1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Honeywell KM, Doren EV, Szumlinski KK. Selective Inhibition of PDE4B Reduces Methamphetamine Reinforcement in Two C57BL/6 Substrains. Int J Mol Sci 2022; 23:4872. [PMID: 35563262 PMCID: PMC9099926 DOI: 10.3390/ijms23094872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug, and the number of MA-related overdose deaths has reached epidemic proportions. Repeated MA exposure induces a robust and persistent neuroinflammatory response, and the evidence supports the potential utility of targeting neuroimmune function using non-selective phosphodiesterase 4 (PDE4) inhibitors as a therapeutic strategy for attenuating addiction-related behavior. Off-target, emetic effects associated with non-selective PDE4 blockade led to the development of isozyme-selective inhibitors, of which the PDE4B-selective inhibitor A33 was demonstrated recently to reduce binge drinking in two genetically related C57BL/6 (B6) substrains (C57BL/6NJ (B6NJ) and C57BL/6J (B6J)) that differ in their innate neuroimmune response. Herein, we determined the efficacy of A33 for reducing MA self-administration and MA-seeking behavior in these two B6 substrains. Female and male mice of both substrains were first trained to nose poke for a 100 mg/L MA solution followed by a characterization of the dose-response function for oral MA reinforcement (20 mg/L-3.2 g/L), the demand-response function for 400 mg/L MA, and cue-elicited MA seeking following a period of forced abstinence. During this substrain comparison of MA self-administration, we also determined the dose-response function for A33 pretreatment (0-1 mg/kg) on the maintenance of MA self-administration and cue-elicited MA seeking. Relative to B6NJ mice, B6J mice earned fewer reinforcers, consumed less MA, and took longer to reach acquisition criterion with males of both substrains exhibiting some signs of lower MA reinforcement than their female counterparts during the acquisition phase of the study. A33 pretreatment reduced MA reinforcement at all doses tested. These findings provide the first evidence that pretreatment with a selective PDE4B inhibitor effectively reduces MA self-administration in both male and female mice of two genetically distinct substrains but does not impact cue-elicited MA seeking following abstinence. If relevant to humans, these results posit the potential clinical utility of A33 or other selective PDE4B inhibitors for curbing active drug-taking in MA use disorder.
Collapse
Affiliation(s)
- Kevin M. Honeywell
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Eliyana Van Doren
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| |
Collapse
|
3
|
El-Sherbeni AA, Stocco MR, Wadji FB, Tyndale RF. Addressing the instability issue of dopamine during microdialysis: the determination of dopamine, serotonin, methamphetamine and its metabolites in rat brain. J Chromatogr A 2020; 1627:461403. [PMID: 32823108 PMCID: PMC7484461 DOI: 10.1016/j.chroma.2020.461403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022]
Abstract
Dopamine is a catecholamine neurotransmitter that degrades rapidly in aqueous solutions; hence, its analysis following brain microdialysis is challenging. The aim of the current study was to develop and validate a new microdialysis coupled LC-MS/MS system with improved accuracy, precision, simplicity and turnaround time for dopamine, serotonin, methamphetamine, amphetamine, 4-hydroxymethamphetamine and 4-hydroxyamphetamine analysis in the brain. Dopamine degradation was studied with different stabilizing agents under different storage conditions. The modified microdialysis system was tested in vitro, and was optimized for best probe recovery, assessed by %gain. LC-MS/MS assay was developed and validated for the targeted compounds. Stabilizing agents (ascorbic acid, EDTA and acetic acid) as well as internal and cold standards were added on-line to the dialysate flow. Assay linearity range was 0.01-100 ng/mL, precision and accuracy passed criteria, and LOQ and LLOQ were 0.2 and 1.0 pg, respectively. The new microdialysis coupled LC-MS/MS system was used in Wistar rats striatum after 4 mg/kg subcutaneous methamphetamine. Methamphetamine rapidly distributed to rat striatum reaching an average ~200 ng/mL maximum, ~82.5 min post-dose. Amphetamine, followed by 4-hydroxymethamphetamine, was the most abundant metabolite. Dopamine was released following methamphetamine injection, while serotonin was not altered. In conclusion, we proposed and tested an innovative and simplified solution to improve stability, accuracy and turnover time to monitor unstable molecules, such as dopamine, by microdialysis.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marlaina R Stocco
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fariba Baghai Wadji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
5
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
6
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
7
|
Gong MF, Wen RT, Xu Y, Pan JC, Fei N, Zhou YM, Xu JP, Liang JH, Zhang HT. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl) 2017; 234:3143-3151. [PMID: 28748375 DOI: 10.1007/s00213-017-4697-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. OBJECTIVE The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. METHODS Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. RESULTS Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. CONCLUSIONS These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Collapse
Affiliation(s)
- Mei-Fang Gong
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Rui-Ting Wen
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Ying Xu
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jian-Chun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Fei
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China.
