1
|
Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003; 55:271-324. [PMID: 12773630 DOI: 10.1124/pr.55.2.3] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unanticipated, novel hypothesis on nitric oxide (NO) radical, an inorganic, labile, gaseous molecule, as a neurotransmitter first appeared in late 1989 and into the early 1990s, and solid evidences supporting this idea have been accumulated during the last decade of the 20th century. The discovery of nitrergic innervation of vascular smooth muscle has led to a new understanding of the neurogenic control of vascular function. Physiological roles of the nitrergic nerve in vascular smooth muscle include the dominant vasodilator control of cerebral and ocular arteries, the reciprocal regulation with the adrenergic vasoconstrictor nerve in other arteries and veins, and in the initiation and maintenance of penile erection in association with smooth muscle relaxation of the corpus cavernosum. The discovery of autonomic efferent nerves in which NO plays key roles as a neurotransmitter in blood vessels, the physiological roles of this nerve in the control of smooth muscle tone of the artery, vein, and corpus cavernosum, and pharmacological and pathological implications of neurogenic NO have been reviewed. This nerve is a postganglionic parasympathetic nerve. Mechanical responses to stimulation of the nerve, mainly mediated by NO, clearly differ from those to cholinergic nerve stimulation. The naming "nitrergic or nitroxidergic" is therefore proposed to avoid confusion of the term "cholinergic nerve", from which acetylcholine is released as a major neurotransmitter. By establishing functional roles of nitrergic, cholinergic, adrenergic, and other autonomic efferent nerves in the regulation of vascular tone and the interactions of these nerves in vivo, especially in humans, progress in the understanding of cardiovascular dysfunctions and the development of pharmacotherapeutic strategies would be expected in the future.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Toyama Bldg., 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka 541-0052, Japan.
| | | |
Collapse
|
2
|
Schneider JC, El Kebir D, Chéreau C, Lanone S, Huang XL, De Buys Roessingh AS, Mercier JC, Dall'Ava-Santucci J, Dinh-Xuan AT. Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 2003; 284:H2311-9. [PMID: 12560211 DOI: 10.1152/ajpheart.00932.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.
Collapse
Affiliation(s)
- Jean-Christophe Schneider
- Service de Physiologie-Explorations Fonctionnelles, Centre Hospitalier Universitaire Cochin, Assistance Publique, Hôpitaux de Paris, Université Paris 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Deckel AW, Tang V, Nuttal D, Gary K, Elder R. Altered neuronal nitric oxide synthase expression contributes to disease progression in Huntington's disease transgenic mice. Brain Res 2002; 939:76-86. [PMID: 12020853 DOI: 10.1016/s0006-8993(02)02550-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reduced neuronal NOS (nNOS) expression and biochemical activity was found in the striatum (P<0.05) and cerebellum P<0.05) of late-stage R6/1 Huntington's disease (HD) mice. The changes in NOS biochemical activity correlated with body weight (P<0.001), abnormal clasping (P<0.05) and motor functioning (P<0.05) scores. HD transgenic mice missing both copies of the nNOS gene showed accelerated disease progression relative to HD transgenic mice wildtype or heterozygous for the nNOS gene. On the other hand, mice with one copy of the nNOS gene had delayed onset of their HD-related symptoms relative to HD transgenic mice wildtype for nNOS. Administration of an iNOS inhibitor had no effect on behavioral progression. The effects of nNOS genotype on behavior may be related to abnormal expression of nNOS during development, which was increased relative to controls in R6/2 mice 3 weeks of age (presymptomatic), but decreased in R6/2 mice relative to controls at 6 (around the time of symptom onset) and 11 (late-stage disease) weeks of age. Finally, protein expression of calmodulin kinase II and IV, both of which are regulators of nNOS transcription and activation, had a pattern of increased expression early in development, and decreased expression late in development, similar to that seen for nNOS. These findings indicate that nNOS activity is altered in a complex manner in HD transgenic mice and suggest that these abnormalities occur in the setting of a more global disturbance of calcium-regulated proteins.
