1
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP's Role in Migraine with Aura. J Neurosci 2019; 39:6001-6011. [PMID: 31127003 DOI: 10.1523/jneurosci.0232-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Cortical spreading depression (CSD) is a wave of neuronal depolarization thought to underlie migraine aura. Calcitonin gene-related peptide (CGRP) is a potent vasodilator involved in migraine pathophysiology. Evidence for functional connectivity between CSD and CGRP has triggered scientific interest in the possibility that CGRP antagonism may disrupt vascular responses to CSD and the ensuing plasma protein extravasation (PPE). Using imaging tools that allow us to generate continuous, live, high-resolution views of spatial and temporal changes that affect arteries and veins in the dura and pia, we determined the extent to which CGRP contributes to the induction of arterial dilatation or PPE by CSD in female rats, and how these events are affected by the anti-CGRP monoclonal antibody (anti-CGRP-mAb) fremanezumab. We found that the CSD-induced brief dilatation and prolonged constriction of pial arteries, prolonged dilatation of dural arteries and PPE are all unaffected by fremanezumab, whereas the brief constriction and prolonged dilatation of pial veins are affected. In comparison, although CGRP infusion gave rise to the expected dilatation of dural arteries, which was effectively blocked by fremanezumab, it did not induce dilatation in pial arteries, pial veins, or dural veins. It also failed to induce PPE. Regardless of whether the nociceptors become active before or after the induction of arterial dilatation or PPE by CSD, the inability of fremanezumab to prevent them suggests that these events are not mediated by CGRP, a conclusion with important implications for our understanding of the mechanism of action of anti-CGRP-mAbs in migraine prevention.SIGNIFICANCE STATEMENT The current study identifies fundamental differences between two commonly used models of migraine, CSD induction and systemic CGRP infusion. It raises the possibility that conclusions drawn from one model may not be true or relevant to the other. It sharpens the need to accept the view that there is more than one truth to migraine pathophysiology and that it is unlikely that one theory will explain all types of migraine headache or the mechanisms of action of drugs that prevent it. Regarding the latter, it is concluded that not all vascular responses in the meninges are born alike and, consequently, that drugs that prevent vascular dilatation through different molecular pathways may have different therapeutic outcomes in different types of migraine.
Collapse
|
3
|
Al-Karagholi MAM, Hansen JM, Severinsen J, Jansen-Olesen I, Ashina M. The K ATP channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain 2017; 18:90. [PMID: 28831746 PMCID: PMC5567577 DOI: 10.1186/s10194-017-0800-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Johanne Severinsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| |
Collapse
|
4
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
5
|
|
6
|
Hansen JM, Sitarz J, Birk S, Rahmann AM, Oturai PS, Fahrenkrug J, Olesen J, Ashina M. Vasoactive Intestinal Polypeptide Evokes Only a Minimal Headache in Healthy Volunteers. Cephalalgia 2016; 26:992-1003. [PMID: 16886936 DOI: 10.1111/j.1468-2982.2006.01149.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of the parasympathetic nervous system in the pathogenesis of migraine is disputed. The headache-eliciting effect of the parasympathetic neurotransmitter, vasoactive intestinal polypeptide (VIP), and its effect on cerebral arteries and brain haemodynamics has not been systematically studied in man. We hypothesized that infusion of VIP might induce headache in healthy subjects and cause changes in cerebral haemodynamics. VIP (8 pmol/kg per min) or placebo (0.9± saline) was infused for 25 min into 12 healthy young volunteers in a crossover, double-blind design. Headache was scored on a verbal rating scale from 0 to 10, regional cerebral blood flow (rCBF) was measured with single-photon emission computed tomography and 133Xe inhalation and mean flow velocity in the middle cerebral artery (VmeanMCA) was measured with transcranial Doppler ultrasonography. The headache was very mild with a maximum score of 2 and described as a pressing or throbbing sensation. Five participants developed headache during VIP and one during placebo. During the infusion, a significant drop in VmeanMCA was seen for VIP compared with placebo ( P < 0.001), but the effect quickly waned and no difference was found when comparing the time between 30 and 120 min. In addition, no significant difference in the diameter of the MCA could be found during the infusion. No significant differences in rCBF ( P = 0.10) were found between VIP and placebo. A marked dilation of the superficial temporal artery was seen ( P = 0.04) after VIP in the first 30 min but no difference was found when comparing the time between 30 and 120 min. We found no difference in mean arterial blood pressure between VIP and placebo days but the heart rate increased significantly on a VIP day compared with a placebo day (AUC0–30min, P < 0.001). Plasma VIP was significantly higher on a VIP day compared with placebo (AUC0–80min, P < 0.001). These results show that VIP causes a decrease in VmeanMCA without affecting rCBF. In spite of a marked vasodilator effect in the extracranial vessels and increased plasma VIP, healthy subjects developed only a very mild headache.