| |
Collapse
|
8
|
Olsen CM, Liu QS. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities. FRONTIERS IN BIOLOGY 2016; 11:376-386. [PMID: 28974957 PMCID: PMC5617368 DOI: 10.1007/s11515-016-1424-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long-term exposure to drugs of abuse causes an up-regulation of the cAMP-signaling pathway in the nucleus accumbens and other forebrain regions, this common neuroadaptation is thought to underlie aspects of drug tolerance and dependence. Phosphodiesterase 4 (PDE4) is an enzyme that the selective hydrolyzes intracellular cAMP. It is expressed in several brain regions that regulate the reinforcing effects of drugs of abuse. OBJECTIVE Here, we review the current knowledge about central nervous system (CNS) distribution of PDE4 isoforms and the effects of systemic and brain-region specific inhibition of PDE4 on behavioral models of drug addiction. METHODS A systematic literature search was performed using the Pubmed. RESULTS Using behavioral sensitization, conditioned place preference and drug self-administration as behavioral models, a large number of studies have shown that local or systemic administration of PDE4 inhibitors reduce drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in rats or mice. CONCLUSIONS Preclinical studies suggest that PDE4 could be a therapeutic target for several classes of substance use disorder. We conclude by identifying opportunities for the development of subtype-selective PDE4 inhibitors that may reduce addiction liability and minimize the side effects that limit the clinical potential of non-selective PDE4 inhibitors. Several PDE4 inhibitors have been clinically approved for other diseases. There is a promising possibility to repurpose these PDE4 inhibitors for the treatment of drug addiction as they are safe and well-tolerated in patients.
Collapse
Affiliation(s)
- Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Goutier W, O'Connor JJ, Lowry JP, McCreary AC. The effect of nicotine induced behavioral sensitization on dopamine D1 receptor pharmacology: An in vivo and ex vivo study in the rat. Eur Neuropsychopharmacol 2015; 25:933-43. [PMID: 25795518 DOI: 10.1016/j.euroneuro.2015.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2014] [Accepted: 02/21/2015] [Indexed: 01/07/2023]
Abstract
Behavioral sensitization is a phenomenon which can develop following repeated intermittent administration of a range of psychostimulants, and other compounds, and may model neuroplastic changes seen in addictive processes and neuropsychiatric disease. The aim of the present study was to investigate the effect of dopamine D1 receptor (D1R) ligands on nicotine-induced behavioral sensitization and their molecular consequences in the striatum. Wistar rats were chronically treated (5 days) with vehicle or nicotine (0.4 mg/kg; s.c.) and locomotor activity was measured. Following a 5 day withdrawal period, rats were pretreated with vehicle or the D1R antagonist SCH-23390 (0.03 mg/kg; i.p.) and challenged with nicotine. Either 45 min or 24h post-challenge, the striatum was isolated and ex vivo receptor binding and cAMP accumulation (using LC-MS/MS) were assessed. It was shown that chronic nicotine administration induced the development and expression of locomotor sensitization, of which the latter was blocked by SCH-23390. Nicotine-induced sensitization had no effect on forskolin stimulated cAMP accumulation but increased the efficacy of dopamine for the D1R and decreased the potency of D1R agonists. These effects were antagonized by in vivo pre-challenge with SCH-23390. No effect on D1 receptor binding was observed. Moreover, time dependent effects were observed between tissue taken 45 min and 24h post-challenge. The present findings provide a connection between behavioral sensitization and intracellular cAMP accumulation through the D1R. Together these data suggest that changes in D1R signaling in the dorsal striatum may play an important role in the underlying mechanisms of nicotine-induced behavioral sensitization.
