1
|
Kharazmi J, Moshfegh C. Investigation of dmyc Promoter and Regulatory Regions. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:85-102. [PMID: 23761963 PMCID: PMC3663572 DOI: 10.4137/grsb.s10751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Products of the myc gene family integrate extracellular signals by modulating a wide range of their targets involved in cellular biogenesis and metabolism; the purpose of this integration is to regulate cell death, proliferation, and differentiation. However, understanding the regulation of myc at the transcription level remains a challenge. We performed rapid amplification of dmyc cDNA ends (5' RACE) and mapped the transcription start site at P1 promoter, 18 base pairs upstream of the start of the known EST GM01143 and within the 5' UTR. Our data show that the first TATA box, previously computationally predicted, is utilized to generate dmyc full length mRNA. The largest transcript contains all three exons, generated after the removal of the introns by constitutively regulated splicing events. Further investigation of Downstream Promoter Element (DPE) was achieved by studying lacZ reporter activity; investigation revealed that this element and its upstream cluster of binding sites are required for the dmyc intron 2 activity. These findings may provide valuable tools for further analysis of dmyc cis-elements.
Collapse
Affiliation(s)
- Jasmine Kharazmi
- Bio-Technopark Zurich, Molecular Biology Laboratory, Zurich, Switzerland. ; Institute of Molecular Life Sciences, University of Zurich-Irchel, Zurich, Switzerland
| | | |
Collapse
|
2
|
Gross SD, Loijens JC, Anderson RA. The casein kinase Ialpha isoform is both physically positioned and functionally competent to regulate multiple events of mRNA metabolism. J Cell Sci 1999; 112 ( Pt 16):2647-56. [PMID: 10413673 DOI: 10.1242/jcs.112.16.2647] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase I is a highly conserved family of serine/threonine protein kinases present in every organism tested from yeast to humans. To date, little is known about the function of the higher eukaryotic isoforms in this family. The CKI isoforms in Saccharomyces cerevisiae, however, have been genetically linked to the regulation of DNA repair, cell cycle progression and cytokinesis. It has also been established that the nuclear localization of two of these isoforms is essential for their function. The work presented here demonstrates that the higher eukaryotic CKIalpha isoform is also present within nuclei of certain established cell lines and associated with discrete nuclear structures. The nature of its nuclear localization was characterized. In this regard, CKIalpha was shown to colocalize with factors involved in pre-mRNA splicing at nuclear speckles and that its association with these structures exhibited several biochemical properties in common with known splicing factors. The kinase was also shown to be associated with a complex that contained certain splicing factors. Finally, in vitro, CKIalpha was shown to be capable of phosphorylating particular splicing factors within a region rich in serine/arginine dipeptide repeat motifs suggesting that it has both the opportunity and the capacity to regulate one or more steps of mRNA metabolism.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, University of Wisconsin Medical School, Madison, WI, USA
| | | | | |
Collapse
|
3
|
Custódio N, Carmo-Fonseca M, Geraghty F, Pereira HS, Grosveld F, Antoniou M. Inefficient processing impairs release of RNA from the site of transcription. EMBO J 1999; 18:2855-66. [PMID: 10329631 PMCID: PMC1171366 DOI: 10.1093/emboj/18.10.2855] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe here for the first time the site of retention within the nucleus of pre-mRNA processing mutants unable to be exported to the cytoplasm. Fluorescence in situ hybridization was used to detect transcripts from human beta-globin genes that are either normal or defective in splicing or 3' end formation. Nuclear transcripts of both wild-type and mutant RNAs are detected only as intranuclear foci that colocalize with the template gene locus. The kinetics of transcript release from the site of transcription was assessed by treatment of cells with the transcriptional inhibitors actinomycin D, alpha-amanitin and DRB. These drugs induce the rapid disappearance of nuclear foci corresponding to wild-type human beta-globin RNA. In contrast, pre-mRNA mutants defective in either splicing or 3' end formation and which fail to be transported to the cytoplasm, are retained at the site of transcription. Therefore, 3' end processing and splicing appear to be rate limiting for release of mRNA from the site of transcription.
Collapse
Affiliation(s)
- N Custódio
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisbon codex, Portugal
| | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- T J Barrett
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
5
|
Blencowe BJ, Issner R, Nickerson JA, Sharp PA. A coactivator of pre-mRNA splicing. Genes Dev 1998; 12:996-1009. [PMID: 9531537 PMCID: PMC316672 DOI: 10.1101/gad.12.7.996] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Accepted: 01/29/1998] [Indexed: 02/07/2023]
Abstract
The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.
