP and inhibited VDCC LTP. Phenytoin (0.02 mg/ml) had no effect on NMDA LTP but reduced VDCC LTP. Valproic acid did not inhibit VDCC LTP, but it abolished the expression of NMDA LTP in a similar manner as H-7, a nonspecific protein kinase C inhibitor. These data suggest that the anti-convulsant effects of these three drugs may be via different cellular mechanisms.
Collapse
Affiliation(s)
- G Y Lee
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA.
| | | | | |
Collapse
|