1
|
Thio BJ, Titus ND, Pelot NA, Grill WM. Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers. PLoS Comput Biol 2024; 20:e1012475. [PMID: 39374306 PMCID: PMC11486378 DOI: 10.1371/journal.pcbi.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
Unmyelinated C-fibers constitute the vast majority of axons in peripheral nerves and play key roles in homeostasis and signaling pain. However, little is known about their ion channel expression, which controls their firing properties. Also, because of their small diameters (~ 1 μm), it has not been possible to characterize their membrane properties using voltage clamp. We developed a novel library of isoform-specific ion channel models to serve as the basis functions of our C-fiber models. We then developed a particle swarm optimization (PSO) framework that used the isoform-specific ion channel models to reverse engineer C-fiber membrane properties from measured autonomic and cutaneous C-fiber conduction responses. Our C-fiber models reproduced experimental conduction velocity, chronaxie, action potential duration, intracellular threshold, and paired pulse recovery cycle. The models also matched experimental activity-dependent slowing, a property not included in model optimization. We found that simple conduction responses, characterizing the action potential, were controlled by similar membrane properties in both the autonomic and cutaneous C-fiber models, but complicated conduction response, characterizing the afterpotenials, were controlled by differential membrane properties. The unmyelinated C-fiber models constitute important tools to study autonomic signaling, assess the mechanisms of pain, and design bioelectronic devices. Additionally, the novel reverse engineering approach can be applied to generate models of other neurons where voltage clamp data are not available.
Collapse
Affiliation(s)
- Brandon J. Thio
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nathan D. Titus
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nicole A. Pelot
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Warren M. Grill
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurobiology, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurosurgery, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
3
|
Effects of Kilohertz Frequency, Burst Duty Cycle, and Burst Duration on Evoked Torque, Perceived Discomfort and Muscle Fatigue: A Systematic Review. Am J Phys Med Rehabil 2023; 102:175-183. [PMID: 35121683 DOI: 10.1097/phm.0000000000001982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ABSTRACT Kilohertz-frequency alternating current is used to minimize muscle atrophy and muscle weakness and improve muscle performance. However, no systematic reviews have evaluated the best Kilohertz-frequency alternating current parameters for this purpose. We investigated the effects of the carrier frequency, burst duty cycles, and burst durations on evoked torque, perceived discomfort, and muscle fatigue. A search of eight data sources by two independent reviewers resulted in 13 peer-reviewed studies being selected, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and rated using the PEDro scale to evaluate the methodological quality of the studies. Most studies showed that carrier frequencies up to 1 kHz evoked higher torque, while carrier frequencies between 2.5 and 5 kHz resulted in lower perceived discomfort. In addition, most studies showed that shorter burst duty cycles (10%-50%) induced higher evoked torque and lower perceived discomfort. Methodological quality scores ranged from 5 to 8 on the PEDro scale. We conclude that Kilohertz-frequency alternating current develops greater evoked torque for carrier frequencies between 1 and 2.5 kHz and burst duty cycles less than 50%. Lower perceived discomfort was generated using Kilohertz-frequency alternating currents between 2.5 and 5 kHz and burst duty cycles less than 50%.
Collapse
|
4
|
Muscle contractions and pain sensation accompanying high-frequency electroporation pulses. Sci Rep 2022; 12:8019. [PMID: 35577873 PMCID: PMC9110404 DOI: 10.1038/s41598-022-12112-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
To minimize neuromuscular electrical stimulation during electroporation-based treatments, the replacement of long monophasic pulses with bursts of biphasic high-frequency pulses in the range of microseconds was suggested in order to reduce muscle contraction and pain sensation due to pulse application. This treatment modality appeared under the term high-frequency electroporation (HF-EP), which can be potentially used for some clinical applications of electroporation such as electrochemotherapy, gene electrotransfer, and tissue ablation. In cardiac tissue ablation, which utilizes irreversible electroporation, the treatment is being established as Pulsed Field Ablation. While the reduction of muscle contractions was confirmed in multiple in vivo studies, the reduction of pain sensation in humans was not confirmed yet, nor was the relationship between muscle contraction and pain sensation investigated. This is the first study in humans examining pain sensation using biphasic high-frequency electroporation pulses. Twenty-five healthy individuals were subjected to electrical stimulation of the tibialis anterior muscle with biphasic high-frequency pulses in the range of few microseconds and both, symmetric and asymmetric interphase and interpulse delays. Our results confirm that biphasic high-frequency pulses with a pulse width of 1 or 2 µs reduce muscle contraction and pain sensation as opposed to currently used longer monophasic pulses. In addition, interphase and interpulse delays play a significant role in reducing the muscle contraction and/or pain sensation. The study shows that the range of the optimal pulse parameters may be increased depending on the prerequisites of the therapy. However, further evaluation of the biphasic pulse protocols presented herein is necessary to confirm the efficiency of the newly proposed HF-EP.
Collapse
|
5
|
Liu J, Ganeshbabu N, Shalaby N, Chen L, Guo T, Feng B. Targeting Two-Pore-Domain Potassium Channels by Mechanical Stretch Instantaneously Modulates Action Potential Transmission in Mouse Sciatic Nerves. ACS Chem Neurosci 2021; 12:3558-3566. [PMID: 34423641 DOI: 10.1021/acschemneuro.1c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent reports indicate dominant roles of TRAAK and TREK-1 channels, i.e., mechanosensitive two-pore-domain potassium channels (K2P) at the nodes of Ranvier for action potential repolarization in mammalian peripheral nerves. Functional changes in mammalian peripheral nerve conduction by mechanical stretch studied by recording compound action potentials lack the necessary resolution to detect subtle neuromodulatory effects on conduction velocity. In this study, we developed a novel in vitro approach that enables single-fiber recordings from individual mouse sciatic nerve axons while delivering computer-controlled stepped stretch to the sciatic nerve trunk. Axial stretch instantaneously increased the conduction delay in both myelinated A-fibers and unmyelinated C-fibers. Increases in conduction delay linearly correlated with increases in axial stretch ratio for both A- and C-fibers. The slope of the increase in conduction delay versus stretch ratio was steeper in C-fibers than in A-fibers. Moderate axial stretch (14-19% of in vitro length) reversibly blocked 37.5% of unmyelinated C-fibers but none of the eight myelinated A-fibers tested. Application of arachidonic acid, an agonist to TRAAK and TREK-1 to sciatic nerve trunk, blocks axonal transmission in both A- and C-fibers with delayed onset and prolonged block. Also, the application of an antagonist ruthenium red showed a tendency of suppressing the stretch-evoked increase in conduction delay. These results could draw focused research on pharmacological and mechanical activation of K2P channels as a novel neuromodulatory strategy to achieve peripheral nerve block.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Nishanth Ganeshbabu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Noha Shalaby
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury. Nat Commun 2021; 12:5850. [PMID: 34615867 PMCID: PMC8494794 DOI: 10.1038/s41467-021-26026-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
In children with spinal cord injury (SCI), scoliosis due to trunk muscle paralysis frequently requires surgical treatment. Transcutaneous spinal stimulation enables trunk stability in adults with SCI and may pose a non-invasive preventative therapeutic alternative. This non-randomized, non-blinded pilot clinical trial (NCT03975634) determined the safety and efficacy of transcutaneous spinal stimulation to enable upright sitting posture in 8 children with trunk control impairment due to acquired SCI using within-subject repeated measures study design. Primary safety and efficacy outcomes (pain, hemodynamics stability, skin irritation, trunk kinematics) and secondary outcomes (center of pressure displacement, compliance rate) were assessed within the pre-specified endpoints. One participant did not complete the study due to pain with stimulation on the first day. One episode of autonomic dysreflexia during stimulation was recorded. Following hemodynamic normalization, the participant completed the study. Overall, spinal stimulation was well-tolerated and enabled upright sitting posture in 7 out of the 8 participants. Scoliosis due to trunk muscle paralysis frequently requires surgical treatment in children with spinal cord injury. The authors demonstrate the safety and efficacy of transcutaneous spinal stimulation to enable upright sitting posture in 7/8 children with trunk control impairment in a within-subjects, repeated measures pilot clinical trial.