Collapse
Affiliation(s)
- B J Blencowe
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
| | | | | | | |
Collapse
|
6
|
Abstract
The possible existence in eukaryotic cells of an internal, non-chromatin nuclear structural framework that facilitates gene readout as a set of spatially concerted reactions has become a popular but controversial theater of investigation. This article endeavors to present a circumspect review of the nuclear matrix concept as we presently know it, framed around two contrasting hypotheses: (1) that an internal nuclear framework actively enhances gene expression (in much the same way the cytoskeleton mediates cell locomotion, mitosis and intracellular vesicular traffic) versus (2) that the interphase chromosomes have fixed, inherited positions and that the DNA replication, transcripton and RNA processing machinery diffusionally arrives at sites of gene readout, with some aspects of nuclear structure thus being more a result than a cause of gene expression. On balance, the available information suggests that interactions among various gene expression machines may contribute to isolated nuclear matrix preparations. Some components of isolated nuclear matrix preparations may also reflect induced or reconfigured protein-protein associations. The protein characterization and ultrastructural analysis of the isolated nuclear matrix has advanced significantly in recent years, although controversies remain. Important new clues are now coming in from promising contemporary lines of research that report on nuclear structure in living cells.
Collapse
Affiliation(s)
- T Pederson
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA.
| |
Collapse
|
7
|
Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J. The nuclear matrix: a structural milieu for genomic function. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:1-65. [PMID: 8575878 DOI: 10.1016/s0074-7696(08)61228-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While significant progress has been made in elucidating molecular properties of specific genes and their regulation, our understanding of how the whole genome is coordinated has lagged behind. To understand how the genome functions as a coordinated whole, we must understand how the nucleus is put together and functions as a whole. An important step in that direction occurred with the isolation and characterization of the nuclear matrix. Aside from the plethora of functional properties associated with these isolated nuclear structures, they have enabled the first direct examination and molecular cloning of specific nuclear matrix proteins. The isolated nuclear matrix can be used for providing an in vitro model for understanding nuclear matrix organization in whole cells. Recent development of high-resolution and three-dimensional approaches for visualizing domains of genomic organization and function in situ has provided corroborative evidence for the nuclear matrix as the site of organization for replication, transcription, and post-transcriptional processing. As more is learned about these in situ functional sites, appropriate experiments could be designed to test molecular mechanisms with the in vitro nuclear matrix systems. This is illustrated in this chapter by the studies of nuclear matrix-associated DNA replication which have evolved from biochemical studies of in vitro nuclear matrix systems toward three-dimensional computer image analysis of replication sites for individual genes.
Collapse
Affiliation(s)
- R Berezney
- Department of Biological Sciences, State University of New York at Buffalo 14260, USA
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- T S Replogle
- University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0680, USA
| | | |
Collapse
|
9
|
He D, Zeng C, Brinkley BR. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:1-74. [PMID: 8557485 DOI: 10.1016/s0074-7696(08)62614-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The eukaryotic nucleus is a membrane-enclosed compartment containing the genome and associated organelles supported by a complex matrix of nonhistone proteins. Identified as the nuclear matrix, this component maintains spatial order and provides the structural framework needed for DNA replication, RNA synthesis and processing, nuclear transport, and steroid hormone action. During mitosis, the nucleoskeleton and associated chromatin is efficiently dismantled, packaged, partitioned, and subsequently reassembled into daughter nuclei. The dramatic dissolution of the nucleus is accompanied by the assembly of a mitotic apparatus required to facilitate the complex events associated with nuclear division. Until recently, little was known about the fate or disposition of nuclear matrix proteins during mitosis. The availability of specific molecular probes and imaging techniques, including confocal microscopy and improved immunoelectron microscopy using resinless sections and related procedures, has enabled investigators to identify and map the distribution of nuclear matrix proteins throughout the cell cycle. This chapter will review the structure, function, and distribution of the protein NuMA (nuclear matrix mitotic apparatus) and other nuclear matrix proteins that depart the nucleus during the interphase/mitosis transition to become structural and functional components within specific domains of the mitotic apparatus.
Collapse
Affiliation(s)
- D He
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
10
|
Tani T, Derby RJ, Hiraoka Y, Spector DL. Nucleolar accumulation of poly (A)+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol Biol Cell 1996; 7:173-92. [PMID: 8741848 PMCID: PMC278621 DOI: 10.1091/mbc.7.1.173] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transport of mRNA from the nucleus to the cytoplasm plays an important role in gene expression in eukaryotic cells. In wild-type Schizosaccharomyces pombe cells poly(A)+ RNA is uniformly distributed throughout the nucleoplasm and cytoplasm. However, we found that a severe heat shock blocks mRNA transport in S. pombe, resulting in the accumulation of bulk poly(A)+ RNA, as well as a specific intron-less transcript, in the nucleoli. Pretreatment of cells with a mild heat shock, which induces heat shock proteins, before a severe heat shock protects the mRNA transport machinery and allows mRNA transport to proceed unimpeded. In heat-shocked S. pombe cells, the nucleolar region condensed into a few compact structures. Interestingly, poly(A)+ RNA accumulated predominantly in the condensed nucleolar regions of the heat-shocked cells. These data suggest that the yeast nucleolus may play a role in mRNA transport in addition to its roles in rRNA synthesis and preribosome assembly.