Collapse
Affiliation(s)
- W Goutier
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands; Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - J J O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland; Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - J P Lowry
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - A C McCreary
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| |
Collapse
|
10
|
Heckman PRA, Blokland A, Ramaekers J, Prickaerts J. PDE and cognitive processing: beyond the memory domain. Neurobiol Learn Mem 2014; 119:108-22. [PMID: 25464010 DOI: 10.1016/j.nlm.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) enhance cAMP and/or cGMP signaling via reducing the degradation of these cyclic nucleotides. Both cAMP and cGMP signaling are essential for a variety of cellular functions and exert their effects both pre- and post-synaptically. Either of these second messengers relays and amplifies incoming signals at receptors on the cell surface making them important elements in signal transduction cascades and essential in cellular signaling in a variety of cell functions including neurotransmitter release and neuroprotection. Consequently, these processes can be influenced by PDE-Is as they increase cAMP and/or cGMP concentrations. PDE-Is have been considered as possible therapeutic agents to treat impaired memory function linked to several brain disorders, including depression, schizophrenia and Alzheimer's disease (AD). This review will, however, focus on the possible role of phosphodiesterases (PDEs) in cognitive decline beyond the memory domain. Here we will discuss the involvement of PDEs on three related domains: attention, information filtering (sensory- and sensorimotor gating) and response inhibition (drug-induced hyperlocomotion). Currently, these are emerging cognitive domains in the field of PDE research. Here we discuss experimental studies and the potential beneficial effects of PDE-I drugs on these cognitive domains, as effects of PDE-Is on these domains could potentially influence effects on memory performance. Overall, PDE4 seems to be the most promising target for all domains discussed in this review.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J Ramaekers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
11
|
Beardsley PM, Hauser KF. Glial modulators as potential treatments of psychostimulant abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:1-69. [PMID: 24484974 DOI: 10.1016/b978-0-12-420118-7.00001-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glia (including astrocytes, microglia, and oligodendrocytes), which constitute the majority of cells in the brain, have many of the same receptors as neurons, secrete neurotransmitters and neurotrophic and neuroinflammatory factors, control clearance of neurotransmitters from synaptic clefts, and are intimately involved in synaptic plasticity. Despite their prevalence and spectrum of functions, appreciation of their potential general importance has been elusive since their identification in the mid-1800s, and only relatively recently have they been gaining their due respect. This development of appreciation has been nurtured by the growing awareness that drugs of abuse, including the psychostimulants, affect glial activity, and glial activity, in turn, has been found to modulate the effects of the psychostimulants. This developing awareness has begun to illuminate novel pharmacotherapeutic targets for treating psychostimulant abuse, for which targeting more conventional neuronal targets has not yet resulted in a single, approved medication. In this chapter, we discuss the molecular pharmacology, physiology, and functional relationships that the glia have especially in the light in which they present themselves as targets for pharmacotherapeutics intended to treat psychostimulant abuse disorders. We then review a cross section of preclinical studies that have manipulated glial processes whose behavioral effects have been supportive of considering the glia as drug targets for psychostimulant-abuse medications. We then close with comments regarding the current clinical evaluation of relevant compounds for treating psychostimulant abuse, as well as the likelihood of future prospects.
Collapse
Affiliation(s)
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
12
|
Snider SE, Hendrick ES, Beardsley PM. Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol 2013; 701:124-30. [PMID: 23375937 DOI: 10.1016/j.ejphar.2013.01.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Neuroinflammation induced by activated microglia and astrocytes can be elicited by drugs of abuse. Methamphetamine administration activates glial cells and increases proinflammatory cytokine production, and there is recent evidence of a linkage between glial cell activation and drug abuse-related behavior. We have previously reported that ibudilast (AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), which inhibits phosphodiesterase (PDE) and pro-inflammatory activity, blocks reinstatement of methamphetamine-maintained responding in rats, and that ibudilast and AV1013, an amino analog of ibudilast, which has similar glial-attenuating properties but limited PDE activity, attenuate methamphetamine-induced locomotor activity and sensitization in mice. The present study's objective was to determine whether co-administered ibudilast, AV1013, or minocycline, which is a tetracycline derivative that also suppresses methamphetamine-induced glial activation, would attenuate active methamphetamine i.v. self-administration in Long-Evans hooded rats. Rats were initially trained to press a lever for 0.1mg/kg/inf methamphetamine according to a FR1 schedule during 2-h daily sessions. Once stable responding was obtained, twice daily ibudilast (1, 7.5, 10mg/kg), AV1013 (1, 10, 30mg/kg), or once daily minocycline (10, 30, 60mg/kg), or their corresponding vehicles, were given i.p. for three consecutive days during methamphetamine (0.001, 0.03, 0.1mg/kg/inf) self-administration. Ibudilast, AV1013, and minocycline all significantly (p<0.05) reduced responding maintained by 0.03mg/kg/inf methamphetamine that had maintained the highest level of infusions under vehicle conditions. These results suggest that targeting glial cells may provide a novel approach to pharmacotherapy for treating methamphetamineabuse.
Collapse
Affiliation(s)
- Sarah E Snider
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | | | | |
Collapse
|
13
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 2012; 167:946-59. [PMID: 22671762 PMCID: PMC3492978 DOI: 10.1111/j.1476-5381.2012.02065.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/04/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022] Open
Abstract
Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption.