Collapse
Affiliation(s)
- J M Hansen
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Koide M, Syed AU, Braas KM, May V, Wellman GC. Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels. J Mol Neurosci 2014; 54:443-50. [PMID: 24744252 DOI: 10.1007/s12031-014-0301-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/28/2014] [Indexed: 12/24/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405-0068, USA
| | | | | | | | | |
Collapse
|
8
|
Autonomic nervous system control of the cerebral circulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:193-201. [DOI: 10.1016/b978-0-444-53491-0.00016-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Syed AU, Koide M, Braas KM, May V, Wellman GC. Pituitary adenylate cyclase-activating polypeptide (PACAP) potently dilates middle meningeal arteries: implications for migraine. J Mol Neurosci 2012; 48:574-83. [PMID: 22766684 DOI: 10.1007/s12031-012-9851-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/25/2012] [Indexed: 01/30/2023]
Abstract
Migraine is a debilitating neurological disorder characterized by mild to severe headache that is often accompanied by aura and other neurological symptoms. Among proposed mechanisms, dilation of the dural vasculature especially the middle meningeal artery (MMA) has been implicated as one component underlying this disorder. Several regulatory peptides from trigeminal sensory and sphenopalatine postganglionic parasympathetic fibers innervating these vessels have been implicated in the process including pituitary adenylate cyclase-activating polypeptide (PACAP). Although PACAP has been well described as a potent dilator in many vascular beds, the effects of PACAP on the dural vasculature are unclear. In the current study, we examined the ability of PACAP to dilate MMAs that were isolated from rats and pressurized ex vivo. PACAP38 potently dilated pressurized MMAs with an EC(50) of 1 pM. The PAC1 receptor antagonist, PACAP(6-38), abolished MMA dilation caused by picomolar concentrations of PACAP. In contrast, cerebellar arteries isolated from the brain surface were ~1,000-fold less sensitive to PACAP than MMAs. Although cerebellar arteries expressed transcripts for all three PACAP receptor subtypes (PAC1, VPAC1, and VPAC2 receptors) by RT-PCR analyses, MMA demonstrated only PAC1 and VPAC2 receptor expression. Further, multiple variants of the PAC1 receptor were identified in the MMA. The expression of PAC1 receptors and the high potency of PACAP to induce MMA vasodilation are consistent with their potential roles in the etiology of migraine.
Collapse
MESH Headings
- Animals
- Cerebellum/blood supply
- Gene Expression Regulation/drug effects
- Humans
- In Vitro Techniques
- Male
- Meningeal Arteries/drug effects
- Meningeal Arteries/metabolism
- Migraine Disorders/physiopathology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Organ Specificity
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pressure
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/biosynthesis
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II/biosynthesis
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/biosynthesis
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Vasoactive Intestinal Peptide/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Arsalan U Syed
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | | | | | | | | |
Collapse
|
10
|
Migraine is a neuronal disease. J Neural Transm (Vienna) 2010; 118:511-24. [PMID: 21161301 DOI: 10.1007/s00702-010-0515-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Migraine is a common, paroxysmal, highly disabling primary headache disorder with a genetic background. The primary cause and the origin of migraine attacks are enigmatic. Numerous clinical and experimental results suggest that activation of the trigeminal system (TS) is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. Since activation of the peripheral and central arms of the TS might be related to cortical spreading depression and to the activity of distinct brainstem nuclei (e.g. the periaqueductal grey), we conclude that migraine can be explained as an altered function of the neuronal elements of the TS, the brainstem, and the cortex, the centre of this process comprising activation of the TS. In light of our findings and the literature data, therefore, we can assume that migraine is mainly a neuronal disease.