Collapse
Affiliation(s)
- T Tani
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
11
|
de Cárcer G, Lallena MJ, Correas I. Protein 4.1 is a component of the nuclear matrix of mammalian cells. Biochem J 1995; 312 ( Pt 3):871-7. [PMID: 8554533 PMCID: PMC1136195 DOI: 10.1042/bj3120871] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein 4.1 is a major component of the erythrocyte membrane skeleton that promotes the interaction of spectrin with actin and links the resulting complex network to integral membrane proteins. Here we analyse the distribution of different 4.1 proteins within the nucleus of mammalian cells. Nuclear matrices have been prepared from Madin-Darby canine kidney (MDCK) and HeLa cells and protein fractions isolated at each step of the purifications have been analysed by immunoblotting using characterized polyclonal antibodies against protein 4.1. Two 4.1 polypeptides of M(r) approximately 135,000 and 175,000 are extracted after DNase I digestion and 0.25 M ammonium sulphate treatments, suggesting that they may be associated with chromatin. Interestingly, nuclear matrices isolated after DNase I digestion and sequential treatments with increasing ionic strength contain a third 4.1 polypeptide of M(r) approximately 75,000 (4.1p75), suggesting that it is a component of the nuclear matrix. Immunoblot analyses of nuclear matrices isolated from different cell types and species indicate that 4.1p75 is a common element of the nuclear matrix of mammalian cells. Moreover, 4.1p75 distributes to typical nuclear speckles which are enriched with the spliceosome assembly factor SC35, as revealed by double-label immunofluorescence analyses. Protein 4.1p75 might be an anchoring element of the nucleoskeleton, playing a role similar to that described for the erythroid protein 4.1 in red blood cells.
Collapse
Affiliation(s)
- G de Cárcer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
12
|
Hedley ML, Amrein H, Maniatis T. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Proc Natl Acad Sci U S A 1995; 92:11524-8. [PMID: 8524796 PMCID: PMC40434 DOI: 10.1073/pnas.92.25.11524] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified an amino acid sequence in the Drosophila Transformer (Tra) protein that is capable of directing a heterologous protein to nuclear speckles, regions of the nucleus previously shown to contain high concentrations of spliceosomal small nuclear RNAs and splicing factors. This sequence contains a nucleoplasmin-like bipartite nuclear localization signal (NLS) and a repeating arginine/serine (RS) dipeptide sequence adjacent to a short stretch of basic amino acids. Sequence comparisons from a number of other splicing factors that colocalize to nuclear speckles reveal the presence of one or more copies of this motif. We propose a two-step subnuclear localization mechanism for splicing factors. The first step is transport across the nuclear envelope via the nucleoplasmin-like NLS, while the second step is association with components in the speckled domain via the RS dipeptide sequence.
Collapse
Affiliation(s)
- M L Hedley
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
13
|
Tani T, Derby RJ, Hiraoka Y, Spector DL. Nucleolar accumulation of poly (A)+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol Biol Cell 1995; 6:1515-34. [PMID: 8589453 PMCID: PMC301308 DOI: 10.1091/mbc.6.11.1515] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transport of mRNA from the nucleus to the cytoplasm plays an important role in gene expression in eukaryotic cells. In wild-type Schizosaccharomyces pombe cells poly(A)+ RNA is uniformly distributed throughout the nucleoplasm and cytoplasm. However, we found that a severe heat shock blocks mRNA transport in S. pombe, resulting in the accumulation of bulk poly(A)+ RNA, as well as a specific intron-less transcript, in the nucleoli. Pretreatment of cells with a mild heat shock, which induces heat shock proteins, before a severe heat shock protects the mRNA transport machinery and allows mRNA transport to proceed unimpeded. In heat-shocked S. pombe cells, the nucleolar region condensed into a few compact structures. Interestingly, poly(A)+ RNA accumulated predominantly in the condensed nucleolar regions of the heat-shocked cells. These data suggest that the yeast nucleolus may play a role in mRNA transport in addition to its roles in rRNA synthesis and preribosome assembly.
Collapse
Affiliation(s)
- T Tani
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
14
|
Chabot B, Bisotto S, Vincent M. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res 1995; 23:3206-13. [PMID: 7667097 PMCID: PMC307179 DOI: 10.1093/nar/23.16.3206] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The monoclonal antibody CC3 recognizes a phosphorylated epitope present on an interphase protein of 255 kDa. Previous work has shown that p255 is localized mainly to nuclear speckles and remains associated with the nuclear matrix scaffold following extraction with non-ionic detergents, nucleases and high salt. The association of p255 with splicing complexes is suggested by the finding that mAb CC3 can inhibit in vitro splicing and immunoprecipitate pre-messenger RNA and splicing products. Small nuclear RNA immunoprecipitation assays show that p255 is a component of the U5 small nuclear ribonucleoprotein (snRNP) and the [U4/U6.U5] tri-snRNP complex. In RNase protection assays, mAb CC3 immunoprecipitates fragments containing branch site and 3' splice site sequences. As predicted for a [U4/U6.U5]-associated component, the recovery of the branch site-protected fragment requires binding of U2 snRNP and is inhibited by EDTA. p255 may correspond to the previously identified p220 protein, the mammalian analogue of the yeast PRP8 protein. Our results suggest that changes in the phosphorylation of p255 may be part of control mechanisms that interface splicing activity with nuclear organization.
