1
|
Slomiany A, Grabska M, Slomiany BL. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces. Int J Biol Sci 2006; 2:216-26. [PMID: 16967103 PMCID: PMC1560408 DOI: 10.7150/ijbs.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/29/2006] [Indexed: 01/08/2023] Open
Abstract
Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860). In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN), the outer nuclear membrane (ONM), the inner nuclear membrane (INM) and the cell cytosol (CC). In contrast to Endoplasmic Reticulum (ER) which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM) of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA). The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of the lipids in the ER, in the region adjacent to nucleus, is defining nuclear outer and inner biomembrane composition, is responsible for transport of the cytosolic protein into the nucleus and, replenishment of ER membrane used for vesicular transport.
Collapse
Affiliation(s)
- Amalia Slomiany
- Research Center C-873, University of Medicine and Dentistry of New Jersey, New Jersey Dental School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
2
|
Ryan A, Fisher K, Thomas C, Mallampalli R. Transcriptional repression of the CTP:phosphocholine cytidylyltransferase gene by sphingosine. Biochem J 2005; 382:741-50. [PMID: 15139854 PMCID: PMC1133833 DOI: 10.1042/bj20040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
We examined the effects of the bioactive lipid, sphingosine, on the expression of the rate-limiting enzyme involved in surfactant phosphatidylcholine synthesis, CCTalpha (CTP:phosphocholine cytidylyltransferase alpha). Sphingosine decreased phosphatidylcholine synthesis by inhibiting CCT activity in primary alveolar type II epithelia. Sphingosine decreased CCTalpha protein and mRNA levels by approx. 50% compared with control. The bioactive lipid did not alter CCTalpha mRNA stability, but significantly inhibited its transcriptional rate. In murine lung epithelia, sphingosine selectively reduced CCTalpha promoter-reporter activity when transfected with a 2 kb CCTalpha promoter/luciferase gene construct. Sphingosine also decreased transgene expression in murine type II epithelia isolated from CCTalpha promoter-reporter transgenic mice harbouring this 2 kb proximal 5'-flanking sequence. Deletional analysis revealed that sphingosine responsiveness was mapped to a negative regulatory element contained within 814 bp upstream of the coding region. The results indicate that bioactive sphingolipid metabolites suppress surfactant lipid synthesis by inhibiting gene transcription of a key surfactant biosynthetic enzyme.
Collapse
Affiliation(s)
- Alan J. Ryan
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Kurt Fisher
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Christie P. Thomas
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Rama K. Mallampalli
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- To whom correspondence should be addressed, at Pulmonary and Critical Care Division, C-33K, GH, Departments of Internal Medicine and Biochemistry (email )
| |
Collapse
|
3
|
Elsen L, Betz R, Schwarzmann G, Sandhoff K, van Echten-Deckert G. Identification of ceramide binding proteins in neuronal cells: a critical point of view. Neurochem Res 2002; 27:717-27. [PMID: 12374206 DOI: 10.1023/a:1020288403626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Much discussion has centered on the biochemical mechanism by which ceramide is produced and functions as a signalling molecule in cells. To identify proteins involved in ceramide signalling, we synthesized a radioactively labelled ceramide analogue equipped with a photosensitive group: N-(p-trifluoromethyl-diazirinyl)phenyl-ethyl-2-[35S]-2-thioacetyl-D-erythro-C18-sphingosine ([35S]-TDS-ceramide). This compound was then employed in photo-affinity labelling experiments in primary cultured cerebellar neurons. Due to the hydrophobic nature of the compound, most of the cell-associated radioactivity was recovered in the lipid fraction while only about 0.1% of radioactivity was photocoupled to proteins. In order to improve protein labelling the cytosolic fraction of rapidly growing human neuroblastoma cells (SH-SY5Y) was isolated and subjected to ceramide affinity chromatography prior to photo-affinity labelling. Following electrophoresis proteins photocoupled to ceramide were identified by MALDI mass spectrometry in combination with tryptic digestion and turned out to be either cytoskeletal or stress proteins that are highly abundant in cytosol and contain at least one hydrophobic domain.