Collapse
|
11
|
Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 2010; 7:191-6. [PMID: 20430318 PMCID: PMC5084100 DOI: 10.1016/j.nurt.2010.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022] Open
Abstract
The origin of migraine pain has not yet been clarified, but accumulating data point to neuropeptides present in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in sensory trigeminal neurons and may modulate nociception at different levels of the nervous system. Human experimental studies have shown that PACAP-38 infusion induces marked dilatation of extracerebral vessels and delayed migraine-like attacks in migraine patients. PACAP selectively activates the PAC(1) receptor, which suggests a possible signaling pathway implicated in migraine pain. This review summarizes the current evidence supporting the involvement of PACAP in migraine pathophysiology and the PAC(1) receptor as a possible novel target for migraine treatment.
Collapse
Affiliation(s)
- Henrik W. Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| |
Collapse
|
12
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Chapter MC, White CM, DeRidder A, Chadwick W, Martin B, Maudsley S. Chemical modification of class II G protein-coupled receptor ligands: frontiers in the development of peptide analogs as neuroendocrine pharmacological therapies. Pharmacol Ther 2009; 125:39-54. [PMID: 19686775 DOI: 10.1016/j.pharmthera.2009.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/08/2023]
Abstract
Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G protein-coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included d-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogs of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis.
Collapse
Affiliation(s)
- Megan C Chapter
- Receptor Pharmacology Unit, Laboratory of Neuroscience, National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., Baltimore MD 21224, USA
| | | | | | | | | | | |
Collapse
|
14
|
Boni LJ, Ploug KB, Olesen I, Jansen-Olesen I, Gupta S. The in vivo Effect of VIP, PACAP-38 and PACAP-27 and mRNA Expression of Their Receptors in Rat Middle Meningeal Artery. Cephalalgia 2009; 29:837-47. [DOI: 10.1111/j.1468-2982.2008.01807.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The parasympathetic nervous system is probably involved in migraine pathogenesis. Its activation releases a mixture of signalling molecules including vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), which subsequently stimulate VPAC1, VPAC2 and PAC1 receptors. The objective of the present study was to investigate the in vivo effect of VIP, PACAP-27, PACAP-38, the selective VPAC1 agonist ([Lys15, Arg16, Leu27]-VIP(1–7)-GRF(8–27)) and a PAC1 agonist, maxadilan on rat middle meningeal artery (MMA) diameter using the closed cranial window model. Selective antagonists were used for further characterization of the responses. Reverse transcriptase-polymerase chain reaction experiments were also conducted to determine expression of mRNA of PACAP receptors in the MMA. The results showed that VIP, PACAP-38, PACAP-27 and the VPAC1 specific agonist evoked significant dilations with the rank order of potency; VIP = PACAP-38 > PACAP-27 = [Lys15, Arg16, Leu27]-VIP(1–7)-GRF(8–27). Significant inhibition of dilation was only observed for the VPAC1 antagonist PG97–269 on PACAP-38-induced dilation of MMA. The VPAC2 antagonist PG99–465 and PAC1 antagonist PACAP(6–38) did not significantly block VIP- or PACAP-induced dilation. Expression of mRNA of all three receptors was detected in the MMA. In conclusion, the VPAC1 receptor seems to be predominant in mediating MMA dilation. A selective VPAC1 antagonist may be a candidate molecule in the treatment of migraine headache.