Collapse
Affiliation(s)
- B Chabot
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
15
|
Aidinis V, Sekeris CE, Guialis A. Two immunologically related polypeptides of 72/74 kDa specify a novel 70-100S heterogeneous nuclear RNP. Nucleic Acids Res 1995; 23:2742-53. [PMID: 7651836 PMCID: PMC307100 DOI: 10.1093/nar/23.14.2742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Evidence suggesting the presence in rat liver nuclear extracts of a new RNP complex of 70-110S has been provided [Hatzoglou, M., Adamtziki, E., Margaritis, L. and Sekeris, C.E (1985) Exp. Cell. Res. 157, 227-241]. Biochemical features unique to this RNP were its stability to salt and RNase digestion and the presence of a pair of polypeptides of 72/74 kDa. By producing antibodies against the 72/74 kDa polypeptides these proteins have been defined as integral components of the 70-110S RNP complex. They comprise two immunologically related polypeptides with an exclusively nucleoplasmic localization, giving a speckled pattern in a diffuse background, similar, but not identical, to the Sm antigen. The 70-110S RNP complex, referred to as large heterogeneous nuclear RNP (LH-nRNP), has a simple protein pattern that includes, in addition to the 72/74 kDa proteins, three stably associated polypeptides of apparent molecular size 110, 61 and 59 kDa. The bulk of its RNA component represents a discrete RNA population of 10-20S, belonging to a subset of the RNA detected within immunopurified HeLa hnRNP complexes. These RNA species are RNA polymerase II transcripts of greater stability relative to the bulk of hnRNA, containing oligo(A) or poly(A) sequences. Immunodepletion and/or antibody addition studies in HeLa splicing extracts using antibodies with specificity for the 72/74 kDa proteins revealed a rather strong inhibition of splicing activity, suggesting participation of the LH-nRNP complex in in vitro splicing.
Collapse
Affiliation(s)
- V Aidinis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | |
Collapse
|
16
|
Bisotto S, Lauriault P, Duval M, Vincent M. Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes. J Cell Sci 1995; 108 ( Pt 5):1873-82. [PMID: 7657711 DOI: 10.1242/jcs.108.5.1873] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that monoclonal antibody CC-3 binds to a phosphorylation dependent epitope present on a 255 kDa nuclear protein (p255). We show here that in interphase cells, p255 distributes to typical nuclear speckles that correspond to the localization of spliceosome components as revealed by antibodies to the m3G cap of snRNAs or to the non-snRNP splicing factor SC-35. Immunofluorescence and immunoblot studies indicated that p255 is resistant to extraction with non-ionic detergents, nucleases and high ionic strength buffers and may thus be defined biochemically as a nuclear matrix phosphoprotein. To determine the nature of the association of p255 with the nuclear structure, its distribution was studied at different stages of the cell cycle and after the cells were treated with nucleases or heat shocked. We found that the antigen diffused into the cytoplasm during metaphase but was reorganized into cytoplasmic speckles during anaphase-telophase transition, where it colocalized with SC-35. Nuclear matrix preparations that were digested with DNases and RNases showed that interphasic p255 still localized to nuclear speckles even though snRNA and snRNP antigens were removed. Heat-shocked cells labelled with monoclonal antibody CC-3 exhibited more rounded and less interconnected speckles, identical to those decorated by anti-SC-35 antibody under such conditions. These results indicate that p255 and SC-35 are present in the same nuclear structures, to which they are more tightly bound than the snRNP antigens. They further suggest that both proteins are implicated in spliceosome assembly or attachment.
Collapse
Affiliation(s)
- S Bisotto
- CHUL Research Center, Laval University, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Blencowe BJ, Nickerson JA, Issner R, Penman S, Sharp PA. Association of nuclear matrix antigens with exon-containing splicing complexes. J Biophys Biochem Cytol 1994; 127:593-607. [PMID: 7962048 PMCID: PMC2120221 DOI: 10.1083/jcb.127.3.593] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
mAbs raised against the human nuclear matrix (anti-NM)1 mAbs have been used to investigate the role of nuclear matrix antigens in pre-mRNA processing. The three anti-NM mAbs used in this study recognize antigens that are highly localized to nuclear matrix speckles. Surprisingly, all three of these mAbs preferentially immunoprecipitate splicing complexes containing exon sequences. The anti-NM mAbs efficiently immunoprecipitate the exon product complex but not complexes containing the lariat product after the second step of splicing. Two of the anti-NM mAbs completely inhibit pre-mRNA splicing in vitro. However, none of the anti-NM mAbs appear to recognize factors stably associated with splicing snRNPs. The three anti-NM mAbs predominantly react with distinct high molecular weight antigens, which belong to a class of nuclear proteins that selectively precipitate with Ser-Arg protein-splicing factors in the presence of high Mg2+ concentrations. Immunological, biochemical, and cell biological data indicate that two of the NM antigens are related to the defined set of Ser-Arg proteins. The results suggest the existence of an extended Ser-Arg family as a component of the nuclear matrix.