Collapse
Affiliation(s)
- N Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Zhong P, Wang W, Yu F, Nazari M, Liu X, Liu QS. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology 2012; 37:2377-87. [PMID: 22713909 PMCID: PMC3442353 DOI: 10.1038/npp.2012.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endocannabinoid-mediated long-term depression of inhibitory synaptic transmission (I-LTD) in the ventral tegmental area (VTA) is implicated in cocaine-induced inhibitory synaptic plasticity and behavioral effects. It remains poorly understood, however, how this I-LTD is regulated and whether this regulation affects cocaine-seeking behavior. I-LTD requires cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) signaling, raising the possibility that modulators of cAMP/PKA signaling may regulate I-LTD and the reinforcement behavior. Phosphodiesterase (PDE) 4 hydrolyses cAMP and terminates cAMP/PKA signaling. Here, we report that selective PDE4 inhibitors rolipram and Ro 20-1724 blocked I-LTD and acute depression of inhibitory postsynaptic currents (IPSCs) induced by D₂ dopamine receptor and cannabinoid CB₁ receptor agonists in VTA dopamine neurons. We also show that intra-VTA microinjections of PDE4 inhibitor rolipram impaired the acquisition, but not the expression, of conditioned place preference (CPP) to cocaine. Systemic administration of rolipram also increased cAMP response element-binding protein (CREB) phosphorylation and activation in the VTA. Together, our results suggest that blockade of cocaine-induced inhibitory synaptic plasticity (I-LTD) and enhancement of CREB activation are two putative cellular mechanisms by which PDE4 inhibition impairs the acquisition of cocaine CPP.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fei Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Maressa Nazari
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: +1 414 955 8877, Fax: +1 414 456 6545, E-mail:
| |
Collapse
|
15
|
Snider SE, Vunck SA, van den Oord EJCG, Adkins DE, McClay JL, Beardsley PM. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur J Pharmacol 2012; 679:75-80. [PMID: 22306241 DOI: 10.1016/j.ejphar.2012.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/04/2012] [Accepted: 01/11/2012] [Indexed: 11/26/2022]
Abstract
Over 800,000 Americans abuse the psychomotor stimulant, methamphetamine, yet its abuse is without an approved medication. Methamphetamine induces hypermotor activity, and sensitization to this effect is suggested to represent aspects of the addiction process. Methamphetamine's regulation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels may be partially responsible for its behavioral effects, and compounds that inhibit phosphodiesterase (PDE), the enzyme that degrades cAMP, can alter methamphetamine-induced behaviors. Methamphetamine also activates glial cells and causes a subsequent increase in pro-inflammatory cytokine levels. Modulation of glial cell activation is associated with changes in behavioral responses, and substances that oppose inflammatory activity can attenuate drug-induced behaviors. Ibudilast (aka AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), inhibits both PDE and glial pro-inflammatory activity. Ibudilast's amino analog, AV1013, modulates similar glial targets but negligibly inhibits PDE. The present study determined whether ibudilast and AV1013 would attenuate methamphetamine-induced locomotor activity and its sensitization in C57BL/6J mice. Mice were treated b.i.d. with ibudilast (1.8-13 mg/kg), AV1013 (10-56 mg/kg) or their vehicles intraperitoneally for 7 days, beginning 48 h before 5 days of daily 1-h locomotor activity tests. Each test was initiated by either a methamphetamine (3 mg/kg) or a saline injection. Ibudilast significantly (P<0.05) reduced the acute, chronic, and sensitization effects of methamphetamine's locomotor activity without significantly affecting activity by itself. AV1013 had similar anti-methamphetamine effects, suggesting that glial cell activity, by itself, can modulate methamphetamine's effects and perhaps serve as a medication target for its abuse.