Collapse
|
7
|
Humaira A, Gao S, Gregory E, Ridgway L, Blumberger DM, Downar J, Daskalakis ZJ, Ainsworth NJ, Wu L, Butterfield M, Vila-Rodriguez F. A patient-oriented analysis of pain side effect: A step to improve the patient's experience during rTMS? Brain Stimul 2021; 14:1147-1153. [PMID: 34365019 DOI: 10.1016/j.brs.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an efficacious and well-tolerated intervention for treatment-resistant depression (TRD). A novel rTMS protocol, intermittent theta burst stimulation (iTBS) has been recently implemented in clinical practice, and it is essential to characterize the factors associated to pain and the trajectory of pain of iTBS compared to standard rTMS protocols. OBJECTIVE We aimed to characterize the side effect profile and the pain trajectories of High-Frequency Left (HFL) and iTBS in TRD patients in the THREE-D trial. We also investigated factors associated to pain and the relationship between pain and clinical outcomes. METHODS 414 patients were randomized to either HFL or iTBS. Severity of pain was measured after every treatment. General Estimating Equation was used to investigate factors associated with pain. Latent class linear mixed model was used to investigate latent classes of pain trajectories over the course of rTMS. RESULTS Higher level of pain was associated with older age, higher stimulation intensity, higher anxiety, female, and non-response. The severity of pain significantly declined over the course of treatments with a steeper decrease early on in the course of the treatment in both protocols, and four latent pain trajectories were identified. The less favorable pain trajectories were associated with non-response and higher stimulation intensity. CONCLUSIONS HFL and iTBS were associated with similar factors and pain trajectories, although iTBS was more uncomfortable. Response to rTMS was associated with less pain and more favorable pain trajectories furthering the evince base of overlapping neurobiological underpinnings of mood and pain. We translated these results into patient-oriented information to aid in the decision-making process when considering rTMS.
Collapse
Affiliation(s)
- Afifa Humaira
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Sihaoyu Gao
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Lisa Ridgway
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, 250 College Street, Floor 8, Toronto, ON, Canada, M5T 1R8
| | - Jonathan Downar
- University Health Network, Toronto Western Hospital, 399 Bathurst St, TM432, Toronto, ON, Canada, M5T 2S8
| | - Zafiris J Daskalakis
- Department of Psychiatry, School of Medicine, UC San Diego Health, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Nicholas J Ainsworth
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Lang Wu
- Department of Statistics, Faculty of Science, University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Michael Butterfield
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1.
| |
Collapse
|
8
|
Deer TR, Eldabe S, Falowski SM, Huntoon MA, Staats PS, Cassar IR, Crosby ND, Boggs JW. Peripherally Induced Reconditioning of the Central Nervous System: A Proposed Mechanistic Theory for Sustained Relief of Chronic Pain with Percutaneous Peripheral Nerve Stimulation. J Pain Res 2021; 14:721-736. [PMID: 33737830 PMCID: PMC7966353 DOI: 10.2147/jpr.s297091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve stimulation (PNS) is an effective tool for the treatment of chronic pain, although its efficacy and utilization have previously been significantly limited by technology. In recent years, purpose-built percutaneous PNS devices have been developed to overcome the limitations of conventional permanently implanted neurostimulation devices. Recent clinical evidence suggests clinically significant and sustained reductions in pain can persist well beyond the PNS treatment period, outcomes that have not previously been observed with conventional permanently implanted neurostimulation devices. This narrative review summarizes mechanistic processes that contribute to chronic pain, and the potential mechanisms by which selective large diameter afferent fiber activation may reverse these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, supported by data in chronic pain states that have been effectively treated with percutaneous PNS, will also be discussed in support of a new theory of pain management in neuromodulation: Peripherally Induced Reconditioning of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Steven M Falowski
- Department of Neurosurgery, Neurosurgical Associates of Lancaster, Lancaster, PA, USA
| | - Marc A Huntoon
- Anesthesiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
9
|
Wang H, Wang J, Cai G, Liu Y, Qu Y, Wu T. A Physical Perspective to the Inductive Function of Myelin-A Missing Piece of Neuroscience. Front Neural Circuits 2021; 14:562005. [PMID: 33536878 PMCID: PMC7848263 DOI: 10.3389/fncir.2020.562005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Starting from the inductance in neurons, two physical origins are discussed, which are the coil inductance of myelin and the piezoelectric effect of the cell membrane. The direct evidence of the coil inductance of myelin is the opposite spiraling phenomenon between adjacent myelin sheaths confirmed by previous studies. As for the piezoelectric effect of the cell membrane, which has been well-known in physics, the direct evidence is the mechanical wave accompany with action potential. Therefore, a more complete physical nature of neural signals is provided. In conventional neuroscience, the neural signal is a pure electrical signal. In our new theory, the neural signal is an energy pulse containing electrical, magnetic, and mechanical components. Such a physical understanding of the neural signal and neural systems significantly improve the knowledge of the neurons. On the one hand, we achieve a corrected neural circuit of an inductor-capacitor-capacitor (LCC) form, whose frequency response and electrical characteristics have been validated by previous studies and the modeling fitting of artifacts in our experiments. On the other hand, a number of phenomena observed in neural experiments are explained. In particular, they are the mechanism of magnetic nerve stimulations and ultrasound nerve stimulations, the MRI image contrast issue and Anode Break Excitation. At last, the biological function of myelin is summarized. It is to provide inductance in the process of neural signal, which can enhance the signal speed in peripheral nervous systems and provide frequency modulation function in central nervous systems.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Jiahui Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Guangyi Cai
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yonghong Liu
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yansong Qu
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianzhun Wu
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Douven P, Assmann R, Breukink SO, Melenhorst J, Kleijnen J, Joosten EA, van Koeveringe GA. Sacral Neuromodulation for Lower Urinary Tract and Bowel Dysfunction in Animal Models: A Systematic Review With Focus on Stimulation Parameter Selection. Neuromodulation 2020; 23:1094-1107. [PMID: 32809262 PMCID: PMC7818262 DOI: 10.1111/ner.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Conventional sacral neuromodulation (SNM) has shown to be an effective treatment for lower urinary tract and bowel dysfunction, but improvements of clinical outcome are still feasible. Currently, in preclinical research, new stimulation parameters are being investigated to achieve better and longer effects. This systematic review summarizes the status of SNM stimulation parameters and its effect on urinary tract and bowel dysfunction in preclinical research. MATERIALS AND METHODS The literature search was conducted using three databases: Ovid (Medline, Embase) and PubMed. Articles were included if they reported on stimulation parameters in animal studies for lower urinary tract or bowel dysfunction as a primary outcome. Methodological quality assessment was performed using the SYRCLE Risk of Bias (RoB) tool for animal studies. RESULTS Twenty-two articles were eligible for this systematic review and various aspects of stimulation parameters were included: frequency, intensity, pulse width, stimulation signal, timing of stimulation, and unilateral vs. bilateral stimulation. In general, all experimental studies reported an acute effect of SNM on urinary tract or bowel dysfunction, whereas at the same time, various stimulation settings were used. CONCLUSIONS The results of this systematic review indicate that SNM has a positive therapeutic effect on lower urinary tract and bowel dysfunction. Using low-frequency-SNM, high-frequency-SNM, bilateral SNM, and higher pulse widths showed beneficial effects on storage and evacuation dysfunction in animal studies. An increased variability of stimulation parameters may serve as a basis for future improvement of the effect of SNM in patients suffering from urinary tract or bowel dysfunction.