Collapse
Affiliation(s)
- LJ Boni
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - KB Ploug
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - I Olesen
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - I Jansen-Olesen
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - S Gupta
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
15
|
|
16
|
Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 2008; 132:16-25. [DOI: 10.1093/brain/awn307] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
|
18
|
Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J, Olesen J. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. ACTA ACUST UNITED AC 2007; 140:185-91. [PMID: 17320198 DOI: 10.1016/j.regpep.2006.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 12/10/2006] [Accepted: 12/21/2006] [Indexed: 11/18/2022]
Abstract
PACAP38 is an endogenous peptide located in trigeminal perivascular nerve fibers in the brain. It reduces neuronal loss and infarct size in animal stroke models and has been proposed a candidate substance for human clinical studies of stroke. The effect on systemic hemodynamics and regional cerebral blood flow (rCBF) is not well understood. We here present the first study of the effect of PACAP38 on cerebral hemodynamics in humans. PACAP (10 pmol kg(-1) min(-1)) or placebo (0.9% saline) was infused for 20 min into 12 healthy young volunteers in a cross over, double blind study. rCBF was measured with SPECT and (133)Xe inhalation and mean blood flow velocity in the middle cerebral artery was measured with transcranial Doppler ultrasonography. End tidal partial pressure of CO(2) (P(et)CO(2)) and vital parameters were recorded throughout the 2 hour study period. PACAP38 decreased rCBF in all regions of interest (ROIs) by approximately 3-10%, though not uniformly significant. P(et)CO(2) decreased significantly during PACAP38 infusion compared to placebo (P=0.032), peak decrease was 8.9+/-3.8%. After correction for P(et)CO(2), rCBF remained unchanged in most ROIs. Heart rate increased 61.9+/-22.4% (P<0.0001 vs. placebo). These findings suggest that PACAP38 has no major direct effect on rCBF in healthy volunteers. The marked increase in heart rate and the reduction in rCBF caused by decreased P(et)CO(2) are important dose-limiting factors to consider in future clinical studies.
Collapse
Affiliation(s)
- Steffen Birk
- Danish Headache Center, Department of Neurology, Glostrup Hospital, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ohtaki H, Dohi K, Yofu S, Nakamachi T, Kudo Y, Endo S, Aruga T, Goto N, Watanabe J, Kikuyama S, Shioda S. Effect of pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) on tissue oxygen content—Treatment in central nervous system of mice. ACTA ACUST UNITED AC 2004; 123:61-7. [PMID: 15518894 DOI: 10.1016/j.regpep.2004.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in preventing neuronal cell death and is also a potent vasodilator. Cerebral hypotension and hypoperfusion during cerebral ischemia and neurodegenerative diseases are well known as some of the negative factors which aggravate neuronal cell death. Nevertheless, the effect of PACAP on the cerebral circulation was not understood well. Therefore, in the present study, we determined the mean arterial blood pressure (MBP), regional cerebral blood flow (rCBF) and cerebral oxygen content (pO2) in mice, and estimated the therapeutically useful doses of PACAP. Under barbiturate anesthesia, polyethylene tubes were inserted into mice to monitor MBP and to administer PACAP (5 x 10(-13)-5 x 10(-8) mol/kg) or vasoactive intestinal peptide (VIP; 5 x 10(-12) and 5 x 10(-9) mol/kg). Then, MBP, rCBF and cerebral pO2 were simultaneously measured in the mice. PACAP (5 x 10(-10)-5 x 10(-9) mol/kg) injections transiently decreased MBP, and cerebral pO2. PACAP (5 x 10(-8) mol/kg) injections produced a long-lasting potent decline of MBP, rCBF and cerebral pO2. Therefore, PACAP should be applied at low doses which do not influence the MBP and cerebral circulation to determine the therapeutically useful doses of PACAP for neuroprotection.