Collapse
Affiliation(s)
- B J Blencowe
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
18
|
Vautier D, Besombes D, Chassoux D, Aubry F, Debey P. Redistribution of nuclear antigens linked to cell proliferation and RNA processing in mouse oocytes and early embryos. Mol Reprod Dev 1994; 38:119-30. [PMID: 7521649 DOI: 10.1002/mrd.1080380202] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have systematically analyzed by indirect immunofluorescence the subcellular distribution of nuclear antigens in relation to developmental stages of maturing mouse oocytes and developing embryos. Antigens were of two types: (1) a protein whose nuclear localization in interphase somatic cells depends on their proliferative state protein recognized by a monoclonal antibody 43B1N, and (2) snRNP polypeptides recognized by autoimmune sera of anti-Sm and anti-RNP type. The protein recognized by 43B1N was present in the germinal vesicle of oocytes from antral follicles, but absent from the nuclei during the first hours of embryonic life up to the middle to late 2-cell stage. Starting from this stage, it was always found in nuclei of interphase blastomeres, where its "speckles" co-localized with the speckles containing high concentrations of snRNP polypeptides. SnRNP polypeptides recognized by anti-Sm and anti-RNP sera were in turn found in nuclei of all developmental stages. When embryos were treated with aphidicolin or cytochalasin D to arrest cell division, the 43B1N reacting protein was again localized in the pronuclei at 42 hr post-hCG, i.e., slightly later than the onset of transcriptional activity. These results suggest a progressive building up of nuclei during embryonic development, which could influence gene expression.
Collapse
Affiliation(s)
- D Vautier
- Laboratoire Associé INSERM, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Sibon OC, Humbel BM, De Graaf A, Verkleij AJ, Cremers FF. Ultrastructural localization of epidermal growth factor (EGF)-receptor transcripts in the cell nucleus using pre-embedding in situ hybridization in combination with ultra-small gold probes and silver enhancement. HISTOCHEMISTRY 1994; 101:223-32. [PMID: 7520034 DOI: 10.1007/bf00269548] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A high-resolution in situ hybridization method is described for localizing epidermal growth factor (EGF)-receptor transcripts in nuclei of A431 epidermoid carcinoma cells. The method is based upon the use of ultra-small gold particles in combination with silver enhancement. The RNA of the EGF-receptor was detected mainly around the nucleoli. After removal of the DNA using nucleases and high salt extraction, the RNA of the EGF-receptor appears to be associated with the nuclear matrix. The RNA of the EGF-receptor was observed in close contact with the SC-35 splicing protein, but no exact colocalization was observed. These results demonstrate that high resolution pre-embedding in situ hybridization in combination with immunocytochemistry, both using ultra-small gold as a detection method, provides a powerful tool to unravel the organization of nuclear processes.
Collapse
Affiliation(s)
- O C Sibon
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Zeng C, He D, Berget SM, Brinkley BR. Nuclear-mitotic apparatus protein: a structural protein interface between the nucleoskeleton and RNA splicing. Proc Natl Acad Sci U S A 1994; 91:1505-9. [PMID: 8108437 PMCID: PMC43188 DOI: 10.1073/pnas.91.4.1505] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vertebrate splicing factors are localized to discrete domains within the nuclei of somatic cells. The mechanism whereby such nuclear domains, identified as speckles by immunofluorescence microscopy, are generated is unclear. Recent studies suggest that the spatial order within the nucleus is maintained by nuclear matrix factors. Here we show that a protein in the nuclear matrix and mitotic apparatus [nuclear-mitotic apparatus protein, NuMA; Lydersen, B. & Pettijohn, D. (1980) Cell 22, 489-499] colocalizes with splicing factors in interphase nuclei and is associated with small nuclear ribonucleoproteins in a complex immunoprecipitated from HeLa extract with small nuclear ribonucleoprotein antibodies. Moreover, NuMA associates with splicing complexes that are reconstituted in vitro using wild-type pre-mRNA, but not with nonspecific RNA. Cumulatively, these observations suggest a function of NuMA or NuMA-like proteins in interphase cells in providing a bridge between RNA processing and the nucleoskeleton.