Collapse
Affiliation(s)
- Lutz Elsen
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
4
|
Ryan AJ, McCoy DM, Mathur SN, Field FJ, Mallampalli RK. Lipoprotein deprivation stimulates transcription of the CTP:phosphocholine cytidylyltransferase gene. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33435-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
van Meer G, Holthuis JC. Sphingolipid transport in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:145-70. [PMID: 10856719 DOI: 10.1016/s1388-1981(00)00054-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingolipids constitute a sizeable fraction of the membrane lipids in all eukaryotes and are indispensable for eukaryotic life. First of all, the involvement of sphingolipids in organizing the lateral domain structure of membranes appears essential for processes like protein sorting and membrane signaling. In addition, recognition events between complex glycosphingolipids and glycoproteins are thought to be required for tissue differentiation in higher eukaryotes and for other specific cell interactions. Finally, upon certain stimuli like stress or receptor activation, sphingolipids give rise to a variety of second messengers with effects on cellular homeostasis. All sphingolipid actions are governed by their local concentration. The intricate control of their intracellular topology by the proteins responsible for their synthesis, hydrolysis and intracellular transport is the topic of this review.
Collapse
Affiliation(s)
- G van Meer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
6
|
Bakovic M, Waite KA, Vance DE. Functional significance of Sp1, Sp2, and Sp3 transcription factors in regulation of the murine CTP:phosphocholine cytidylyltransferase α promoter. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32406-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Mallampalli RK, Ryan AJ, Salome RG, Jackowski S. Tumor necrosis factor-alpha inhibits expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem 2000; 275:9699-708. [PMID: 10734122 DOI: 10.1074/jbc.275.13.9699] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.
Collapse
Affiliation(s)
- R K Mallampalli
- Department of Internal Medicine and the Department of Veterans Affairs Medical Center, the University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
8
|
Slomiany A, Piotrowski E, Grabska M, Piotrowski J, Slomiany BL. Chronic Ethanol-Initiated Apoptosis in Hepatocytes Is Induced by Changes in Membrane Biogenesis and Intracellular Transport. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04119.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kok JW, Babia T, Klappe K, Egea G, Hoekstra D. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem J 1998; 333 ( Pt 3):779-86. [PMID: 9677340 PMCID: PMC1219644 DOI: 10.1042/bj3330779] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degreesC, or in streptolysin O-permeabilized cells by manipulating the intracellular environment. In both cases, Cer transfer was not inhibited, as demonstrated by the biosynthesis of ceramide monohexosides and sphingomyelin (SM) de novo from metabolically (with [14C]serine) labelled Cer. This assay is based on the knowledge that Cer is synthesized, starting from serine and palmitoyl-CoA, at the ER, whereas glycosphingolipids and SM are synthesized in the (early) Golgi apparatus. Formation of [14C]glycosphingolipids and [14C]SM was observed under conditions that block vesicle-mediated vesicular stomatitis virus glycoprotein transport. These results indicate that [14C]Cer is transferred from ER to Golgi by a non-vesicular mechanism.