Collapse
Affiliation(s)
- Perla Douven
- Department of UrologyMaastricht University Medical CenterThe Netherlands
- Department of Anesthesiology and Pain ManagementMaastricht University Medical CenterThe Netherlands
- Department of SurgeryMaastricht University Medical CenterThe Netherlands
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityThe Netherlands
| | - Roman Assmann
- Department of SurgeryMaastricht University Medical CenterThe Netherlands
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityThe Netherlands
| | - Stephanie O. Breukink
- Department of SurgeryMaastricht University Medical CenterThe Netherlands
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityThe Netherlands
| | - Jarno Melenhorst
- Department of SurgeryMaastricht University Medical CenterThe Netherlands
| | - Jos Kleijnen
- Kleijnen Systematic Reviews Ltd, Unit 6, Escrick Business ParkYorkUK
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical CenterThe Netherlands
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityThe Netherlands
| | - Gommert A. van Koeveringe
- Department of UrologyMaastricht University Medical CenterThe Netherlands
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityThe Netherlands
| |
Collapse
|
11
|
Chmiela MA, Hendrickson M, Hale J, Liang C, Telefus P, Sagir A, Stanton-Hicks M. Direct Peripheral Nerve Stimulation for the Treatment of Complex Regional Pain Syndrome: A 30-Year Review. Neuromodulation 2020; 24:971-982. [PMID: 33098229 DOI: 10.1111/ner.13295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Complex regional pain syndrome (CRPS), formerly known as reflex sympathetic dystrophy (RSD), is a difficult to treat condition characterized by debilitating pain and limitations in functional ability. Neuromodulation, in the form of spinal cord stimulation (SCS) and peripheral nerve stimulation (PNS), have been traditionally used as a treatment for CRPS with variable success. OBJECTIVE This chart review describes the use of implantable PNS systems in the treatment of CRPS of the upper and lower extremities spanning nearly three decades. MATERIALS AND METHODS A retrospective chart review was performed on 240 patients with PNS implanted between 1990 and 2017 at our institution. Of these, 165 patients were identified who had PNS systems implanted for a diagnosis of CRPS. Patient profile, including baseline characteristics, comorbidities, past/current interventions/medications and targeted nerves, was descriptively summarized through standard summary statistics. Patients' pain scores and opioid consumptions at baseline (preimplant), 1 month, 6 months, and 12 months were collected and compared. Device revisions and explants were summarized, and patient functional outcomes were described. RESULTS Pain scores at baseline and at 12-month follow-up were decreased from a mean of 7.4 ± 1.6 to 5.5 ± 2.4 and estimated to be 1.87 (95% CI: [1.29, 2.46], paired t-test p-value <0.001) lower at 12 months. At baseline, 62% of patients were on chronic opioid therapy, compared with 41% at 12 months. Of 126 patients who reported changes in functional status, 64 (51%) reported improvement, 27 (21%) reported worsening, and 35 (28%) did not report any meaningful change. Excluding end-of-life battery replacements, surgical revision occurred in 56 (34%) of patients. Thirteen patients (8%) underwent implantation of a second PNS because of symptomatic expansion outside of the original painful region. Device explant was performed in 32 (19%) of patients. Median length of follow-up was 74 [14, 147] months. Of the 36 patients who continue to follow-up at our institution, 29 (81%) continue to use their PNS. CONCLUSIONS We can conclude that PNS is a useful modality to improve function and reduce long-term pain in selected patients suffering from CRPS type I and type II.
Collapse
Affiliation(s)
- Mark A Chmiela
- Department of Pain Management, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark Hendrickson
- Department of Plastic Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jason Hale
- Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chen Liang
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Phillip Telefus
- Department of Pain Management, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Afrin Sagir
- Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | |
Collapse
|
12
|
Wang H, Wang J, Thow XY, Lee S, Peh WYX, Ng KA, He T, Thakor NV, Lee C. Unveiling Stimulation Secrets of Electrical Excitation of Neural Tissue Using a Circuit Probability Theory. Front Comput Neurosci 2020; 14:50. [PMID: 32754023 PMCID: PMC7381307 DOI: 10.3389/fncom.2020.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical excitation of neural tissue has wide applications, but how electrical stimulation interacts with neural tissue remains to be elucidated. Here, we propose a new theory, named the Circuit-Probability theory, to reveal how this physical interaction happen. The relation between the electrical stimulation input and the neural response can be theoretically calculated. We show that many empirical models, including strength-duration relationship and linear-non-linear-Poisson model, can be theoretically explained, derived, and amended using our theory. Furthermore, this theory can explain the complex non-linear and resonant phenomena and fit in vivo experiment data. In this letter, we validated an entirely new framework to study electrical stimulation on neural tissue, which is to simulate voltage waveforms using a parallel RLC circuit first, and then calculate the excitation probability stochastically.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore.,Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore
| | - Jiahui Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore.,Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Xin Yuan Thow
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Sanghoon Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore.,Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,Department of Robotics Engineering, Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Kian Ann Ng
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore.,Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore.,Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Pelot NA, Grill WM. In vivo quantification of excitation and kilohertz frequency block of the rat vagus nerve. J Neural Eng 2020; 17:026005. [PMID: 31945746 DOI: 10.1088/1741-2552/ab6cb6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There is growing interest in treating diseases by electrical stimulation and block of peripheral autonomic nerves, but a paucity of studies on the excitation and block of small-diameter autonomic axons. We conducted in vivo quantification of the strength-duration properties, activity-dependent slowing (ADS), and responses to kilohertz frequency (KHF) signals for the rat vagus nerve (VN). APPROACH We conducted acute in vivo experiments in urethane-anaesthetized rats. We placed two cuff electrodes on the left cervical VN and one cuff electrode on the anterior subdiaphragmatic VN. The rostral cervical cuff was used to deliver pulses to quantify recruitment and ADS. The caudal cervical cuff was used to deliver KHF signals. The subdiaphragmatic cuff was used to record compound action potentials (CAPs). MAIN RESULTS We quantified the input-output recruitment and strength-duration curves. Fits to the data using standard strength-duration equations were qualitatively similar, but the resulting chronaxie and rheobase estimates varied substantially. We measured larger thresholds for the slowest fibres (0.5-1 m s-1), especially at shorter pulse widths. Using a novel cross-correlation CAP-based analysis, we measured ADS of ~2.3% after 3 min of 2 Hz stimulation, which is comparable to the ADS reported for sympathetic efferents in somatic nerves, but much smaller than the ADS in cutaneous nociceptors. We found greater ADS with higher stimulation frequency and non-monotonic changes in CV in select cases. We found monotonically increasing block thresholds across frequencies from 10 to 80 kHz for both fast and slow fibres. Further, following 25 s of KHF signal, neural conduction could require tens of seconds to recover. SIGNIFICANCE The quantification of mammalian autonomic nerve responses to conventional and KHF signals provides essential information for the development of peripheral nerve stimulation therapies and for understanding their mechanisms of action.
Collapse
Affiliation(s)
- N A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, United States of America
| | | |
Collapse
|
14
|
Hugosdottir R, Mørch CD, Andersen OK, Arendt-Nielsen L. Investigating stimulation parameters for preferential small-fiber activation using exponentially rising electrical currents. J Neurophysiol 2019; 122:1745-1752. [PMID: 31461369 DOI: 10.1152/jn.00390.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation is widely used in pain research and profiling, but current technologies lack selectivity toward small sensory fibers. Pin electrodes deliver high current density in upper skin layers, and it has been proposed that slowly rising exponential pulses can elevate large-fiber activation threshold and thereby increase preferential small-fiber activation. Optimal stimulation parameters for the combined pin electrode and exponential pulse stimulation have so far not been established, which is the aim of this study. Perception thresholds were compared between pin and patch electrodes using single 1- to 100-ms exponential and rectangular pulses. Stimulus-response functions were evaluated for both pulse shapes delivered as single pulses and pulse trains of 10 Hz using intensities from 0.1 to 20 times perception threshold. Perception thresholds (mA) decreased when duration was increased for both electrodes with rectangular pulses and the pin electrode with exponential pulses. For the patch electrode, perception thresholds for exponential pulses decreased for durations ≤10 ms but increased for durations ≥15 ms, indicating accommodation of large fibers. Stimulus-response curves for single pulses were similar for the two pulse shapes. For pulse trains, the slope of the curve was higher for rectangular pulses. Maximal large-fiber accommodation to exponential pulses was observed for 100-ms pulses, indicating that 100-ms exponential pulses should be applied for preferential small-fiber activation. Intensity of 10 times perception threshold was sufficient to cause maximal pain ratings. The developed methodology may open new opportunities for using electrical stimulation paradigms for small-fiber stimulation and diagnostics.NEW & NOTEWORTHY Selective activation of small cutaneous nerve fibers is pivotal for investigations of the pain system. The present study demonstrated that patch electrode perception thresholds increase with increased duration of exponential currents from 20 to 100 ms. This is likely caused by large-fiber accommodation, which can be utilized to activate small fibers preferentially through small-diameter pin electrodes. This finding may be utilized in studies of fundamental pain mechanisms and, for example, in small-fiber neuropathy.
Collapse
Affiliation(s)
- Rosa Hugosdottir
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kæseler Andersen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Glatte P, Buchmann SJ, Hijazi MM, Illigens BMW, Siepmann T. Architecture of the Cutaneous Autonomic Nervous System. Front Neurol 2019; 10:970. [PMID: 31551921 PMCID: PMC6746903 DOI: 10.3389/fneur.2019.00970] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The human skin is a highly specialized organ for receiving sensory information but also to preserve the body's homeostasis. These functions are mediated by cutaneous small nerve fibers which display a complex anatomical architecture and are commonly classified into cutaneous A-beta, A-delta and C-fibers based on their diameter, myelinization, and velocity of conduction of action potentials. Knowledge on structure and function of these nerve fibers is relevant as they are selectively targeted by various autonomic neuropathies such as diabetic neuropathy or Parkinson's disease. Functional integrity of autonomic skin nerve fibers can be assessed by quantitative analysis of cutaneous responses to local pharmacological induction of axon reflex responses which result in dilation of cutaneous vessels, sweating, or piloerection depending on the agent used to stimulate this neurogenic response. Sensory fibers can be assessed using quantitative sensory test. Complementing these functional assessments, immunohistochemical staining of superficial skin biopsies allow analysis of structural integrity of cutaneous nerve fibers, a technique which has gained attention due to its capacity of detecting pathogenic depositions of alpha-synuclein in patients with Parkinson's disease. Here, we reviewed the current literature on the anatomy and functional pathways of the cutaneous autonomic nervous system as well as diagnostic techniques to assess its functional and structural integrity.