Collapse
Affiliation(s)
- Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Edvinsson L, Uddman R. Neurobiology in primary headaches. ACTA ACUST UNITED AC 2004; 48:438-56. [PMID: 15914251 DOI: 10.1016/j.brainresrev.2004.09.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 08/17/2004] [Accepted: 09/08/2004] [Indexed: 11/23/2022]
Abstract
Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT(1B/1D) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Internal Medicine, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
21
|
Baeres FMM, Møller M, Martin F, Baeres M. Origin of PACAP-immunoreactive nerve fibers innervating the subarachnoidal blood vessels of the rat brain. J Cereb Blood Flow Metab 2004; 24:628-35. [PMID: 15181370 DOI: 10.1097/01.wcb.0000121234.42748.f6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The subarachnoidal cerebral blood vessels of the rat are innervated by nerve fibers containing different neuropeptides, e.g. pituitary adenylatecyclase activating polypeptide (PACAP). PACAP dilates brain arterioles and immunohistochemical studies of the rat have indicated that PACAP binds to a VPAC1-receptor in the cerebral vasculature of this species. We have investigated the perikaryal origin of the nerve fibers innervating the subarachnoidal blood vessels of the rat by combined retrograde tracing with Fluorogold and immunohistochemistry. The in vivo neuronal retrograde tracings were done by injection of 2% Fluorogold in water into the subarachnoidal space in the area of the middle cerebral artery. The retrograde transported tracer was detected by use of an antibody against Fluorogold. One week after the injections, the animals were vascularly perfused with Stephanini's fixative and labeled perikarya were found bilaterally in the trigeminal, sphenopalatine, and otic ganglia. The retrograde Fluorogold tracings were combined with immunohistochemistry for PACAP using a mouse monoclonal antibody and the biotinylated tyramide amplification system. Double labeled perikarya containing both Fluoro-gold and PACAP were found predominantly in the trigeminal ganglion, and only rarely in the otic and sphenopalatine ganglion. Summarizing, our retrograde tracings combined with immunohistochemistry indicate that the perikarya in the trigeminal ganglion are the main origin of PACAPergic nerve fibers projecting to the cerebral vasculature of the rat.
Collapse
|
22
|
Reglodi D, Tamás A, Somogyvári-Vigh A, Szántó Z, Kertes E, Lénárd L, Arimura A, Lengvári I. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 2002; 23:2227-34. [PMID: 12535703 DOI: 10.1016/s0196-9781(02)00262-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PACAP exerts neuroprotective effects under various neurotoxic conditions in vitro. In vivo, it reduces brain damage after global and transient focal ischemia. The present study investigated whether PACAP has neuroprotective effects when applied before the onset of permanent ischemia. Rats were given bolus injections of PACAP38 intracerebroventricularly, and then underwent permanent middle cerebral artery occlusion. The results show that 2 microg of PACAP significantly reduced the infarct size measured 12 and 24h after the onset of ischemia. No further reduction was obtained by a 7-day pretreatment. PACAP also ameliorated certain sensorimotor deficits. Our present study provides further evidence for the neuroprotective effects of PACAP, and implies that it might be a promising preventive therapeutic agent in ameliorating ischemic brain damage.
Collapse
Affiliation(s)
- D Reglodi
- Department of Anatomy, Neuroendocrinology Research Group of the Hungarian Academy of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In recent years our knowledge of the nervous control of the cerebral circulation has increased. The use of denervations and retrograde tracing in combination with immunohistochemical techniques has demonstrated that cerebral vessels are supplied with sympathetic, parasympathetic, and sensory nerve fibers and possibly central pathways containing a multiplicity of new transmitter substances in addition to the classical transmitters. The majority of these transmitters are neuropeptides. More recently it has been suggested that a gaseous transmitter, nitric oxide (NO) also could participate in the neuronal regulation of cerebral blood flow. Although little is known about the physiological actions and inter-relationships among all these putative neurotransmitters, their presence within cerebrovascular nerve fibers will make it necessary to revise our view on the mechanisms of cerebrovascular neurotransmission.
Collapse
Affiliation(s)
- S Gulbenkian
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
24
|
Tajti J, Uddman R, Edvinsson L. Neuropeptide localization in the "migraine generator" region of the human brainstem. Cephalalgia 2001; 21:96-101. [PMID: 11422090 DOI: 10.1046/j.1468-2982.2001.00140.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence from animals and humans suggests that brainstem nuclei such as the raphe nuclei, the locus coeruleus (LC) and the periaqueductal grey matter (PAG), are involved in the pathophysiology of migraine. In order to understand possible neurotransmitters involved we have, by means of indirect immunocytochemistry, analysed these regions for the occurrence and distribution of calcitonin gene-related peptide (CGRP), substance P (SP), pituitary adenylate-cyclase activating peptide (PACAP) and vasoactive intestinal polypeptide (VIP). CGRP-immunoreactive (-ir) cell bodies, but no fibres, were found to occur in high numbers, constituting 80% of all nerve cell bodies in the LC. A smaller number of these nerve cell bodies (40%) in the LC proved to be PACAP-ir. The LC neurones also stored the vesicular monoamine transporter (VMAT)- and the C-terminal flanking peptide of neuropeptide Y (C-PON)-ir, illustrating their adrenergic nature. Double immunostaining revealed that all VMAT-and C-PON-containing neurones, in addition, stored CGRP. Immunoreactive cell bodies were not seen in the nucleus raphe magnus (NRM) or PAG. Numerous SP-ir nerve fibres were observed in the NRM, the LC and the PAG. Few PACAP-ir nerve fibres were detected in the PAG and few VIP-ir nerve fibres were seen in the NRM and the PAG.