Collapse
Affiliation(s)
- J W Kok
- University of Groningen, Department of Physiological Chemistry, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Lykidis A, Murti KG, Jackowski S. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J Biol Chem 1998; 273:14022-9. [PMID: 9593753 DOI: 10.1074/jbc.273.22.14022] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is a key regulator of phosphatidylcholine biosynthesis, and only a single isoform of this enzyme, CCTalpha, is known. We identified and sequenced a human cDNA that encoded a distinct CCT isoform, called CCTbeta, that is derived from a gene different from that encoding CCTalpha. CCTbeta transcripts were detected in human adult and fetal tissues, and very high transcript levels were found in placenta and testis. CCTbeta and CCTalpha proteins share highly related, but not identical, catalytic domains followed by three amphipathic helical repeats. Like CCTalpha, CCTbeta required the presence of lipid regulators for maximum catalytic activity. The amino terminus of CCTbeta bears no resemblance to the amino terminus of CCTalpha, and CCTbeta protein was localized to the cytoplasm as detected by indirect immunofluorescent microscopy. Whereas CCTalpha activity is regulated by reversible phosphorylation, CCTbeta lacks most of the corresponding carboxyl-terminal domain and contained only 3 potential phosphorylation sites of the 16 identified in CCTalpha. Transfection of COS-7 cells with a CCTbeta expression construct led to the overexpression of CCT activity, the accumulation of cellular CDP-choline, and enhanced radiolabeling of phosphatidylcholine. CCTbeta protein was posttranslationally modified in COS-7 cells, resulting in slower migration during polyacrylamide gel electrophoresis. Expression of CCTbeta/CCTalpha chimeric proteins showed that the amino-terminal portion of CCTbeta was required for posttranslational modification. These data demonstrate that a second, distinct CCT enzyme is expressed in human tissues and provides another mechanism by which cells regulate phosphatidylcholine production.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
11
|
Slomiany A, Nowak P, Piotrowski E, Slomiany BL. Effect of Ethanol on Intracellular Vesicular Transport from Golgi to the Apical Cell Membrane: Role of Phosphatidylinositol 3-Kinase and Phospholipase A2 in Golgi Transport Vesicles Association and Fusion with the Apical Membrane. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03634.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Feldman DA, Weinhold PA. Cytidylyltransferase-binding protein is identical to transcytosis-associated protein (TAP/p115) and enhances the lipid activation of cytidylyltransferase. J Biol Chem 1998; 273:102-9. [PMID: 9417053 DOI: 10.1074/jbc.273.1.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously identified a protein from rat liver that binds CTP:phosphocholine cytidylyltransferase (CT). We have now purified this protein (cytidylyltransferase-binding protein (CTBP)) from rat liver. The purification involved precipitation at pH 5 and extraction of the precipitate with buffer, followed by sequential chromatography on DEAE-Sepharose and butyl-agarose. Final purification was accomplished by either preparative electrophoresis or hydroxylapatite chromatography. Amino acid sequences from six peptides derived from pure CTBP matched sequences in transcytosis-associated protein (TAP) with 98% identity. Thus, CTBP was positively identified to be TAP. Purified CTBP increased the activity of purified CT measured with phosphatidylcholine (PC)/oleic acid. In the absence of PC/oleic acid, CTBP did not stimulate CT activity. Dilution of CT to reduce the Triton X-100 concentration produced a loss of CT activity. The lost activity was recovered by the addition of CTBP plus PC/oleic acid to the assay, but not by the addition of either PC/oleic acid or CTBP alone. Removal of CTBP from purified preparations by immunoprecipitation with CTBP antibodies eliminated the activation of CT. Both CT and CTBP were shown to bind to PC/oleic acid liposomes. The formation of complexes between CT and CTBP in the absence of PC/oleic acid liposomes could not be demonstrated. These results suggest that CTBP functions to modify the interaction of CT with PC/oleic acid liposomes, resulting in an increase in the catalytic activity perhaps by the formation of a ternary complex between CT, CTBP, and lipid. Overall, these results suggest that CTBP (TAP) may function to coordinate the biosynthesis of phosphatidylcholine with vesicle transport.