Collapse
Affiliation(s)
- Patrick Glatte
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sylvia J Buchmann
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mido Max Hijazi
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ben Min-Woo Illigens
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Timo Siepmann
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Su X, Simenson HA, Dinsmoor DA, Orser HD. Evaluation of Pulse-Width of Spinal Nerve Stimulation in a Rat Model of Bladder Micturition Reflex. Neuromodulation 2017; 20:793-798. [PMID: 28885782 DOI: 10.1111/ner.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The spinal nerve stimulation (SNS) evoked motor threshold (Tmot ) response across different pulse-widths (PWs) was first explored and a subset of selected stimulation PWs were further assessed with respect to bladder reflex contraction (BRC). MATERIALS AND METHODS In anesthetized female rats, wire electrodes were placed under each of the L6 spinal nerves to produce bilateral SNS. The relationship of Tmot response with PW was analyzed using a monoexponential nonlinear regression. A cannula was placed into the bladder via the urethra to ensure an isovolumetric bladder. Saline infusion induced BRC. RESULTS The chronaxie of the Tmot -PW curve was 0.04 ms. The stimulation charges/energies (current × PW) associated with shorter PWs of 0.02, 0.03, and 0.06 ms were significantly lower than those with longer PW (e.g., >0.15 ms). SNS (Tmot , 10 Hz) at selected PWs from 0.03 to 0.21 ms inhibited the frequency of BRCs. There were no significantly different attenuations among tested PWs. SNS of PWs of 0.03, 0.06, and 0.09 ms decreased bladder contraction frequency from 103 ± 3%, 100 ± 4%, and 103 ± 4% of controls, to 52 ± 16% (n = 8, p = 0.02, paired t-test), 56 ± 15% (n = 11, p = 0.02) and 40 ± 19% (n = 10, p = 0.01), respectively. CONCLUSIONS Effective PWs to produce bladder inhibitory effects in the rat appear much shorter than 0.21 ms typically used with sacral neuromodulation in practice. Potential battery savings manifested by shorter PW while maintaining equivalent efficacy would provide more efficient therapy delivery and increased longevity of the stimulator.
Collapse
Affiliation(s)
- Xin Su
- Restorative Therapies Group, Research & Core Technology, Medtronic, Inc., Minneapolis, MN, USA
| | - Heather A Simenson
- Physiological Research Laboratories, Medtronic, Inc., Minneapolis, MN, USA
| | - David A Dinsmoor
- Restorative Therapies Group, Research & Core Technology, Medtronic, Inc., Minneapolis, MN, USA
| | - Heather D Orser
- Restorative Therapies Group, Research & Core Technology, Medtronic, Inc., Minneapolis, MN, USA
| |
Collapse
|
17
|
Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. J Neural Eng 2017; 14:046022. [PMID: 28361793 PMCID: PMC5677574 DOI: 10.1088/1741-2552/aa6a5f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. APPROACH We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. MAIN RESULTS We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. SIGNIFICANCE Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.
Collapse
Affiliation(s)
- N A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, United States of America
| | | | | |
Collapse
|
18
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
19
|
Park JT, Baca Vaca GF, Avery J, Miller JP. Utility of Stereoelectroencephalography in Children with Dysembryoplastic Neuroepithelial Tumor and Cortical Malformation. Neurodiagn J 2017; 57:191-210. [PMID: 28898173 DOI: 10.1080/21646821.2017.1326270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Uncontrolled seizures in children can contribute to irreversible cognitive impairment and developmental delay, in addition to placing them at risk for sudden unexplained death in epileptic patients (SUDEP). Since its introduction at Saint Ann Hospital in Paris in the 1960s, stereoelectroencephalography (SEEG) is increasingly being utilized at epilepsy centers in the United States as an invasive tool to help localize the seizure focus in drug-resistant focal epilepsy. INDICATIONS Children with symptomatic epilepsy, commonly due to cortical dysplasia and dysembryoplastic neuroepithelial tumor (DNET), may benefit from SEEG investigation. The arrangement of SEEG electrodes is individually tailored based on the suspected location of the epileptogenic zone (EZ). The implanted depth electrodes are used to electrically stimulate the corresponding cortices to obtain information about the topography of eloquent cortex and EZ. Morbidity: Surgical morbidity in these children undergoing SEEG investigation is low, but not negligible. The number of electrodes directly correlates with the risk of intraoperative complication. Thus a risk and benefit analysis needs to be carefully considered for each patient. Neurodiagnostic technology: Both during and after the SEEG electrode implantation, the intraoperative monitoring and EEG technologists play a vital role in the successful monitoring of the patient. CONCLUSION SEEG is an important tool in the process of epilepsy surgery in children with symptomatic epilepsy, commonly due to cortical dysplasia and DNET.
Collapse
Affiliation(s)
- Jun T Park
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Guadalupe Fernandez Baca Vaca
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Jennifer Avery
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
| | - Jonathan P Miller
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| |
Collapse
|
20
|
Peterchev AV, Luber B, Westin GG, Lisanby SH. Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation. Brain Stimul 2016; 10:99-105. [PMID: 28029593 DOI: 10.1016/j.brs.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. OBJECTIVE We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. METHODS Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. RESULTS Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. CONCLUSIONS Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Bruce Luber
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gregory G Westin
- Division of Vascular and Endovascular Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Abstract
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Collapse
Affiliation(s)
- J Patrick Reilly
- Metatec Associates, 12516 Davan Drive, Silver Spring, MD 20904, USA
| |
Collapse
|
22
|
Doll RJ, Maten ACA, Spaan SPG, Veltink PH, Buitenweg JR. Effect of temporal stimulus properties on the nociceptive detection probability using intra-epidermal electrical stimulation. Exp Brain Res 2015; 234:219-27. [PMID: 26438507 PMCID: PMC4713721 DOI: 10.1007/s00221-015-4451-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022]
Abstract
Chronic pain disorders can be initiated and maintained by malfunctioning of one or several mechanisms underlying the nociceptive function. Although several quantitative sensory testing methods exist to characterize the nociceptive function, it remains difficult to distinguish the contributions of individual mechanisms. Intra-epidermal electrical stimulation of nociceptive fibers allows defining stimuli with temporal properties within the timescale of these mechanisms. Here, we studied the effect of stimulus properties on the psychophysical detection probability. A psychophysical detection experiment was conducted including 30 healthy human participants. Participants were presented with electrical stimuli having various temporal properties. The pulse-width was varied for single pulse stimuli (either 420 or 840 μs), and the inter-pulse interval for double pulse stimuli (10, 50, or 100 ms). Generalized linear mixed models were used to obtain estimates of thresholds and slopes of the psychophysical function. The 840-μs single pulse resulted in a lower threshold and steeper slope of the psychophysical function than the 420-μs single pulse. Moreover, a double-pulse stimulus resulted in a lower threshold and steeper slope than single pulse stimuli. The slopes were similar between the double pulse stimuli, but thresholds slightly increased with increasing inter-pulse intervals. In the present study, it was demonstrated that varying the temporal properties of intra-epidermal electrical stimuli results in variations in nociceptive processing. The estimated thresholds and slopes corresponding to the selection of temporal properties suggest that contributions of peripheral and central nociceptive mechanisms can be reflected in psychophysical functions.