Collapse
Affiliation(s)
- J Tajti
- Department of Neurology, Albert Szent-Györgyi University Medical School, Szeged, Hungary
| | | | | |
Collapse
|
25
|
Shen S, Spratt C, Sheward WJ, Kallo I, West K, Morrison CF, Coen CW, Marston HM, Harmar AJ. Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci U S A 2000; 97:11575-80. [PMID: 11027354 PMCID: PMC17242 DOI: 10.1073/pnas.97.21.11575] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, and growth hormone-releasing hormone. Microinjection of VIP or PACAP into the rodent suprachiasmatic nucleus (SCN) phase shifts the circadian pacemaker and VIP antagonists, and antisense oligodeoxynucleotides have been shown to disrupt circadian function. VIP and PACAP have equal potency as agonists of the VPAC(2) receptor (VPAC(2)R), which is expressed abundantly in the SCN, in a circadian manner. To determine whether manipulating the level of expression of the VPAC(2)R can influence the control of the circadian clock, we have created transgenic mice overexpressing the human VPAC(2)R gene from a yeast artificial chromosome (YAC) construct. The YAC was modified by a strategy using homologous recombination to introduce (i) the HA epitope tag sequence (from influenza virus hemagglutinin) at the carboxyl terminus of the VPAC(2)R protein, (ii) the lacZ reporter gene, and (iii) a conditional centromere, enabling YAC DNA to be amplified in culture in the presence of galactose. High levels of lacZ expression were detected in the SCN, habenula, pancreas, and testis of the transgenic mice, with lower levels in the olfactory bulb and various hypothalamic areas. Transgenic mice resynchronized more quickly than wild-type controls to an advance of 8 h in the light-dark (LD) cycle and exhibited a significantly shorter circadian period in constant darkness (DD). These data suggest that the VPAC(2)R can influence the rhythmicity and photic entrainment of the circadian clock.
Collapse
Affiliation(s)
- S Shen
- Department of Neuroscience and Fujisawa Institute of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fahrenkrug J, Hannibal J, Tams J, Georg B. Immunohistochemical localization of the VIP1 receptor (VPAC1R) in rat cerebral blood vessels: relation to PACAP and VIP containing nerves. J Cereb Blood Flow Metab 2000; 20:1205-14. [PMID: 10950381 DOI: 10.1097/00004647-200008000-00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two structurally related peptides, vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP), are present in cerebral vascular nerve fibers. Biologic actions of VIP are exerted through two receptors, VPAC1 and VPAC2, having similar binding affinity for both VIP and PACAP. In the current study, the authors have developed a specific antibody against the rVPAC1 receptor to examine the localization of rVPAC1 immunoreactivity in cerebral arteries and arterioles of the rat by immunohistochemistry using fluorescence confocal microscopy. Specificity of the antiserum was ensured by immunoblotting and immunocytochemistry of cells transfected with cDNA encoding the different PACAP-VIP receptor subtypes. The rVPAC1 receptor immunoreactivity was localized to the plasmalemma of circularly orientated smooth muscle cells on superficial cerebral arteries and arterioles taken from the basal surface of the brain. By double immunostaining VIP immunoreactive nerve fibers and, to a lesser extent, those containing PACAP were shown to have intimate contact with the receptor protein. Vasoactive intestinal polypeptide and PACAP containing cerebrovascular nerve fibers were found in separate nerve populations with different distribution pattern and density. In brain sections processes of cortical VIP-, but not PACAP-, containing neurons seemed to innervate the rVPAC1 receptor of pial arterioles on the brain surface. The current findings provide the neuroanatomical substrate for a role of VIP and maybe PACAP in the regulation of cerebral blood flow.