Collapse
Affiliation(s)
- Sarah E Snider
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hu W, Lu T, Chen A, Huang Y, Hansen R, Chandler LJ, Zhang HT. Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology (Berl) 2011; 218:331-9. [PMID: 21509503 PMCID: PMC4210373 DOI: 10.1007/s00213-011-2290-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 03/29/2011] [Indexed: 01/29/2023]
Abstract
RATIONALE Cyclic AMP (cAMP)-protein kinase A signaling has been implicated in the regulation of ethanol consumption. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cAMP and plays a critical role in controlling intracellular cAMP levels in the brain. However, the role of PDE4 in ethanol consumption remains unknown. OBJECTIVE The objective of this study is to examine whether PDE4 was involved in regulating ethanol intake. METHODS The two-bottle choice paradigm was used to assess intake of ethanol, sucrose, and quinine in C57BL/6J mice treated with the selective PDE4 inhibitor rolipram or Ro 20-1724; locomotor activity was also monitored using the open-field test in mice treated with rolipram. RESULTS Administration (i.p.) of either rolipram (0.25 and 0.5 mg/kg) or Ro 20-1724 (10 mg/kg) reduced ethanol intake and preference by 60-80%, but did not alter total fluid intake. In contrast, rolipram even at the higher dose of 0.5 mg/kg was not able to affect intake of sucrose or quinine, alcohol-induced sedation, or blood ethanol elimination. At 0.5 mg/kg, rolipram did decrease locomotor activity, but the effect only lasted for approximately 40 min, which did not likely affect behavior of ethanol drinking. CONCLUSIONS These results suggest that PDE4 is a novel target for drugs that reduce ethanol intake; PDE4 inhibitors may be used for treatment of alcohol dependence.
Collapse
Affiliation(s)
- Wei Hu
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| | - Tina Lu
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| | - Alan Chen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| | - Ying Huang
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| | - Rolf Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| | - L. Judson Chandler
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Han-Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV26506, USA
| |
Collapse
|
17
|
The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol 2010; 637:102-8. [PMID: 20399770 DOI: 10.1016/j.ejphar.2010.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 03/16/2010] [Accepted: 04/04/2010] [Indexed: 01/15/2023]
Abstract
Stress and renewed contact with drug (a "slip") have been linked to persisting relapse of methamphetamine abuse. Human brain microglial activation has been linked with methamphetamine abuse, and inhibitors of glial cell activation, certain phosphodiesterase (PDE) inhibitors, and glial cell derived neurotrophic factor (GDNF) have been reported to modulate drug abuse effects. Our objective was to determine whether the glial cell attenuator, 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine (AV411, ibudilast), a non-selective PDE inhibitor and promoter of GDNF, could reduce stress- and methamphetamine prime-induced reinstatement of methamphetamine-seeking behavior. Male Long-Evans hooded rats were trained to lever press reinforced with 0.1 mg/kg i.v. methamphetamine infusion according to fixed-ratio 1 (FR1) reinforcement schedules during daily, 2-hour experimental sessions. After performance had stabilized, lever pressing was extinguished for 12 consecutive sessions and doses of 0 (vehicle), 2.5 and 7.5 mg/kg AV411 were then administered intraperitoneally b.i.d. on the last 2 days of extinction and then once on the testday to separate groups of 12 rats. During testing, the rats were given 15 min of intermittent footshock or a 1 mg/kg i.p. methamphetamine prime followed by a 2-hour reinstatement test session. AV411 significantly reduced response levels of footshock-induced (2.5 and 7.5 mg/kg) and prime-induced (7.5 mg/kg) reinstatement of extinguished methamphetamine-maintained responding. AV411 has properties consistent with the ability to attenuate relapse precipitated by stress and methamphetamine "slips" during abstinence. These results thus reinforce interest in atypical neurobiological mechanisms which could be exploited for developing novel medications for treating drug abuse disorders.
Collapse
|
18
|
The involvement of type IV phosphodiesterases in cocaine-induced sensitization and subsequent pERK expression in the mouse nucleus accumbens. Psychopharmacology (Berl) 2009; 206:177-85. [PMID: 19588125 DOI: 10.1007/s00213-009-1594-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Cocaine exposure produces sensitization that is partly mediated by cyclic adenosine monophosphate (cAMP) pathways within the nucleus accumbens (NAc). Type IV phosphodiesterases (PDE4s) break down cAMP and are required for cocaine-induced conditioned place preference. Whether PDE4 disruption attenuates induction of behavioral sensitization to cocaine and subsequent NAc expression of phosphorylated extracellular signal-regulated kinase (ERK), which is involved in cocaine-induced sensitization, is unknown. OBJECTIVES The objective of this study was to determine whether inhibition of PDE4s prevents cocaine-induced locomotor sensitization and if reduced behavioral sensitization is accompanied by decreased expression of phosphorylated ERK (pERK) within the NAc. METHODS Mice were administered the PDE4 inhibitor, rolipram, or vehicle before or after five daily injections of cocaine or saline, and activity was monitored on days 1 and 5. After nine drug-free days, locomotor sensitization was tested. Some subjects were sacrificed following testing for behavioral sensitization to measure pERK expression in the NAc. RESULTS PDE4 inhibition, during the induction of sensitization, reduced behavioral sensitization only if rolipram (1.0 mg/kg) was administered before cocaine. Re-exposure to the cocaine-paired environment following a 9-day drug-free period enhanced pERK expression in the NAc core and shell. Rolipram did not alter pERK induction despite blocking behavioral sensitization. CONCLUSIONS Rolipram given during, but not following, cocaine treatment prevents development of locomotor sensitization to cocaine but does not affect subsequent pERK activation induced by exposure to a cocaine-paired context or following a cocaine challenge. Although PDE4 inhibition during the induction of sensitization blocks the locomotor component of sensitization, other long-term changes induced by repeated cocaine treatment remain.