Collapse
Affiliation(s)
- A Wallace Deckel
- Department of Psychiatry, University of Connecticut Health Center, Mail Code 2103, 263 Farmington Avenue, Farmington, CT 06030-2103, USA.
| | | | | | | | | |
Collapse
|
4
|
Okamura T, Ayajiki K, Fujioka H, Shinozaki K, Toda N. Neurogenic cerebral vasodilation mediated by nitric oxide. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:32-8. [PMID: 11855675 DOI: 10.1254/jjp.88.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In cerebral arteries isolated from most of mammals, nerve stimulation produces relaxations in contrast to contractions in peripheral arteries. The relaxant mechanism is found to be non-adrenergic and non-cholinergic, but the neurotransmitter is not clarified until recently. Based on several functional and histological studies with isolated cerebral arteries, nitric oxide (NO) is now considered to be a neurotransmitter of the vasodilator nerve and the nerve has been called a nitroxidergic (nitrergic) nerve. Upon neural excitation, calcium influxed through N-type Ca2+ channels activates neuronal NO synthase, and then NO is produced by the enzyme from L-arginine. The released NO activates soluble guanylate cyclase in smooth muscle cells, resulting in relaxation with a cyclic GMP-dependent mechanism. The functional role and neuronal pathway have also been investigated in anesthetized dogs and Japanese monkeys. The nitroxidergic (nitrergic) nerves innervating the circulus arteriosus, including the anterior and middle cerebral and posterior communicating arteries, are found to be postganglionic nerves originated from the ipsilateral pterygopalatine ganglion and tonically dilate cerebral arteries in the resting condition. Our findings suggest that the nitroxidergic (nitrergic) nerve plays a physiologically important role to maintain a steady blood supply to the brain.
Collapse
Affiliation(s)
- Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan.
| | | | | | | | | |
Collapse
|
5
|
Okamura T, Fujioka H, Ayajiki K. Effects of calcium antagonists on the nitrergic nerve function in canine corpus cavernosum. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:208-13. [PMID: 11885970 DOI: 10.1254/jjp.87.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of calcium antagonists on nitrergic nerve function were examined in the isolated canine corpus cavernosum. In the cavernous strips precontracted with phenylephrine, transmural electrical stimulation elicited frequency-dependent (2 - 5 Hz) relaxations that were abolished by N(G)-nitro-L-arginine (10(-5) M), a nitric oxide (NO) synthase inhibitor; 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10(-6) M), a soluble guanylate cyclase inhibitor; and tetrodotoxin (3 x 10(-7) M). The relaxations were not affected by treatment with nifedipine or nicardipine (10(-8) - 10(-6) M), L-type specific calcium channel inhibitors, but were significantly inhibited by amlodipine or cilnidipine, inhibitors of L- plus N-type calcium channels, in a concentration-related manner (10(-7) - 10(-6) M). All of the inhibitors used did not affect the relaxations induced by exogenous NO (acidifed NaNO2). These findings suggest that N-type, but not L-type, calcium channels are responsible for increasing cytosolic free calcium, a prerequisite for the synthesis of NO, in the nitrergic dilator nerves innervating the corpus cavernosum.
Collapse
Affiliation(s)
- T Okamura
- Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan.
| | | | | |
Collapse
|
6
|
Toda N, Ayajiki K, Okamura T. Effect of Ca2+/calmodulin-dependent protein kinase II inhibitors on the neurogenic cerebroarterial relaxation. Eur J Pharmacol 1997; 340:59-65. [PMID: 9527507 DOI: 10.1016/s0014-2999(97)01390-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In canine cerebral artery strips contracted with prostaglandin F2alpha, transmural electrical stimulation (5 Hz for 40 s) produced a relaxation which was abolished by tetrodotoxin. The neurogenic response was inhibited moderately by [S]-5-isoquinolinesulfonic acid,4-[2-[(5-isoquinolinyl-sulfonyl)methylamino]-3-oxo-(4-phenyl-1-piperazinyl)-propyl] phenyl ester (KN62), an inhibitor of Ca2+ /calmodulin-dependent protein kinase II, which however did not alter or only slightly reduced the relaxant response to electrical nerve stimulation in canine coronary arterial strips that is mediated via beta-adrenoceptors stimulated by norepinephrine. Nicotine-induced relaxation, mediated by nitric oxide (NO) derived from perivascular nerves, was also attenuated by KN62, whereas the response to exogenous NO was unaffected. The nicotine-induced increase in the cyclic GMP content in cerebral arteries was depressed by KN62. The neurogenic relaxation was not influenced by phorbol 12-myristate 13-acetate, an activator of protein kinase C. 8-Bromo-cyclic GMP and 8-bromo-cyclic AMP did not significantly alter the response to nerve stimulation. It is concluded that the phosphorylation pathway involving Ca2+/calmodulin-dependent protein kinase II, but not other protein kinases so far tested, appears to be involved in the function of vasodilator nerves innervating the cerebral artery.