Collapse
Affiliation(s)
- C Zeng
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
21
|
Lu YL, Spearman P, Ratner L. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 1993; 67:6542-50. [PMID: 8411357 PMCID: PMC238091 DOI: 10.1128/jvi.67.11.6542-6550.1993] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The subcellular localization of human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) was examined by subcellular fractionation. In HIV-1-infected peripheral blood mononuclear cells, Vpr was found in the nuclear and membrane fractions as well as the conditioned medium. Expression of Vpr without other HIV-1 proteins, in two different eukaryotic expression systems, demonstrated a predominant localization of Vpr in the nuclear matrix and chromatin extract fractions. Deletion of the carboxyl-terminal 19-amino-acid arginine-rich sequence impaired Vpr nuclear localization. Indirect immunofluorescence confirmed the nuclear localization of Vpr and also indicated a perinuclear location. Expression of Vpr alone did not result in export of the protein from the cell, but when coexpressed with the Gag protein, Vpr was exported and found in virus-like particles. A truncated Gag protein, missing the p6 sequence and a portion of the p9 sequence, was incapable of exporting Vpr from the cell. Regulation of Vpr localization may be important in the influence of this protein on virus replication.
Collapse
Affiliation(s)
- Y L Lu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
22
|
Affiliation(s)
- A Mariotti
- Department of Periodontology, University of Florida, Gainesville, USA
| |
Collapse
|
23
|
Fredman JN, Engler JA. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 1993; 67:3384-95. [PMID: 8497057 PMCID: PMC237682 DOI: 10.1128/jvi.67.6.3384-3395.1993] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The adenovirus precursor to the terminal protein (pTP), expressed in a vaccinia virus expression system or in native adenovirus, was assayed for its ability to interact with the nuclear matrix. Biochemical function was measured by determining the relative amount of pTP protein or of adenovirus DNA that remained associated with the nuclear matrix after extensive washing. pTP was retained on the matrix whereas beta-galactosidase was not, as assayed by quantitative immunoblot analysis. Nuclear matrix isolated from adenovirus-infected HeLa cells retained bound adenovirus DNA even when washed with 1 M guanidine hydrochloride; this interaction could be inhibited by added purified pTP protein. Analogous experiments with matrix isolated from HeLa cells infected with a recombinant vaccinia virus that expressed pTP showed a similar retention of pTP protein; this association could also be inhibited by added pTP protein. Binding of pTP to nuclear matrix isolated from uninfected cells was saturable, with an apparent Kd of 250 nM and an estimated 2.8 x 10(6) sites for pTP binding per cell nucleus. The association of pTP with matrix is postulated to help direct adenovirus replication complexes to the appropriate locale within the nucleus.
Collapse
Affiliation(s)
- J N Fredman
- Department of Biochemistry, University of Alabama, Birmingham 35294-0005
| | | |
Collapse
|
24
|
de Graaf A, Meijne AM, van Renswoude AJ, Humbel BM, van Bergen en Henegouwen PM, de Jong L, van Driel R, Verkleij AJ. Heat shock-induced redistribution of a 160-kDa nuclear matrix protein. Exp Cell Res 1992; 202:243-51. [PMID: 1397079 DOI: 10.1016/0014-4827(92)90071-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper we describe a 160-kDa protein (p160) which is present in the nuclear matrix of rat, mouse, and human cells. Biochemical and ultrastructural analysis shows that p160 is associated with the internal matrix and is not present in the lamina-pore complex. Immunoelectron microscopy shows that the protein is part of the extranucleolar, fibrogranular network of the nuclear matrix. During an in vivo 42 degrees C heat treatment of HeLa cells, A431 human epidermoid cells, and T24 human bladder carcinoma cells, p160 transiently formed large clusters inside the nucleus. These p160 clusters are associated with the nuclear matrix network, as judged by immunolabeling on isolated nuclear matrices. The percentage of cells showing p160 clusters increased proportionally with longer heat treatments, reaching a maximum after a period of 3 h. At this time 70 +/- 5% of the cells displayed these clusters. Clustering decreased after longer heat treatments and the anti-p160 staining pattern became diffuse granular again. Other nuclear components, such as the A1 antigen of hnRNP (ribonucleoprotein), the Sm antigen of snRNPs, and lamins A and C, did not cluster during the 42 degrees C treatment, indicating that this reallocation is characteristic for the p160 matrix protein. These results demonstrate that p160 is an internal nuclear matrix element with a dynamic spatial distribution.
Collapse
Affiliation(s)
- A de Graaf
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dworetzky SI, Wright KL, Fey EG, Penman S, Lian JB, Stein JL, Stein GS. Sequence-specific DNA-binding proteins are components of a nuclear matrix-attachment site. Proc Natl Acad Sci U S A 1992; 89:4178-82. [PMID: 1570345 PMCID: PMC525656 DOI: 10.1073/pnas.89.9.4178] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified a nuclear matrix-attachment region within an upstream element of a human H4 histone gene promoter. Nuclear matrix proteins, isolated and solubilized from HeLa S3 cells, were found to interact with sequence specificity at this matrix-attachment region. Several types of assays for protein-DNA interaction showed that the minimal sequence for the nuclear matrix protein-DNA interaction was 5'-TGACGTCCATG-3'; the underlined region corresponds to the core consensus sequence for ATF transcription factor binding. Two proteins with molecular masses of 43 and 54 kDa were identified by UV-crosslinking analysis as integral components of this protein-DNA complex. The molecular masses of these proteins and the ATF-binding site consensus sequence suggest that these proteins are members of the ATF family. Our results provide direct evidence for nuclear matrix localization of sequence-specific DNA-binding factors for an actively transcribed gene. The proximity of a strong positive transcriptional regulatory element to the matrix-attachment region of this gene suggests that the nuclear matrix may serve to localize and concentrate trans-acting factors that facilitate regulation of gene expression.