Collapse
|
19
|
Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 2009; 23:492-7. [PMID: 19486648 PMCID: PMC2783267 DOI: 10.1016/j.bbi.2009.01.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/26/2022] Open
Abstract
Glial activation has recently been discovered to modulate several effects of morphine, including analgesia, tolerance, and dependence. The present studies extend this line of investigation by exploring whether glial activation may also affect extracellular levels of dopamine (DA) in the nucleus accumbens (NAc) shell, a neurochemical corollary of morphine-induced drug reward, during a challenge dose of morphine in experiments both with and without precipitated withdrawal. Morphine or vehicle was administered s.c. for 4 days (starting at 15 mg/kg/day up to 20 mg/kg/day), and the glial activation inhibitor AV411 (7.5 mg/kg) or vehicle was administered twice daily. A challenge dose of morphine (22.5 mg/kg) or saline was then given during dialysis. In the first experiment, naloxone (10 mg/kg) was administered 1h after morphine during dialysis in AV411- or vehicle-treated rats, and behavioral signs of somatic withdrawal were assessed during microdialysis. In the second experiment, using the same dosing regimen, sampling continued 3 h after morphine or saline in AV411- or vehicle-treated rats. NAc DA increased in vehicle-treated rats significantly more than in AV411-treated rats before naloxone treatment, and withdrawal symptoms were significantly reduced in AV411-treated rats. The decrease in morphine-induced NAc DA by AV411 was persistent, lasting 3+h post-morphine. These results indicate that glial activation contributes to the effects of morphine on NAc DA, which is associated with somatic signs of precipitated withdrawal.
Collapse
Affiliation(s)
- Sondra T Bland
- Department of Psychology & Center for Neuroscience, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | |
Collapse
|
20
|
Adams AC, Keefe KA. Examination of the involvement of protein kinase A in D2 dopamine receptor antagonist-induced immediate early gene expression. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00247.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ago Y, Nakamura S, Baba A, Matsuda T. Neuropsychotoxicity of abused drugs: effects of serotonin receptor ligands on methamphetamine- and cocaine-induced behavioral sensitization in mice. J Pharmacol Sci 2008; 106:15-21. [PMID: 18198473 DOI: 10.1254/jphs.fm0070121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Repeated administration of psychostimulants elicits a progressive enhancement of locomotor activity known as behavioral sensitization. Central dopamine (DA) neurons play key roles as the neural substrates mediating behavioral sensitization, but the role of the serotonin (5-HT) system in the sensitization is not fully elucidated. We have recently demonstrated that osemozotan, a specific 5-HT(1A)-receptor agonist, and ritanserin, a 5-HT(2)-receptor antagonist, inhibited the expression and development of both methamphetamine- and cocaine-induced behavioral sensitization in mice and that these drugs attenuated the maintenance of behavioral sensitization of methamphetamine, but not that of cocaine. We also found that azasetron, a 5-HT(3)-receptor antagonist, inhibited the expression and development of the sensitization induced by methamphetamine and cocaine, respectively. Neurochemical studies using a microdialysis technique showed that repeated methamphetamine enhanced the methamphetamine-induced increase in 5-HT release in the prefrontal cortex. The sensitization of 5-HT release in methamphetamine-treated mice was attenuated by osemozotan and ritanserin. These findings suggest that the 5-HT system plays an important role in methamphetamine- and cocaine-induced behavioral sensitization in mice and imply that 5-HT(1A)-receptor agonists and 5-HT(2)-receptor antagonists may have a potential therapeutic value for the treatment of methamphetamine abuse or psychosis.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
22
|
Siuciak JA, Chapin DS, McCarthy SA, Martin AN. Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 2007; 192:415-24. [PMID: 17333137 DOI: 10.1007/s00213-007-0727-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/23/2007] [Indexed: 01/19/2023]
Abstract