Collapse
Affiliation(s)
- N Toda
- Department of Pharmacology, Shiga University of Medical Sciences, Seta, Ohtsu, Japan.
| | | | | |
Collapse
|
7
|
Abstract
Capsaicin has been previously shown to increase cochlear blood flow (CBF) in a dose-dependent manner. The aim of this study was to define the role of nitric oxide (NO) in capsaicin-induced changes in CBF. This was investigated in the anesthetized guinea pig, utilizing laser Doppler flowmetry. Application of capsaicin (64.8 and 6.48 nmol in 2 microliters of saline) to the round window membrane (RWM) caused increases in CBF (34 +/- 2.8% of baseline (BL) and 28 +/- 2.3% BL, respectively (P < 0.001)). Application of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg intravenously or topically to the RWM) reduced blood flow in the cochlea, as previously reported. After pretreatment with i.v. L-NAME, the effect of capsaicin on CBF was significantly decreased. With the dose of capsaicin at 64.8 nmol, the increase in CBF fell from 34 +/- 2.8% BL to 6.9 +/- 1.5% BL (P < 0.001), and at 6.48 nmol it fell from 28 +/- 2.3% BL to 4.8 +/- 1.6% BL (P < 0.001). RWM L-NAME application also decreased the capsaicin vasodilatation effect. A capsaicin dose of 64.8 nmol resulted in only a 10 +/- 2.5% BL increase in CBF, and with 6.48 nmol capsaicin the increase was 7.8 +/- 2.2% of BL (P < 0.001). Capsaicin-sensitive sensory neurons in other systems are generally known to release substance P (SP), which in turn elicits release of endothelium derived relaxing factor (NO). The results of this study indicate that NO is a mediator of capsaicin-sensitive sensory neuronal function in CBF regulation.
Collapse
Affiliation(s)
- Z Vass
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor 48109-0506, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Sympathetic vasoconstrictor nerves are commonly recognized to mainly control the vascular smooth muscle tone, thus alters regional vascular resistance and blood flow. In contrast to peripheral organs and tissues, regulation by sympathetic nerves of blood flow in the brain is not so evident, and conversely vasodilator innervation is expected to play an important role. The mechanism underlying the neurogenic vasodilation in the cerebral artery has not been determined until recently. This problem was solved by the discovery of nitric oxide (NO) synthase inhibitors. Cerebral arterial dilatation caused by nerve stimulation is abolished by NO synthase inhibition and is restored by L-arginine, a substrate of NO synthase; vasodilator nerve stimulation increases the production of cyclic GMP in the tissue and liberates NOx (nitroxy compounds) from the arterial strip into superfusate. In addition, the presence of neurons containing NO synthase is histochemically demonstrated in the arterial wall. Neurogenic cerebral arterial dilation is thus hypothesized to be mediated by NO liberated as a neurotransmitter from the nerve. Nitroxidergic vasodilator innervation from the pterygopalatine ganglion would be important in the regulation of brain circulation.
Collapse
Affiliation(s)
- N Toda
- Department of Pharmacology, Shiga University of Medical Science, Ohtsu, Japan
| | | |
Collapse
|
9
|
Pelligrino DA, Wang Q, Koenig HM, Albrecht RF. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats. Brain Res 1995; 704:61-70. [PMID: 8750962 DOI: 10.1016/0006-8993(95)01105-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we tested the hypothesis that nitric oxide (NO) and adenosine (ADO) are the principal mediators of severe hypoxia-induced vasodilation. In addition, we examined whether activation of N-methyl-D-aspartate (NMDA) receptors and/or perivascular nerves plays a role. A closed cranial window and intravital microscopy system was used to monitor diameter changes in pial arterioles (approximately 40 microns) in anesthetized rats. The relative contributions of ADO, NMDA, NO, and neuronal activation to hypoxic cerebrovasodilation were assessed using the blockers 8-sulfophenyltheophylline (8-SPT), MK-801, nitro-L-arginine methylester (L-NAME), and tetrodotoxin (TTX). Two experimental series were studied. In the first, we tested the effects of NOS inhibition, via topical L-NAME (1 mM), on moderate (PaO2 approximately 46 mmHg) then severe (PaO2 approximately 34 mmHg) hypoxia-induced dilation. To confirm that L-NAME was affecting specifically NO-dependent responses, we also examined, in each experiment, the vasodilatory responses to topical applications of NOS-dependent (adenosine diphosphate (ADP); acetylcholine (ACh)) and -independent (sodium nitroprusside (SNP)) agents, in the presence of L-NAME or, in controls, the presence of D-NAME or no added analogue. In the second series, topical suffusions of ADP, ADO, and NMDA were sequentially applied, followed by 5 min exposure to severe hypoxia (PaO2 approximately 32 mmHg). Following return to normoxia, a suffusion of either 8-SPT (10 microM), MK-801 (10 microM), TTX (1 microM), or 8-SPT+MK-801 was initiated (or, in controls, application of a drug-free suffusate was maintained), and the above sequence repeated. In control, TTX, and 8-SPT+MK-801 experiments, baseline conditions were then restored and hypercapnia (PaCO2 = 70-85 mmHg) was imposed. In the series 1 control groups, moderate and severe hypoxia elicited approximately 20% and 35-40% increases in diameter, respectively. L-NAME attenuated ADP- and ACh-induced dilations, did not alter the arteriolar responses to SNP or moderate hypoxia, but prevented further dilation upon imposition of severe hypoxia. This suggested that 45-50% of the severe hypoxia response was NO-dependent. In series 2, 8-SPT blocked the adenosine response and reduced severe hypoxia-induced dilation by 46%. MK-801 predictably blocked NMDA-induced relaxation and reduced the hypoxic response by 42%. When combined, 8-SPT and MK-801 affected hypoxic vasodilation additively. After TTX, the ADP and ADO responses were normal, but NMDA and hypoxia responses were completely blocked. Hypercapnia-induced dilation was unaffected by TTX or 8-SPT+MK-801. The results imply that severe hypoxia-induced release of NO and ADO, and the accompanying pial arteriolar dilation, are wholly dependent on the capacity to generate action potentials in perivascular nerves. The similarity of the L-NAME and MK-801 effects on hypoxic cerebrovasodilation suggests that the NO-dependency, to a large degree, derives from NMDA receptor activation.