Collapse
Affiliation(s)
- S I Dworetzky
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- H C Smith
- Department of Pathology, University of Rochester, New York 14642
| |
Collapse
|
27
|
Getzenberg RH, Pienta KJ, Ward WS, Coffey DS. Nuclear structure and the three-dimensional organization of DNA. J Cell Biochem 1991; 47:289-99. [PMID: 1795013 DOI: 10.1002/jcb.240470402] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The organization of DNA within the nucleus has been demonstrated to be both cell and tissue specific and is arranged in a non-random fashion in both sperm and somatic cells. Nuclear structure has a pivotal role in this three-dimensional organization of DNA and RNA and contributes as well to forming fixed organizing sites for nuclear functions, such as DNA replication, transcription, and RNA processing. In sperm, DNA is also organized in a specific fashion by the nuclear matrix and DNA-protamine interactions. Within somatic cells, the nuclear matrix provides a three-dimensional framework for the tissue specific regulation of genes by directed interaction with transcriptional activators. This differential organization of the DNA by the nuclear matrix, in a tissue specific manner, contributes to tissue specific gene expression. The nuclear matrix is the first link from the DNA to the entire tissue matrix system and provides a direct structural linkage to the cytomatrix and extracellular matrix. In summary, the tissue matrix serves as a dynamic structural framework for the cell which interacts to organize and process spatial and temporal information to coordinate cellular functions and gene expression. The tissue matrix provides a structural system for integrating form and function.
Collapse
Affiliation(s)
- R H Getzenberg
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
28
|
Abstract
Nuclear mRNA export through the nuclear pore complex has been proposed to be a unidirectional, signal-mediated and energy-dependent process. Evidence exists that this process can be influenced by many factors including other steps in the pathway of cytoplasmic mRNA formation, sequences of the RNA substrate that are either transcribed or added co- or post-transcriptionally, and extracellular effectors.
Collapse
Affiliation(s)
- L E Maquat
- Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
29
|
Abstract
SC-35 is a non-snRNP spliceosome component that is specifically recognized by the anti-spliceosome monoclonal antibody alpha SC-35. In this paper we provide direct evidence that SC-35 is an essential splicing factor and we examine the immunolocalization of SC-35 by confocal laser scanning microscopy and by electron microscopy. We have found that the speckled staining pattern observed by fluorescence microscopy corresponds to structures previously designated as interchromatin granules and perichromatin fibrils. Although snRNP antigens are also concentrated in these nuclear regions, we show that the two types of spliceosome components are localized through different molecular interactions: The distribution of SC-35 was not affected by treatment with DNase I or RNase A, or when the cells were heat shocked. In contrast, snRNP antigens become diffusely distributed after RNase A digestion or heat shock. Examination of cells at different stages of mitosis revealed that the SC-35 speckled staining pattern is lost during prophase and speckles containing SC-35 begin to reform in the cytoplasm of anaphase cells. In contrast, snRNP antigens do not associate with speckled regions until late in telophase. These studies reveal a dynamic pattern of assembly and disassembly of the splicing factor SC-35 into discrete nuclear structures that colocalize with interchromatin granules and perichromatin fibrils. These subnuclear regions may therefore be nuclear organelles involved in the assembly of spliceosomes, or splicing itself.
Collapse
|
30
|
Cupo JF. Electrophoretic analysis of nuclear matrix proteins and the potential clinical applications. JOURNAL OF CHROMATOGRAPHY 1991; 569:389-406. [PMID: 1939495 DOI: 10.1016/0378-4347(91)80239-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear matrix proteins form the skeleton of the nucleus and participate in the various cellular functions of the nucleus. These proteins have been demonstrated to be tissue-type specific and can potentially reflect changes in the state of differentiation of the cell. Elucidating nuclear matrix protein changes necessitates the use of high-resolution two-dimensional polyacrylamide gel electrophoresis. Separation of this complex mixture into its component parts resolves protein changes when comparing the normal state to a diseased state of a cell. Evidence has been reviewed which shows the potential use of nuclear matrix proteins and antibodies to nuclear matrix proteins as diagnostic tools for various cancers, autoimmune diseases, adenoviral infection, and other diseases. Consequently, the central functions of the nuclear matrix in the cell allow it to have significant potential as a diagnostic agent.