Collapse
Affiliation(s)
- D A Feldman
- Veterans Administration Medical Center and the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
13
|
Slomiany A, Morita M, Sano S, Piotrowski J, Skrodzka D, Slomiany BL. Effect of ethanol on gastric mucus glycoprotein synthesis, translocation, transport, glycosylation, and secretion. Alcohol Clin Exp Res 1997; 21:417-23. [PMID: 9161600 DOI: 10.1111/j.1530-0277.1997.tb03785.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of ethanol on mucus glycoprotein synthesis, intracellular modification, transport, glycosylation, and secretion was studied in rat gastric mucous cells. Preincubation of the in vitro translation mixture containing gastric mucous cells mRNA for 60 min with 0 to 120 mM ethanol caused a decrease in the synthesis of mucus glycoprotein apopeptide by up to 40%. The reduction in translation was time- and ethanol concentration-dependent. After 60 min, translation in the presence of 30, 60, and 120 mM ethanol decreased to 83.3 +/- 2.3%, 75.5 +/- 0.4%, and 63.6 +/- 2.6%, respectively. The experiments conducted with endoplasmic reticulum microsomes, preincubated with ethanol, and used in the studies of cotranslational translocation of the apomucin showed a 20% decrease in the transfer of mucus glycoprotein apopeptide to the lumen of endoplasmic reticulum microsomes. In the presence of ethanol, processing of mucus glycoprotein apopeptide in Golgi was also inhibited. During the initial 30 min of incubation with 0 to 120 mM ethanol, glycosylation seemed to proceed at the same rate in the samples with and without ethanol. However, during consecutive 30 min of incubation, glycosylation in the presence of 60 mM ethanol decreased by 30 to 35%, and with 120 mM ethanol was completely inhibited. Measurements of the effect of ethanol on the discharge of mucus glycoprotein from the intracellular stores revealed that, on average, the secretory output of the rat gastric mucosa exposed to ethanol liquid diet for 8 weeks decreased by 77% or more, and adherence of the glycoprotein to the gastric epithelium was weakened. Results indicate that ethanol inhibits synthesis, transport, and processing of gastric mucus glycoprotein, and that the processes taking place in different intracellular compartments contribute in the additive fashion and, are reflected in a dramatic decrease in the delivery of mucus glycoprotein to the gastric epithelial surfaces.
Collapse
Affiliation(s)
- A Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark 07103, USA
| | | | | | | | | | | |
Collapse
|
14
|
Moreau P, Cassagne C. Phospholipid trafficking and membrane biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:257-90. [PMID: 7819268 DOI: 10.1016/0304-4157(94)90010-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Moreau
- URA 1811 CNRS, IBGC, University of Bordeaux II, France
| | | |
Collapse
|
15
|
|
16
|
Abstract
The lipid composition of cellular membranes may seem unnecessarily complex. However, the lipid composition of each membrane is carefully regulated by local metabolism and specificity in transport, marking the functional significance for the cell. Recent research has revealed unexpected discoveries concerning the topology of lipid synthesis, specificity in lipid transport, and the function of lipid and protein microdomains in sorting.
Collapse
Affiliation(s)
- G van Meer
- Department of Cell Biology, Medical School, University of Utrecht, The Netherlands
| |
Collapse
|
17
|
Slomiany A, Grabska M, Slomiany BA, Grzelinska E, Morita M, Slomiany BL. Intracellular transport, organelle biogenesis and establishment of Golgi identity: impact of brefeldin A on the activity of lipid synthesizing enzymes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:891-901. [PMID: 8393812 DOI: 10.1016/0020-711x(93)90245-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. The effect of brefeldin A (BFA) on generation of transport vesicles, synthesis of phosphoglycerides, sphingosine and ceramides, and utilization of the sphingolipid precursors in the formation of sphingomyelin and glycosphingolipids in Golgi was investigated. 2. In the presence of 5-10 micrograms/ml BFA, the incorporation of [3H]palmitate into glycerides, phosphoglycerides and sphingolipids decreased 45-60%, and the production of endoplasmic reticulum transport vesicles was reduced 30-50%. 3. In Golgi membranes, the presence of 5-10 micrograms/ml BFA in the mixture, assembled to generate Golgi vesicles, evoked inhibitory effect on the synthesis of sphingomyelin, glycosphingolipids and phosphatidylcholine. On average, the synthesis of the sphingolipids and phosphatidylcholine and production of Golgi transport vesicles declined to 30-40%. 4. Addition of 5-10 micrograms/ml BFA to the assay mixture prepared to measure the activity of cytidylyltransferase, phosphocholine diacylglyceroltransferase, and serine palmitoyltransferase, caused up to 50% inhibition of the enzymes involved in the synthesis of phosphatidylcholine and up to 70% inhibition of the enzyme generating 3-ketosphinganine. 5. The results suggest that BFA inhibits the synthesis of phosphoglycerides and sphingolipids. This, at first, is displayed in reduced production of endoplasmic reticulum and Golgi transport vesicles, while the depletion of sphingolipids abrogates the identity of Golgi membranes.
Collapse
Affiliation(s)
- A Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, New Jersey Dental School, Newark 07103-2400
| | | | | | | | | | | |
Collapse
|