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Liu J, Evans MS, Brewer GJ, Lee TJ. N-type Ca2+ channels in cultured rat sphenopalatine ganglion neurons: an immunohistochemical and electrophysiological study. J Cereb Blood Flow Metab 2000; 20:183-91. [PMID: 10616807 DOI: 10.1097/00004647-200001000-00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Results from pharmacological studies have suggested that presynaptic N-type Ca2+ channels play an important role in regulating neuronal Ca2+ influx and transmitter nitric oxide (NO) release in isolated cerebral arteries. However, the presence of N-type Ca2+ channels in cerebral perivascular nerves has not been directly demonstrated. As a major source of cerebral perivascular NOergic innervation is the sphenopalatine ganglion (SPG), adult rat SPGs were cultured and examined by whole-cell patch-clamp technique. One week after growing in the culture medium, significant neurite outgrowth from the SPG neuronal cells was observed. Both soma and neurites of these cells were immunoreactive for N-type Ca2+ channels, transmitter-synthesizing enzymes (choline acetyltransferase and NO synthase), and several neuropeptides (vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and pituitary adenylate cyclase-activating peptide-38) that had been found in cerebral perivascular nerves in whole-mount vascular preparations. In current-clamp recordings, injection of a small depolarizing current caused action potential firing. In voltage-clamp recordings, the fast inward currents were blocked by tetrodotoxin and outward currents by tetraethylammonium, which is typical for neurons. Most Ca2+ currents isolated by blockade of sodium and potassium currents were blocked by omega-conotoxin, indicating that N-type Ca2+ channels are the dominant voltage-dependent Ca2+ channels regulating Ca2+ influx during membrane depolarization of SPG neurons. The ability to culture postganglionic SPG neurons provides an opportunity to directly study the electrophysiological and pharmacological properties of these neurons.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, USA
| | | | | | | |
Collapse
|
28
|
Tajti J, Uddman R, Möller S, Sundler F, Edvinsson L. Messenger molecules and receptor mRNA in the human trigeminal ganglion. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:176-83. [PMID: 10412842 DOI: 10.1016/s0165-1838(99)00024-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence and distribution of neuromessenger molecules and receptor mRNA in human trigeminal ganglion was studied with immunocytochemical, in situ hybridisation and RT-PCR techniques. Immunofluorescence staining revealed that calcitonin gene-related peptide (CGRP) immunoreactive (-ir) neurons occurred in high numbers, constituting 36-40% of all nerve cell bodies in the ganglion. Accordingly, in situ hybridisation demonstrated CGRP mRNA in a large portion of the trigeminal neurons. A small number of the nerve cell bodies showed substance P (SP)-ir, (18%), nitric oxide synthase (NOS)-ir (15%), and pituitary adenylate cyclase activating peptide (PACAP)-ir (20%). Double immunostaining revealed that only few CGRP-ir neurons also were NOS-ir (less than 5%). The C-terminal flanking peptide of neuropeptide Y, C-PON, was not visible in any of the nerve cell bodies studied. Agarose gel electrophoresis of the RT-PCR products from the ganglia demonstrated the presence of mRNA corresponding to CGRP1, NPY Y1 and Y2, and VIP1 receptors. These results suggest both sympathetic and parasympathetic influence on the activity in the trigeminal ganglion.
Collapse
Affiliation(s)
- J Tajti
- Department of Internal Medicine, Lund University Hospital, Sweden
| | | | | | | | | |
Collapse
|
29
|
Abstract
The vascular tone, vascular resistance and blood flow in the brain are regulated by neural and humoral factors in quite a different way from those of peripheral organs and tissues. In contrast to the dominant vasoconstrictor control in the periphery, the intracranial vascular tone is predominantly influenced by vasodilator mediators over vasoconstrictor ones. Recent studies have revealed that nitroxidergic vasodilator nerve and endothelium-derived hyperpolarizing factor (EDHF) or K+ channel opening substance appear to play important roles in the regulation of cerebral arterial and arteriolar tone in primate and subprimate mammals, in addition to the accepted information concerning the crucial contribution of endothelium-derived relaxing factor (EDRF) or nitric oxide (NO), polypeptides, prostanoids, etc. This article summarizes characteristic properties of vasodilator factors in controlling the cerebral arterial and arteriolar tone that undoubtedly contribute to circulatory homeostasis. The content includes vasodilator nerve, endogenous vasodilator substances, and vasodilator interventions such as hypoxia, hypercapnia and hyperosmolarity.