Collapse
Affiliation(s)
- D A Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago 60616, USA
| | | | | | | |
Collapse
|
10
|
Toda N, Uchiyama M, Okamura T. Prejunctional modulation of nitroxidergic nerve function in canine cerebral arteries. Brain Res 1995; 700:213-8. [PMID: 8624712 DOI: 10.1016/0006-8993(95)00959-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Modulation by acetylcholine, VIP, clonidine, omega-conotoxin and Mg2+ of the relaxant response to electrical and chemical stimulation of nitroxidergic nerves, in which nitric oxide (NO) acts as a neurotransmitter, was investigated in isolated canine cerebral arteries. Acetylcholine attenuated the response, the inhibition being reversed by atropine; however, physostigmine failed to reduce the response. VIP in submaximal doses did not alter the neurally induced relaxation. The same was true with clonidine, morphine and naloxane. Treatment with omega-conotoxin depressed the response to electrical nerve stimulation but did not influence the nicotine-induced relaxation. Mg2+ inhibited the relaxation caused by nerve stimulation and Ca2+ reversed the response. It is concluded that activation of prejunctional muscarinic receptors seems to inhibit the synthesis of release of NO from nerve terminals but endogenous acetylcholine from cholinergic nerve does not play a role in inhibiting the nitroxidergic nerve function. Prejunctional VIP, alpha 2, adrenergic and opioid receptors are not likely to participate in the regulation of nerve function. Ca2+ responsible for NO synthase activation would be produced into nerve terminals via N-type Ca2+ channels when electrically stimulated and via non-N-, non-L-type channels when stimulated by nicotine. Mg2+ and Ca2+ counteract in the neurally induced relaxation, although the underlying mechanism was not determined.
Collapse
Affiliation(s)
- N Toda
- Department of Pharmacology, Shiga University of Medical Sciences, Ohtsu, Japan
| | | | | |
Collapse
|
11
|
Toda N, Kimura T, Okamura T. Nitroxidergic nerve stimulation relaxes human uterine vein. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 55:189-92. [PMID: 8801269 DOI: 10.1016/0165-1838(95)00046-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The predominant action of nitroglycerin, a nitric oxide (NO) donor, on veins over arterioles is well recognized. This study was carried out to determine whether endogenous NO derived from vasodilator nerve regulates the tone of human uterine venous strips. The isolated vein partially contracted with prostaglandin F2 alpha responded to nicotine with a contraction or a relaxation; the contraction was reversed to a relaxation by prazosin, and the relaxation was potentiated by the alpha 1-adrenoceptor antagonist. In prazosin-treated strips, nicotine-induced relaxations were not affected by timolol, atropine and indomethacin but were abolished by oxyhemoglobin and NG-nitro-L-arginine (L-NA), a NO synthase inhibitor. The D-enantiomer was without effect. The inhibition by L-NA was reversed by L-arginine. The NO-induced relaxation was not influenced by L-NA but was abolished by oxyhemoglobin. It may be concluded that the human uterine vein is innervated by vasodilator nerves from which NO is liberated as a vasodilator neurotransmitter. Norepinephrine from adrenergic nerves contracts venous smooth muscle possibly via stimulation of alpha 1-adrenoceptors.
Collapse
Affiliation(s)
- N Toda
- Department of Pharmacology, Shiga University of Medical Sciences, Seta, Japan
| | | | | |
Collapse
|