Collapse
Affiliation(s)
- Robert J Doll
- Biomedical Signals and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst, ZH-222, Drienerlolaan 5, PO BOX 217, Enschede, The Netherlands.
| | - Annefloor C A Maten
- Biomedical Signals and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst, ZH-222, Drienerlolaan 5, PO BOX 217, Enschede, The Netherlands
| | - Sjoerd P G Spaan
- Biomedical Signals and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst, ZH-222, Drienerlolaan 5, PO BOX 217, Enschede, The Netherlands
| | - Peter H Veltink
- Biomedical Signals and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst, ZH-222, Drienerlolaan 5, PO BOX 217, Enschede, The Netherlands
| | - Jan R Buitenweg
- Biomedical Signals and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst, ZH-222, Drienerlolaan 5, PO BOX 217, Enschede, The Netherlands
| |
Collapse
|
23
|
Identification of the somatosensory parietal ventral area and overlap of the somatosensory and auditory cortices in mice. Neurosci Res 2015; 99:55-61. [DOI: 10.1016/j.neures.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022]
|
24
|
Kroll MW, Perkins PE, Panescu D. Electric fence standards comport with human data and AC limits. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1343-1348. [PMID: 26736517 DOI: 10.1109/embc.2015.7318617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. METHODS AND RESULTS There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. CONCLUSIONS The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
Collapse
|
25
|
Mollet L, Raedt R, Delbeke J, El Tahry R, Grimonprez A, Dauwe I, DE Herdt V, Meurs A, Wadman W, Boon P, Vonck K. Electrophysiological responses from vagus nerve stimulation in rats. Int J Neural Syst 2013; 23:1350027. [PMID: 24156670 DOI: 10.1142/s0129065713500275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of action of vagus nerve stimulation (VNS) for pharmacoresistant epilepsy is unknown and the therapeutic outcome is highly variable. We investigated stimulation-induced vagus nerve electrophysiological responses in rats using various stimulation parameters. Conduction velocity, I(50), rheobase and chronaxie were calculated. We identified an early and late component corresponding to an afferent compound action potential (CAP) and a remote laryngeal motor-evoked potential (LMEP), respectively. The conduction velocity (CAP: 26.2 ± 1.4 m/s; LMEP: 32.4 ± 2.4 m/s) and I(50) (CAP: 2.4 ± 0.3 mA; LMEP: 1.8±0.2 mA) were significantly different for both components, the rheobase (CAP: 140±30 μA; LMEP: 110±26 μA) and chronaxie (CAP: 66±7 μs; LMEP: 73±9 μs) were not. Using a pulse of 10 μs, the CAP saturated between 4-5 mA. Our method can be used to record VNS-induced electrophysiological responses in rats and provides an objective biomarker for electrical stimulation with various parameters in an experimental set-up. Our findings are potentially useful for clinical purposes in the sense that combination of VNS and recording of vagal nerve CAPs may help clinicians to determine the individual optimal intensity required to fully activate fast-conducting afferent fibers.
Collapse
Affiliation(s)
- Lies Mollet
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cortical presynaptic control of dorsal horn C-afferents in the rat. PLoS One 2013; 8:e69063. [PMID: 23935924 PMCID: PMC3728294 DOI: 10.1371/journal.pone.0069063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 12/01/2022] Open
Abstract
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.
Collapse
|
27
|
Su X, Nickles A, Nelson DE. Quantification of effectiveness of bilateral and unilateral neuromodulation in the rat bladder rhythmic contraction model. BMC Urol 2013; 13:34. [PMID: 23866931 PMCID: PMC3718626 DOI: 10.1186/1471-2490-13-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Background Using the isovolumetric bladder rhythmic contraction (BRC) model in anesthetized rats, we have quantified the responsiveness to unilateral and bilateral stimulation of the L6 spinal nerve (SN) and characterized the relationship between stimulus intensity and inhibition of the bladder micturition reflex. Methods A wire electrode was placed under either one or both of the L6 SN roots. A cannula was placed into the bladder via the urethra and the urethra was ligated. Saline infusion induced BRC. Results At motor threshold (Tmot) intensity, SN stimulation of both roots (10 Hz) for 10 min reduced bladder contraction frequency from 0.63 ± 0.04 to 0.17 ± 0.09 contractions per min (26 ± 14% of baseline control; n = 10, p < 0.05). However, the same intensity of unilateral stimulation (n = 15) or sequential stimulation of both SNs (e.g. 5 min per side alternatively for a total of 10 min or 20 min) was less efficacious. The greater sensitivity to bilateral stimulation is not dependent upon precise bilateral timing of the stimulation pulses. Bilateral stimulation also produced both acute and prolonged- inhibition on bladder contractions in a stimulation intensity dependent fashion. Conclusions Using the bladder rhythmic contraction model, bilateral stimulation was more effective than unilateral stimulation of the SN. Clinical testing should be conducted to further compare efficacies of unilateral and bilateral stimulation. Bilateral stimulation may allow the use of lower stimulation intensities to achieve higher efficacy for neurostimulation therapies on urinary tract control.
Collapse
|
28
|
Effects of Carrier Frequency of Interferential Current on Pressure Pain Threshold and Sensory Comfort in Humans. Arch Phys Med Rehabil 2013; 94:95-102. [DOI: 10.1016/j.apmr.2012.08.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 11/18/2022]
|
29
|
Su () X, Nickles A, Nelson DE. Comparison of neural targets for neuromodulation of bladder micturition reflex in the rat. Am J Physiol Renal Physiol 2012; 303:F1196-206. [DOI: 10.1152/ajprenal.00343.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal nerve (SN) stimulation inhibits the bladder rhythmic contraction (BRC) in anesthetized rats. This preparation was used to study the effects of electrical stimulation of the tibial nerve (TN) and the dorsal nerve of the clitoris (DNC) on BRC. Stimulation of the TN and DNC for 10 min produced a frequency- and intensity-dependent attenuation of the frequency of bladder contractions. As observed with the SN, 10-Hz stimulation of either TN or DNC produced the greatest degree of inhibition, with lower or higher frequencies being either less efficacious or inactive. In contrast to the prolonged inhibition produced by SN stimulation, both TN and DNC stimulation produced “short” lasting inhibition of bladder contractions and the maximal inhibition occurred during stimulation. TN stimulation was effective over only a narrow range of current intensities [3–4 × motor threshold current for inducing a toe twitch ( Tmot)] and only at a frequency of 10 Hz. Stimulation of TN at 10 Hz, 3 × Tmot inhibited BRC to 23% of control. Ten-hertz DNC stimulation at 2 × TEAS, the threshold current for evoking a reflex anal sphincter contraction, decreased the frequency of contractions to 4% of control. Although compared with the respective threshold current the BRC response was more sensitive to DNC compared with TN stimulation, the absolute current required to reduce BRC using DNC stimulation appeared to be higher. Comparing the effects of TN and DNC stimulation to our previous results with SN stimulation, SN stimulation produces the largest duration and efficacy of bladder inhibition.
Collapse
Affiliation(s)
- Xin Su ()
- Neuromodulation Research, Medtronic, Incorporated, Minneapolis, Minnesota; and
| | - Angela Nickles
- Physiology Research Laboratory, Medtronic, Incorporated, Minneapolis, Minnesota
| | - Dwight E. Nelson
- Neuromodulation Research, Medtronic, Incorporated, Minneapolis, Minnesota; and
| |
Collapse
|
30
|
Oosterhof J, Wilder-Smith OH, Oostendorp RA, Crul BJ. Different mechanisms for the short-term effects of real versus sham transcutaneous electrical nerve stimulation (TENS) in patients with chronic pain: a pilot study. J Pain Palliat Care Pharmacother 2012; 26:5-12. [PMID: 22448936 DOI: 10.3109/15360288.2011.650352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) has existed since the early 1970s. However, randomized placebo controlled studies show inconclusive results in the treatment of chronic pain. These results could be explained by assuming that TENS elicits a placebo response. However, in animal research TENS has been found to decrease hyperalgesia, which contradicts this assumption. The aim of this study is to use quantitative sensory testing to explore changes in pain processing during sham versus real TENS in patients with chronic pain. Patients with chronic pain (N = 20) were randomly allocated to real TENS or sham TENS application. Electrical pain thresholds (EPTs) were determined inside and outside the segment stimulated, before and after the first 20 minutes of the intervention, and after a period of 10 days of daily real/sham TENS application. Pain relief did not differ significantly for real versus sham TENS. However, by comparing time courses of EPTs, it was found that EPT values outside the segment of stimulation increased for sham TENS, whereas for real TENS these values decreased. There were, however, no differences for EPT measurements inside the segment stimulated. These results illustrate the importance of including mechanism-reflecting parameters in addition to symptoms when conducting pain research.