Collapse
Affiliation(s)
- J F Cupo
- BASF Bioresearch Corporation, Cambridge, MA 02139
| |
Collapse
|
31
|
Wilk HE, Schaefer KP, Agris PF, Boak AM, Kovacs SA. U1 SnRNP association with HnRNP involves an initial non-specific splice-site independent interaction of U1 SnRNP protein with HnRNA. Mol Cell Biochem 1991; 106:55-66. [PMID: 1833625 DOI: 10.1007/bf00231189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Precursor mRNA is complexed with proteins in the cell nucleus to form heterogeneous nuclear ribonucleoprotein (hnRNP), and these hnRNPs are found associated in vivo with small nuclear RNPs (snRNPs) for the processing of pre-mRNA. In order to better characterize the ATP-independent initial association of U1 snRNP with hnRNP, an important early event in assembly of the spliceosome complex, we have determined some of the components essential to an in vitro reassociation of U1 snRNP with hnRNP. U1 snRNP reassociated in vitro with 40S hnRNP particles from HeLa cells and, similar to the in vivo hnRNP/U1 snRNP association, the in vitro interaction was sensitive to high salt concentrations. U1 snRNP also associated with in vitro reconstituted hnRNP in which bacteriophage MS2 RNA, which lacks introns, was used as the RNA component. Purified snRNA alone would not associate with the MS2 RNA-reconstituted hnRNP, however, intact U1 snRNP did interact with protein-free MS2 RNA. This indicates that the U1 snRNP proteins are required for the hnRNP/U1 snRNP association, but hnRNP proteins are not. Thus, the initial, ATP-independent association of U1 snRNP with hnRNP seems to be mediated by U1 snRNP protein(s) associating with hnRNA without requiring a splice-site sequence. This complex may then be further stabilized by intron-specific interactions and hnRNP proteins, as well as by other snRNPs.
Collapse
Affiliation(s)
- H E Wilk
- Department of Biochemistry, Ruhr-University Bochum, Germany
| | | | | | | | | |
Collapse
|
32
|
In vitro apolipoprotein B mRNA editing: identification of a 27S editing complex. Proc Natl Acad Sci U S A 1991; 88:1489-93. [PMID: 1996349 PMCID: PMC51044 DOI: 10.1073/pnas.88.4.1489] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Specific apolipoprotein B (apoB) mRNA editing can be performed in vitro on apoB RNA substrates. Native gels and glycerol gradient sedimentation have been used to determine the physical properties of the in vitro editing activity in rat liver cytosolic S100 extracts. ApoB RNA substrates were progressively assembled as 27S complexes for 3 hr with similar kinetics as seen for the accumulation of edited RNA. Assembly was not observed on RNAs from apoB deletion constructs that did not support editing. The 27S complex contained both edited and unedited RNA sequences. Inhibition of 27S complex assembly by vanadyl-ribonucleoside complexes was accompanied by inhibition of editing. Based on these data, we propose that the 27S complex is the in vitro "editosome," A "mooring sequence" model for RNA recognition and editosome assembly has been proposed involving RNA sequences flanking the edited nucleotide.
Collapse
|
33
|
Mähl P, Lutz Y, Puvion E, Fuchs JP. Rapid effect of heat shock on two heterogeneous nuclear ribonucleoprotein-associated antigens in HeLa cells. J Cell Biol 1989; 109:1921-35. [PMID: 2681223 PMCID: PMC2115842 DOI: 10.1083/jcb.109.5.1921] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During severe heat shock, which known to interrupt both splicing of RNA transcripts and nucleocytoplasmic transport, it is to be expected that the substructure of heterogeneous nuclear ribonucleoproteins (hnRNP) is altered in some way. Recently, we have shown that such a stress actually induces rapid alterations at the level of individual proteins (Lutz, Y., M. Jacob, and J.-P. Fuchs. 1988 Exp. Cell Res. 175:109-124). Here we report further investigations on two related 72.5-74-kD hnRNP proteins whose behavior is also rapidly modified by a heat shock at 45 degrees C, whereas no effect is observed at 42 degrees C. Using a monoclonal antibody, we show that in situ the antigens are available only when the cells are heat shocked at 45 degrees C. Subcellular fractionation shows that in normal cells the antigens are associated with the bulk of hnRNP (50-200S). During heat shock, whereas the overall characteristics of the bulk of preexisting hnRNP are unchanged, these antigens rapidly switch to a subpopulation of hnRNP with larger average size (50 to less than 300S) and increased stability. Structural analysis of the associated hnRNP in normal and stressed cells shows that in both cases the antigens are associated with the nuclear matrix subcomplex of hnRNP, which in situ is part of the internal nuclear matrix. Such hnRNP antigens, which are rapidly redistributed during a heat shock at the upper temperature range of the stress response, might well be involved in splicing and/or transport control.
Collapse
Affiliation(s)
- P Mähl
- Laboratoire Génétique Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|