RATIONALE Recent studies provide evidence for reduced phosphodiesterase-4B (PDE4B) as a genetic susceptibility factor as well as suggesting an association of several single nucleotide polymorphisms (SNPs) in PDE4B that are associated with an increased incidence of schizophrenia. OBJECTIVES The aim of the current study was to assess the activity of rolipram, a nonsubtype-selective PDE4 inhibitor, in several animal models predictive of antipsychotic-like efficacy and side-effect liability and to use PDE4B wild-type and knockout mice to begin to understand the subtypes involved in the activity of rolipram. RESULTS In rats, rolipram antagonized both phencyclidine hydrochloride- and D-amphetamine-induced hyperactivity and inhibited conditioned avoidance responding (CAR). In PDE4B wild-type mice, rolipram dose-dependently suppressed CAR (ED(50) = 2.4 mg/kg); however, in knockout mice, their sensitivity to rolipram at the higher doses (1.0 and 3.2 mg/kg) was reduced, resulting in a threefold shift in the ED(50) (7.3 mg/kg), suggesting PDE4B is involved, at least in part, with the activity of rolipram. Only the highest dose of rolipram (3.2 mg/kg) produced a modest but significant degree of catalepsy. CONCLUSIONS Rolipram has a pharmacologic profile similar to that of the atypical antipsychotics and has low extrapyramidal symptom liability. These results suggest that PDE4B mediates the antipsychotic effects of rolipram in CAR and that the PDE4B-regulated cyclic adenosine monophosphate signaling pathway may play a role in the pathophysiology and pharmacotherapy of psychosis.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Antipsychotic Agents/administration & dosage
- Antipsychotic Agents/adverse effects
- Antipsychotic Agents/pharmacology
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Catalepsy/chemically induced
- Conditioning, Operant/drug effects
- Cyclic AMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hyperkinesis/chemically induced
- Hyperkinesis/drug therapy
- Male
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- Motor Activity/drug effects
- Polymorphism, Genetic
- Psychotic Disorders/drug therapy
- Psychotic Disorders/physiopathology
- Rats
- Rolipram/administration & dosage
- Rolipram/adverse effects
- Rolipram/pharmacology
- Schizophrenia/drug therapy
- Schizophrenia/physiopathology
- Signal Transduction
Collapse
Affiliation(s)
- Judith A Siuciak
- CNS Discovery, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
23
|
Yin HS, Chen K, Kalpana S, Shih JC. Differential effects of chronic amphetamine and baclofen administration on cAMP levels and phosphorylation of CREB in distinct brain regions of wild type and monoamine oxidase B-deficient mice. Synapse 2007; 60:573-84. [PMID: 16983645 DOI: 10.1002/syn.20334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Roles of GABA(B) transmission were explored in the action of amphetamine (Amph) on the brain. Adult male wild type (WT) and monoamine oxidase B-knocked out (MAOBKO) mice received i.p. injections of saline, d-Amph (5 mg/kg), plus baclofen (GABA(B) receptor agonist, 10 mg/kg), or baclofen and Amph, twice daily for 3 days and single treatments on day 4, followed by immuno-cyclic-AMP (cAMP) and immunoblotting assays on the brain tissue. The WT mice responded with higher levels of behavioral responses than the KO to the daily Amph injection; however, baclofen blocked the Amph-induced behavioral hyperactivity of both WT and KO mice. After the last treatment, levels of cAMP and phosphorylated (p) cyclic-AMP response element binding protein (CREB) were up-regulated in the striatum and somatosensory cortex of Amph-treated WT mice, while similar to the saline-controls in the baclofen+Amph-treated group, indicating the blockade by baclofen to Amph. Baclofen similarly suppressed the Amph-induced increases in pCREB levels of WT hippocampus and amygdala, and decreases of olfactory bulb and thalamus. For MAOBKO mice, baclofen hindered the Amph-generated increases in motor cortical cAMP and pCREB, and amygdaloid pCREB, and the decrease in olfactory bulb pCREB, whereas did not affect the Amph-raised hippocampal pCREB. Furthermore, the levels of CREB were variably modified in distinct regions by the drug exposures. The data reveal that the GABA(B)-mediated intracellular signaling differentially participates in mechanisms underlying Amph perturbation to various regions, and may thereby contribute explanations to the behavioral consequences. Moreover, MAOB is region-dependently involved in responses of the brain to Amph and baclofen, supporting interactions between GABA and monoamines.