Collapse
Affiliation(s)
- Jan Oosterhof
- Research Centre for Allied Health Sciences, Department of Physiotherapy, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Yuan S, Burrell BD. Long-term depression of nociceptive synapses by non-nociceptive afferent activity: role of endocannabinoids, Ca²+, and calcineurin. Brain Res 2012; 1460:1-11. [PMID: 22578358 DOI: 10.1016/j.brainres.2012.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 02/08/2023]
Abstract
Activity in non-nociceptive afferents is known to produce long-lasting decreases in nociceptive signaling, often referred to as gate control, but the cellular mechanisms mediating this form of neuroplasticity are poorly understood. In the leech, activation of non-nociceptive touch (T) mechanosensory neurons induces a heterosynaptic depression of nociceptive (N) synapses that is endocannabinoid-dependent. This heterosynaptic, endocannabinoid-dependent long-term depression (ecLTD) is observed where the T- and N-cells converge on a common postsynaptic target, in this case the motor neuron that innervates the longitudinal muscles (L-cells) that contributes to a defensive withdrawal reflex. Depression in the nociceptive synapse required both presynaptic and postsynaptic increases in intracellular Ca²⁺. Activation of the Ca²⁺-sensitive protein phosphatase calcineurin was also required, but only in the presynaptic neuron. Heterosynaptic ecLTD was unaffected by antagonists for NMDA or metabotropic glutamate receptors, but was blocked by the 5-HT₂ receptor antagonist ritanserin. Depression was also blocked by the CB1 receptor antagonist rimonabant, but this is thought to represent an effect on a TRPV-like receptor. This heterosynaptic, endocannabinoid-dependent modulation of nociceptive synapses represents a novel mechanism for regulating how injury-inducing or painful stimuli are transmitted to the rest of the central nervous system.
Collapse
Affiliation(s)
- Sharleen Yuan
- Sanford School of Medicine at The University of South Dakota, Division of Basic Biomedical Sciences, Neuroscience Group, 414 E. Clark Street, Lee Med Bldg, Vermillion, SD, USA
| | | |
Collapse
|
32
|
Oosterhof J, Wilder-Smith OH, de Boo T, Oostendorp RAB, Crul BJP. The Long-Term Outcome of Transcutaneous Electrical Nerve Stimulation in the Treatment for Patients with Chronic Pain: A Randomized, Placebo-Controlled Trial. Pain Pract 2012; 12:513-22. [DOI: 10.1111/j.1533-2500.2012.00533.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Su X, Nickles A, Nelson DE. Neuromodulation in a rat model of the bladder micturition reflex. Am J Physiol Renal Physiol 2011; 302:F477-86. [PMID: 22049401 DOI: 10.1152/ajprenal.00515.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A rat model of bladder reflex contraction (BRC) was used to determine the optimal frequency and intensity of spinal nerve (SN) stimulation to produce neuromodulation of bladder activity and to assess the therapeutic mechanisms of this neuromodulation. In anesthetized female rats (urethane 1.2 g/kg ip), a wire electrode was used to produce bilateral stimulation of the L6 SN. A cannula was placed into the bladder via the urethra, and the urethra was ligated to ensure an isovolumetric bladder. Saline infusion induced BRC. Electrical stimulation of the SN produced a frequency- and intensity-dependent attenuation of the frequency of bladder contractions. Ten-herz stimulation produced maximal inhibition; lower and higher stimulation frequency produced less attenuation of BRC. Attenuation of bladder contraction frequency was directly proportional to the current intensity. At 10 Hz, stimulation using motor threshold pulses (T(mot)) produced a delayed inhibition of the frequency of bladder contractions to 34 ± 11% of control. Maximal bladder inhibition appeared at 10 min poststimulation. High current intensity at 0.6 mA (∼6 * T(mot)) abolished bladder contraction during stimulation, and the inhibition was sustained for 10 min poststimulation (prolonged inhibition). Furthermore, in rats pretreated with capsaicin (125 mg/kg sc), stimulation produced a stronger inhibition of BRC. The inhibitory effects on bladder contraction may be mediated by both afferent and efferent mechanisms. Lower intensities of stimulation may activate large, fast-conducting fibers and actions through the afferent limb of the micturition reflex arc in SN neuromodulation. Higher intensities may additionally act through the efferent limb.
Collapse
Affiliation(s)
- Xin Su
- Medtronic, Inc., Neuromodulation Research, 7000 Central Ave. NE, RCE470, Minneapolis, MN 55432, USA.
| | | | | |
Collapse
|
34
|
Bourbeau DJ, Hokanson JA, Rubin JE, Weber DJ. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia. J Neural Eng 2011; 8:056009. [PMID: 21844639 DOI: 10.1088/1741-2560/8/5/056009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the design of microelectrode arrays for neural interfaces.
Collapse
Affiliation(s)
- D J Bourbeau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
35
|
Castoro MA, Yoo PB, Hincapie JG, Hamann JJ, Ruble SB, Wolf PD, Grill WM. Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 2010; 227:62-8. [PMID: 20851118 DOI: 10.1016/j.expneurol.2010.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/12/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Vagus nerve stimulation (VNS) is an approved treatment for epilepsy and depression, and it is currently under investigation for applications in Alzheimer's disease, anxiety, heart failure, and obesity. However, the mechanism(s) by which VNS has its effects are not clear, and the stimulation parameters for obtaining therapeutic outcomes appear highly variable. The purpose of this study was to quantify the excitation properties of the right cervical vagus nerve in adult dogs anesthetized with propofol and fentanyl. Input-output curves of the right cervical vagus nerve compound action potential and laryngeal muscle electromyogram were measured in response to VNS across a range of stimulation parameters: amplitudes of 0.02-50mA, pulsewidths of 10, 50, 100, 200, 300, 500, and 1,000μs, frequencies of 1-2Hz, and train lengths of 20 pulses with 3 different electrode configurations: monopolar cathode, proximal anode/distal cathode, and proximal cathode/distal anode. Electrode configuration and stimulation waveform (monophasic vs. asymmetric charge-balanced biphasic) did not affect the threshold or recruitment of the vagal nerve fibers that were activated. The rheobase currents of A- and B-fibers were 0.4mA and 0.7mA, respectively, and the chronaxie of both components was 180μs. Pulsewidth had little effect on the normalized threshold difference between activation of A- and B-fibers. The results provide insight into the complement of nerve fibers activated by VNS and guidance to clinicians for the selection of optimal stimulation parameters.
Collapse
Affiliation(s)
- Mark A Castoro
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Monkeys can detect electrical stimulation delivered to the striate cortex (area V1). We examined whether such stimulation is layer dependent. While remaining fixated on a spot of light, a rhesus monkey was required to detect a 100-ms train of electrical stimulation delivered to a site within area V1. A monkey signaled the delivery of stimulation by depressing a lever after which he was rewarded with a drop of apple juice. Control trials were interleaved during which time no stimulation was delivered and the monkey was rewarded for not depressing the lever. Biphasic pulses were delivered at 200 Hz, and the current was typically at or < 30 muA using 0.2-ms cathode-first biphasic pulses. For some experiments, the pulse duration was varied from 0.05 to 0.7 ms and anode-first pulses were used. The current threshold for detecting cathode-first pulses 50% of the time was the lowest (< 10 muA) when stimulation was delivered to the deepest layers of V1 (between 1.0 and 2.5 mm below the cortical surface). Also, the shortest chronaxies (< 0.2 ms) and the shortest latencies (< 200 ms) for detecting the stimulation were observed at these depths. Finally, anode-first pulses were most effective at evoking a detection response in superficial V1 and cathode-first pulses were most effective at evoking a detection response in deep V1 (> 1.75 mm below the cortical surface). Accordingly, the deepest layers of V1 are the most sensitive for the induction of a detection response to electrical stimulation in monkeys.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
37
|
Adelson D, Lao L, Zhang G, Kim W, Marvizón JCG. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers. Neuroscience 2009; 161:538-53. [PMID: 19336248 DOI: 10.1016/j.neuroscience.2009.03.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Abstract
Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.
Collapse
Affiliation(s)
- D Adelson
- Veterans Affairs Greater Los Angeles Healthcare System, Building 115, Room 119, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
38
|
Peng CW, Chen JJJ, Cheng CL, Grill WM. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents. J Neural Eng 2008; 5:144-54. [PMID: 18430976 DOI: 10.1088/1741-2560/5/2/005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 +/- 7% to 29 +/- 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 +/- 5% to 18 +/- 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.