Collapse
Affiliation(s)
- N Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan
| | | |
Collapse
|
30
|
Anzai M, Suzuki Y, Takayasu M, Kajita Y, Mori Y, Seki Y, Saito K, Shibuya M. Vasorelaxant effect of PACAP-27 on canine cerebral arteries and rat intracerebral arterioles. Eur J Pharmacol 1995; 285:173-9. [PMID: 8566136 DOI: 10.1016/0014-2999(95)00404-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vasorelaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP)-27 were examined and compared with those of PACAP-38 and vasoactive intestinal polypeptide (VIP) on isolated canine cerebral arteries and rat intracerebral arterioles in vitro. The addition of PACAP-27, PACAP-38 or VIP resulted in similar concentration-dependent relaxations in both canine basilar arteries and rat intracerebral arterioles. There were regional differences in the PACAP-27-induced relaxations measured in canine cerebral arteries. The maximum relaxation induced by PACAP-27 was significantly lower in the basilar arteries (23.0 +/- 5.6%) than in the rostrally located arteries (proximal middle cerebral arteries: 45.4 +/- 5.7%, anterior cerebral arteries: 55.2 +/- 5.8%). The maximum relaxation induced by PACAP-27 in the basilar arteries was significantly enhanced by mechanical removal of the endothelium (16.4 +/- 4.5% vs. 32.7 +/- 5.8%) as well as by pretreatment with indomethacin or aspirin (12.9 +/- 4.1% vs. 48.7 +/- 6.1% and 46.5 +/- 9.2%, respectively). Incubation of canine cerebral arteries with PACAP-27 in vitro resulted in an increased release of prostaglandin F2 alpha in the buffer from 14.5 +/- 2.1 pg/min/1 mg vessel to 31.1 +/- 4.2 pg/min/1 mg vessel, while other cyclooxygenase cascade metabolites such as prostaglandin E2, thromboxane B2 and 6-keto prostaglandin F1 alpha did not change. These data suggest that the PACAP-27-induced relaxation of canine basilar arteries may be associated with prostaglandin F2 alpha or its precursor, prostaglandin H2.
Collapse
Affiliation(s)
- M Anzai
- Department of Neurosurgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kajita Y, Takayasu M, Suzuki Y, Shibuya M, Mori M, Oyama H, Sugita K, Hidaka H. Regional differences in cerebral vasomotor control by nitric oxide. Brain Res Bull 1995; 38:365-9. [PMID: 8535859 DOI: 10.1016/0361-9230(95)02001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regional differences in the role of nitric oxide in cerebral vasomotor control were investigated with a nitric oxide synthesis inhibitor, NG-monomethyl-L-arginine, or a precursor of nitric oxide, L-arginine using both dog cerebral angiography for the larger artery study and rat isolated arterioles for the microcirculation study. NG-monomethyl-L-arginine (10 mumol) constricted the dog cerebral arteries, by 15.6%, 17.5%, and 27.3% in the middle cerebral, anterior cerebral, and basilar arteries, respectively. The greater constriction of the basilar artery did not reach statistical significance. However, L-arginine (100 mumol) produced significantly greater dilation of basilar arteries than the middle cerebral or anterior cerebral (31.3% vs. 16.7% or 13.1%). NG-monomethyl-L-arginine at 10(-3) M constricted rat arterioles originating from basilar arteries significantly more than the middle cerebral arteries (23% vs. 14%). L-arginine at 10(-3) M dilated rat arterioles from basilar arteries significantly more than from the middle cerebral artery (24 vs. 11%). These findings suggest that the roles of nitric oxide in vasomotor control differs by region in the brain, and it may be greater in vessels of the posterior than of the anterior circulation.
Collapse
Affiliation(s)
- Y Kajita
- Department of Neurosurgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|