Collapse
Affiliation(s)
- Hsiang-Shu Yin
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
24
|
Yan Y, Nitta A, Mizuno T, Nakajima A, Yamada K, Nabeshima T. Discriminative-stimulus effects of methamphetamine and morphine in rats are attenuated by cAMP-related compounds. Behav Brain Res 2006; 173:39-46. [PMID: 16857277 DOI: 10.1016/j.bbr.2006.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Animal models of drug discrimination have been used to examine the subjective effects of addictive substances. The cAMP system is a crucial downstream signaling pathway implicated in the long-lasting neuroadaptations induced by addictive drugs. We examined effects of rolipram, nefiracetam, and dopamine D2-like receptor antagonists, all of which have been reported to modulate cAMP level in vivo, on the discriminative-stimulus effects of methamphetamine (METH) and morphine in rats. All these compounds inhibited the discriminative-stimulus effects of METH, while only rolipram and nefiracetam attenuated the discriminative-stimulus effects of morphine. In addition, neither nifedipine nor neomycin, two voltage-sensitive calcium channel blockers, was found to modulate the effect of nefiracetam on METH-associated discriminative stimuli, suggesting that the inhibitory effect of nefiracetam may not involve the activation of calcium channels. These findings suggest that the cAMP signaling cascade may play a key role in the discriminative-stimulus effects of METH and morphine and may be a potential target for the development of therapeutics to counter drugs of abuse.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Neuropsychopharmacology & Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Mizoguchi H, Noda Y, Nabeshima T. [Evaluation methods for the discriminative stimulus and possible mechanisms of discriminative stimulus effects of methamphetamine in the rat]. Nihon Yakurigaku Zasshi 2005; 126:17-23. [PMID: 16141613 DOI: 10.1254/fpj.126.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Yan Y, Mizuno T, Nitta A, Yamada K, Nabeshima T. Nefiracetam Attenuates Methamphetamine-Induced Discriminative Stimulus Effects in Rats. Ann N Y Acad Sci 2004; 1025:274-8. [PMID: 15542727 DOI: 10.1196/annals.1316.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nefiracetam has been reported to increase intracellular cyclic AMP levels and enhance calcium channel current. Since the cAMP cascade is involved in the development of drug dependence, we investigated whether nefiracetam attenuates the methamphetamine (MAP)-induced discriminative responses in rats. Nefiracetam (50 mg/kg) inhibited MAP-induced discriminative responses. Furthermore, rolipram, raclopride, and L-745870, all of which can enhance cAMP activity, disrupted MAP-paired lever press of rats. Nifedipine and neomycin, which are blockers of voltage-sensitive calcium channels (VSCCs), decreased MAP-induced discriminative responses. However, pretreatment of these VSCC blockers failed to affect the inhibitory effects of nefiracetam on MAP-induced discriminative responses. Our findings suggested that nefiracetam inhibits MAP-induced discriminative responses, which may be at least partly associated with the changes in intracellular cAMP levels.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | |
Collapse
|
27
|
Thompson BE, Sachs BD, Kantak KM, Cherry JA. The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice. Eur J Neurosci 2004; 19:2561-8. [PMID: 15128409 DOI: 10.1111/j.0953-816x.2004.03357.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioural effects of psychostimulant and opiate drugs are mediated in part by cAMP pathways operating in the nucleus accumbens. Degradation of cAMP occurs through the action of phosphodiesterases, such as the Type IV phosphodiesterases (PDE4s) that are found throughout the brain. To examine the potential role of PDE4 in reward-mediated behaviour, we measured the effects of rolipram, a PDE4 selective inhibitor, on cocaine (18 mg/kg i.p.) and morphine (5 mg/kg s.c.) conditioned place preference in Swiss Webster mice. Rolipram (0, 0.2 or 1.0 mg/kg i.p.) given 30 min prior to drug administration dose-dependently reduced conditioning due to both cocaine and morphine. However, rolipram did not affect place preference induced by food, nor did it prevent the expression of a previously established place preference conditioned by cocaine or morphine. In a second experiment, rolipram administered 30 min prior to a single cocaine injection (50 mg/kg i.p.), did not alter cocaine-induced c-Fos expression in the caudate putamen or nucleus accumbens core. However, rolipram, but not cocaine, induced c-Fos in the nucleus accumbens shell. These results indicate that elevation of cAMP in neurons that express PDE4s may attenuate the rewarding properties of cocaine and morphine, but does not alter the cocaine signalling cascade that induces c-Fos expression. Thus, PDE4-mediated regulation of cAMP levels could underlie the establishment of reward valence to abused drugs.
Collapse
|
28
|
Mori T, Baba J, Ichimaru Y, Suzuki T. Effects of Rolipram, a Selective Inhibitor of Phosphodiesterase 4, on Hyperlocomotion Induced by Several Abused Drugs in Mice. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0021-5198(19)30605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|