Collapse
Affiliation(s)
- Chih-Wei Peng
- Department of Biomedical Engineering, Duke University, Hudson Hall 136, Box 90281, Durham, NC 27708-0281, USA
| | | | | | | |
Collapse
|
39
|
Ginanneschi F, Dominici F, Milani P, Biasella A, Rossi A, Mazzocchio R. Changes in the recruitment curve of the soleus H-reflex associated with chronic low back pain. Clin Neurophysiol 2007; 118:111-8. [PMID: 17095294 DOI: 10.1016/j.clinph.2006.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 09/14/2006] [Accepted: 09/26/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We investigated whether patients with chronic low back pain (CLBP) manifest changes in the excitability of the soleus H-reflex. METHODS H-reflex stimulus-response curve was studied in 14 CLBP patients and 14 age-matched healthy subjects. H-threshold, H-maximum size, H-steepness and H-latency were determined for both legs. Homosynaptic depression (HD), following a train of H-reflexes, and presynaptic inhibition (PI) from flexor afferents onto soleus Ia afferents were also evaluated. RESULTS H-threshold was significantly increased, H-size as a function of stimulus intensity was significantly different, and H-recruitment curve steepness was significantly lower in CLBP patients compared to healthy subjects. No significant difference in the amount of HD and PI of the H-reflex was found between the two groups. H-latency and Hmax/Mmax ratio was comparable between the subjects groups. CONCLUSIONS In CLBP there is a reduced excitability of group Ia afferent fibres from the soleus muscle to which presynaptic factors do not seem to contribute and that presumably depend on changes in the peripheral sensory input. SIGNIFICANCE Changes in H-reflex excitability may underlie a decrease in the gain of a peripheral sensor in CLBP. Estimation of soleus H-threshold and H-recruitment curve may contribute to the diagnostic evaluation of CLBP and may be used to monitor the efficacy of treatment.
Collapse
Affiliation(s)
- F Ginanneschi
- Sezione di Neurofisiologia Clinica, Dipartimento di Scienze Neurologiche e del Comportamento, Universita' di Siena, Policlinico Le Scotte, Viale Bracci, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK. Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 2006; 96:512-21. [PMID: 16835359 DOI: 10.1152/jn.00126.2006] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical microstimulation has been used to elucidate cortical function. This review discusses neuronal excitability and effective current spread estimated by using three different methods: 1) single-cell recording, 2) behavioral methods, and 3) functional magnetic resonance imaging (fMRI). The excitability properties of the stimulated elements in neocortex obtained using these methods were found to be comparable. These properties suggested that microstimulation activates the most excitable elements in cortex, that is, by and large the fibers of the pyramidal cells. Effective current spread within neocortex was found to be greater when measured with fMRI compared with measures based on single-cell recording or behavioral methods. The spread of activity based on behavioral methods is in close agreement with the spread based on the direct activation of neurons (as opposed to those activated synaptically). We argue that the greater activation with imaging is attributed to transynaptic spread, which includes subthreshold activation of sites connected to the site of stimulation. The definition of effective current spread therefore depends on the neural event being measured.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
41
|
Gustafson KJ, Moffitt MA, Wang X, Sun J, Snyder S, Grill WM. Topography of spinal neurons active during hindlimb withdrawal reflexes in the decerebrate cat. Neuroscience 2006; 141:1983-94. [PMID: 16797133 DOI: 10.1016/j.neuroscience.2006.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 04/11/2006] [Accepted: 05/11/2006] [Indexed: 11/18/2022]
Abstract
There exists a spatial organization of receptive fields and a modular organization of the flexion withdrawal reflex system. However, the three dimensional location and organization of interneurons interposed in flexion reflex pathways has not been systematically examined. We determined the anatomical locations of spinal neurons involved in the hindlimb flexion withdrawal reflex using expression of the immediate early gene c-fos and the corresponding FOS protein. The flexion withdrawal reflex was evoked in decerebrate cats via stimulation of the tibial or superficial peroneal nerve. Animals that received stimulation had significantly larger numbers of cells expressing FOS-like immunoreactivity (42.7+/-2.3 cells/section, mean+/-standard error of the mean) than operated unstimulated controls (18.6+/-1.4 cells/section). Compared with controls, cells expressing FOS-like immunoreactivity were located predominantly on the ipsilateral side, in laminae IV-VI, at L6 and rostral L7 segments, and between 20% and 60% of the distance from the midline to the lateral border of the ventral gray matter. Labeled neurons resulting from tibial nerve stimulation were medial to neurons labeled following superficial peroneal nerve stimulation in laminae I-VI, but not VII. The mean mediolateral positions of labeled neurons from both nerves shifted medially as the transverse plane in which they were viewed was moved from rostral to caudal and as the coronal plane in which they were viewed was moved from dorsal to ventral. The mediolateral separation between populations of labeled cells was consistent with primary afferent projections and the location of reflex encoders. This topographical segregation corresponding to different afferent inputs is a possible anatomical substrate for a modular organization of the flexion withdrawal reflex system.
Collapse
Affiliation(s)
- K J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden Building, Room 114, 10900 Euclid Avenue, Cleveland, OH 44106-7207, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK. Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 2006; 48:901-11. [PMID: 16364895 DOI: 10.1016/j.neuron.2005.11.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 08/22/2005] [Accepted: 11/04/2005] [Indexed: 11/27/2022]
Abstract
Over the last two centuries, electrical microstimulation has been used to demonstrate causal links between neural activity and specific behaviors and cognitive functions. However, to establish these links it is imperative to characterize the cortical activity patterns that are elicited by stimulation locally around the electrode and in other functionally connected areas. We have developed a technique to record brain activity using the blood oxygen level dependent (BOLD) signal while applying electrical microstimulation to the primate brain. We find that the spread of activity around the electrode tip in macaque area V1 was larger than expected from calculations based on passive spread of current and therefore may reflect functional spread by way of horizontal connections. Consistent with this functional transynaptic spread we also obtained activation in expected projection sites in extrastriate visual areas, demonstrating the utility of our technique in uncovering in vivo functional connectivity maps.
Collapse
Affiliation(s)
- Andreas S Tolias
- Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Grill WM, Simmons AM, Cooper SE, Miocinovic S, Montgomery EB, Baker KB, Rezai AR. Temporal excitation properties of paresthesias evoked by thalamic microstimulation. Clin Neurophysiol 2005; 116:1227-34. [PMID: 15826866 DOI: 10.1016/j.clinph.2004.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/20/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The neuronal elements mediating the effects of deep brain stimulation (DBS) are unknown. The objective was to determine the strength-duration properties of the neuronal elements that mediate paresthesias evoked by thalamic microstimulation. METHODS The strength-duration properties of the neuronal elements causing paresthesias were measured using intraoperative microstimulation of the human thalamus. The sample included both concordant (reported in the same region as the mapped sensory receptive fields) and discordant paresthesias (reported in a region different than the mapped sensory receptive fields). RESULTS There were no significant differences between the chronaxies of concordant and discordant paresthesias. There was no significant correlation between chronaxie and rheobase for concordant paresthesias, but a strong negative correlation existed for discordant paresthesias. CONCLUSIONS Chronaxies did not distinguish the neuronal elements mediating concordant and discordant paresthesias, but correlations between chronaxie and rheobase suggest that concordant paresthesias were produced by activation of local cells while discordant paresthesias were caused by activation of axons of passage. SIGNIFICANCE The similarity between the strength-duration properties of paresthesias evoked by thalamic stimulation, tremor reduction evoked by thalamic DBS, and EMG responses to thalamic DBS does not mean that these effects are caused by the same neural elements.
Collapse
Affiliation(s)
- Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nakamura S, Atsuta Y. Effect of sodium channel blocker (mexiletine) on pathological ectopic firing pattern in a rat chronic constriction nerve injury model. J Orthop Sci 2005; 10:315-20. [PMID: 15928896 DOI: 10.1007/s00776-005-0892-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 02/14/2005] [Indexed: 11/26/2022]
Abstract
We studied the efficacy of mexiletine as a sodium channel blocker for neuropathic pain by investigating the effect of mexiletine on the pathological ectopic firing pattern in a chronic constriction nerve injury (CCI) model. The experiment was conducted with 60 male Wistar rats. The CCI model was created by loosely ligating the sciatic nerve. After breeding 7 days, the frequency and pattern of ectopic firing antidromically recorded from the sural nerve and the amplitude of antidromic sensory nerve-evoked potential were analyzed. The CCI rats were given an intravenous injection of normal saline and mexiletine (5 or 15 mg/kg). Mexiletine significantly suppressed spontaneous firing frequency, an on-off firing pattern that consisted of cyclic bursting spikes and ectopic firing generation under the hypoxic condition. Mexiletine did not influence the amplitude of A-delta component in the antidromic sensory nerve-evoked potential. Mexiletine suppressed ectopic firing by blocking activity of the abnormal sodium channel at the nerve-injured site and dorsal root ganglion without blocking nerve conduction. This study suggests that mexiletine is useful for treating neuropathic pain in peripheral neuropathy.
Collapse
Affiliation(s)
- Satoru Nakamura
- Department of Orthopedic Surgery, Asahikawa Medical College, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | | |
Collapse
|
45
|
Ward AR, Robertson VJ, Ioannou H. The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current. Med Eng Phys 2005; 26:569-79. [PMID: 15271284 DOI: 10.1016/j.medengphy.2004.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 03/11/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
We investigated the frequency and duty cycle dependence of maximal electrically induced torque (MEIT) of the wrist extensors. Fifty hertz burst modulated sinusoidal alternating current (AC) in the frequency range 0.5-20 kHz was used, with duty cycles ranging from a minimum (one cycle) to maximum (continuous AC). MEITs were similar at low frequencies but decreased markedly above 2.5 kHz. MEITs also decreased markedly above a 20% duty cycle. Subjective reports of discomfort were fewest at 4 kHz and at duty cycles in the range 20-25%. Our conclusion is that for maximum torque production, a frequency of 1 kHz and a duty cycle of 20% are indicated. When comfort is a major consideration, a frequency of 2.5 kHz provides an acceptable trade-off between MEIT and comfort. The findings also suggest that low duty cycle, burst modulated AC stimulation may be more effective than stimulation using conventional low-frequency pulsed current.
Collapse
Affiliation(s)
- Alex R Ward
- Department of Human Physiology and Anatomy, School of Human Biosciences, La Trobe University, Bundoora, Melbourne, Vic. 3086, Australia
| | | | | |
Collapse
|
46
|
Tehovnik EJ, Slocum WM, Carvey CE, Schiller PH. Phosphene Induction and the Generation of Saccadic Eye Movements by Striate Cortex. J Neurophysiol 2005; 93:1-19. [PMID: 15371496 DOI: 10.1152/jn.00736.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to critically examine phosphene induction and saccadic eye movement generation by electrical microstimulation of striate cortex (area V1) in humans and monkeys. The following issues are addressed: 1) Properties of electrical stimulation as they pertain to the activation of V1 elements; 2) the induction of phosphenes in sighted and blind human subjects elicited by electrical stimulation using various stimulation parameters and electrode types; 3) the induction of phosphenes with electrical microstimulation of V1 in monkeys; 4) the generation of saccadic eye movements with electrical microstimulation of V1 in monkeys; and 5) the tasks involved for the development of a cortical visual prosthesis for the blind. In this review it is concluded that electrical microstimulation of area V1 in trained monkeys can be used to accelerate the development of an effective prosthetic device for the blind.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts, Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
47
|
Lao L, Marvizón JCG. GABAA receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord. Neuroscience 2005; 130:1013-27. [PMID: 15652997 DOI: 10.1016/j.neuroscience.2004.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2004] [Indexed: 11/29/2022]
Abstract
Our goal was to test the following hypotheses: 1) GABA(A) receptors facilitate neurokinin release from primary afferent terminals; 2) they do this by suppressing an inhibitory effect of GABA(B) receptors; 3) the activation of these two receptors is controlled by the firing frequency of primary afferents. We evoked neurokinin release by stimulating the dorsal root attached to spinal cord slices, and measured it using neurokinin 1 receptor (NK1R) internalization. Internalization evoked by root stimulation at 1 Hz (but not at 100 Hz) was increased by the GABA(A) receptor agonists muscimol (effective concentration of drug for 50% of the increase [EC50] 3 microM) and isoguvacine (EC50 4.5 microM). Internalization evoked by root stimulation at 100 Hz was inhibited by the GABA(A) receptor antagonists bicuculline (effective concentration of drug for 50% of the inhibition [IC50] 2 microM) and picrotoxin (IC50 243 nM). Internalization evoked by incubating the root with capsaicin (to selectively recruit nociceptive fibers) was increased by isoguvacine and abolished by picrotoxin. Therefore, GABA(A) receptors facilitate neurokinin release. Isoguvacine-facilitated neurokinin release was inhibited by picrotoxin, low Cl-, low Ca2+, Ca2+ channel blockers and N-methyl-D-aspartate receptor antagonists. Bumetanide, an inhibitor of the Na(+)-K(+)-2Cl- cotransporter, inhibited isoguvacine-facilitated neurokinin release, but this could be attributed to a direct inhibition of GABA(A) receptors. The GABA(B) agonist baclofen inhibited NK1R internalization evoked by 100 Hz root stimulation (IC50 1.5 microM), whereas the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid (CGP-55845) increased NK1R internalization evoked by 1 Hz root stimulation (EC50 21 nM). Importantly, baclofen inhibited isoguvacine-facilitated neurokinin release, and CGP-55845 reversed the inhibition of neurokinin release by bicuculline. In conclusion, 1) GABA(B) receptors located presynaptically in primary afferent terminals inhibit neurokinin release; 2) GABA(A) receptors located in GABAergic interneurons facilitate neurokinin release by suppressing GABA release onto these GABA(B) receptors; 3) high frequency firing of C-fibers stimulates neurokinin release by activating GABA(A) receptors and inhibiting GABA(B) receptors, whereas low frequency firing inhibits neurokinin release by the converse mechanisms.
Collapse
Affiliation(s)
- L Lao
- Center for Neurovisceral Sciences and Women's Health, CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
48
|
Miocinovic S, Grill WM. Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation. J Neurosci Methods 2004; 132:91-9. [PMID: 14687678 DOI: 10.1016/j.jneumeth.2003.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Measurements of the chronaxies and refractory periods with extracellular stimuli have been used to conclude that large diameter axons are responsible for the effects of deep brain stimulation (DBS). We hypothesized that because action potential initiation by extracellular stimulation occurs in the axons of central nervous system (CNS) neurons, the chronaxies and refractory periods determined using extracellular stimulation would be similar for cells and axons. Computer simulation was used to determine the sensitivity of chronaxie and refractory period to the neural element stimulated. The results demonstrate that chronaxies and refractory periods were dependent on the polarity of the extracellular stimulus and the electrode-to-neuron distance, and indicate that there is little systematic difference in either chronaxies or refractory periods between local cells or axons of passage with extracellular stimulation. This finding points out the difficulty in drawing conclusions regarding which neuronal elements are activated based on extracellular measurements of temporal excitation properties.
Collapse
Affiliation(s)
- Svjetlana Miocinovic
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden Building, Cleveland, OH 44106-4912, USA
| | | |
Collapse
|
49
|
Marvizon JCG, Wang X, Lao LJ, Song B. Effect of peptidases on the ability of exogenous and endogenous neurokinins to produce neurokinin 1 receptor internalization in the rat spinal cord. Br J Pharmacol 2003; 140:1389-98. [PMID: 14623771 PMCID: PMC1574162 DOI: 10.1038/sj.bjp.0705578] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration-response curves for substance P and neurokinin A were obtained in the presence and absence of 10 microm thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 microm captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nm, and the EC50 of neurokinin A from 170 to 60 nm. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nm). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nm substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency.
Collapse
Affiliation(s)
- Juan Carlos G Marvizon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
50
|
Dorsal horn neurons firing at high frequency, but not primary afferents, release opioid peptides that produce micro-opioid receptor internalization in the rat spinal cord. J Neurosci 2003. [PMID: 14534251 DOI: 10.1523/jneurosci.23-27-09171.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To determine what neural pathways trigger opioid release in the dorsal horn, we stimulated the dorsal root, the dorsal horn, or the dorsolateral funiculus (DLF) in spinal cord slices while superfusing them with peptidase inhibitors to prevent opioid degradation. Internalization of mu-opioid receptors (MOR) and neurokinin 1 receptors (NK1R) was measured to assess opioid and neurokinin release, respectively. Dorsal root stimulation at low, high, or mixed frequencies produced abundant NK1R internalization but no MOR internalization, indicating that primary afferents do not release opioids. Moreover, capsaicin and NMDA also failed to produce MOR internalization. In contrast, dorsal horn stimulation elicited MOR internalization that increased with the frequency, being negligible at <10 Hz and maximal at 500 Hz. The internalization was abolished by the MOR antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), in the presence of low Ca2+ and by the Na+ channel blocker lidocaine, confirming that it was caused by opioid release and neuronal firing. DLF stimulation in "oblique" slices (encompassing the DLF and the dorsal horn of T11-L4) produced MOR internalization, but only in areas near the stimulation site. Moreover, cutting oblique slices across the dorsal horn (but not across the DLF) eliminated MOR internalization in areas distal to the cut, indicating that it was produced by signals traveling in the dorsal horn and not via the DLF. These findings demonstrate that some dorsal horn neurons release opioids when they fire at high frequencies, perhaps by integrating signals from the rostral ventromedial medulla, primary afferents, and other areas of the spinal cord.
Collapse
|