1
|
Abstract
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the "crossed phrenic phenomenon", wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury.
Collapse
|
2
|
Spontaneous Functional Recovery in a Paralyzed Hemidiaphragm Following Upper Cervical Spinal Cord Injury in Adult Rats. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300404] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have shown that latent respiratory pathways can be activated by as phyxia or systemic theophylline administration to restore function to a hemidiaphragm paralyzed by C2 spinal cord hemisection in adult female rats. Based on this premise, electrophysiologic recording techniques were employed in the present investigation to first determine qualitatively whether latent respiratory pathways are activated spon taneously following prolonged post hemisection periods (4-16 weeks) without any therapeutic intervention. Our second objective in a separate group of hemisected an imals was to quantitate any documented functional recovery under the following stan dardized recording conditions: bilateral vagotomy, paralysis with pancuronium bro mide, artificial ventilation, and constant PCO2(maintained at 25 mmHg).
Collapse
|
3
|
Ferguson GT, Khanchandani N, Lattin CD, Goshgarian HG. Clinical Effects of Theophylline on Inspiratory Muscle Drive in Tetraplegia. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Theophylline has been shown to restore diaphragmatic function in animals following cervical spinal cord hemisection, which induces hemidiaphragm paralysis. Although theophylline had been used clinically in the treatment of various pulmonary diseases, its effects on respiratory muscle function in cervical spinal cord injured tetraplegics has not been studied. In the present case study, we evaluated a patient injured in 1979 with a chronic asymmetric C5-7 tetraplegia (left C5-6, right C6-7) before and after receiving theophylline chronically by mouth for three weeks and again before and after receiving acute intravenous (IV) aminophylline after the effects of the chronic drug administration wore off. Neural activation to inspiratory muscles was assessed by right and left parasternal intercostal and diaphragm EMGs during quiet breathing and max imal inspiratory efforts. Global respiratory drive was assessed by P100, and inspiratory muscle force was assessed by maximal inspiratory pressures and vital capacity. Both long-term orally administered and acute IV theophylline increased neural activation to the diaphragm, especially on the more affected left side. Theophylline treatment was also associated with an increase in global central respiratory drive and inspiratory muscle force, without changing expiratory airflows. Left diaphragm EMG activity was markedly increased following the administration of theophylline. Of interest, upper parasternal intercostal EMG activity was also recruited on the left in spite of being below the level of cervical injury. We speculate that the administration of theophylline in selected patients with an asymmetric cervical spinal cord injury may activate la tent bulbospinal respiratory pathways and improve inspiratory muscle function, re ducing the likelihood of associated respiratory failure.
Collapse
|
4
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Cough following low thoracic hemisection in the cat. Exp Neurol 2010; 222:165-70. [PMID: 20043908 DOI: 10.1016/j.expneurol.2009.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 01/15/2023]
Abstract
A function of the abdominal expiratory muscles is the generation of cough, a critical respiratory defense mechanism that is often disrupted following spinal cord injury. We assessed the effects of a lateral T9/10 hemisection on cough production at 4, 13 and 21 weeks post-injury in cats receiving extensive locomotor training. The magnitudes of esophageal pressure as well as of bilateral rectus abdominis electromyogram activity during cough were not significantly different from pre-injury values at all time points evaluated. The results show that despite considerable interruption of the descending pre-motor drive from the brainstem to the expiratory motoneuron pools, the cough motor system shows a significant function by 4 weeks following incomplete thoracic injury.
Collapse
|
6
|
Goshgarian HG. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir Physiol Neurobiol 2009; 169:85-93. [PMID: 19539790 DOI: 10.1016/j.resp.2009.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 06/09/2009] [Indexed: 11/27/2022]
Abstract
This review will focus on neural plasticity and recovery of respiratory function after spinal cord injury and feature the "crossed phrenic phenomenon" (CPP) as a model for demonstrating such plasticity and recovery. A very brief summary of the earlier literature on the CPP will be followed by a more detailed review of the more recent studies. Two aspects of plasticity associated with the CPP that have been introduced in the literature recently have been spontaneous recovery of ipsilateral hemidiaphragmatic function following chronic spinal cord injury and drug-induced persistent recovery of the ipsilateral hemidiaphragm lasting long after animals have been weaned from drug treatment. The underlying mechanisms for this plasticity and resultant recovery will be discussed in this review. Moreover, two new models involving the CPP have been introduced: a mouse model which now provides for an opportunity to study CPP plasticity at a molecular level using a genetic approach and light-stimulated induction of the CPP accomplished by transfecting mammalian cells with channelrhodopsin. Both models provide an opportunity to sort out the intracellular signaling cascades that may be involved in motor recovery in the respiratory system after spinal cord injury. Finally, the review will examine developmental plasticity of the CPP and discuss how the expression of the CPP changes in neonatal rats as they mature to adults. Understanding the underlying mechanisms behind the spontaneous expression of the crossed phrenic pathway either in the developing animal or after chronic spinal cord injury in the adult animal may provide clues to initiating respiratory recovery sooner to alleviate human suffering and eventually eliminate the leading cause of death in human cases of spinal cord injury.
Collapse
Affiliation(s)
- Harry G Goshgarian
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
7
|
Huang Y, Goshgarian HG. Postnatal conversion of cross phrenic activity from an active to latent state. Exp Neurol 2009; 219:66-73. [PMID: 19416665 DOI: 10.1016/j.expneurol.2009.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 11/28/2022]
Abstract
Spinal cord hemisection rostral to the phrenic nucleus leads to paralysis of the ipsilateral hemidiaphragm and respiratory insufficiency. Recovery of the paralyzed hemidiaphragm may be induced by activating a latent respiratory motor pathway in adult rats. Although the pathway is latent in adults, it may not be latent in neonatal rats as shown by the spontaneous expression of activity over this pathway in an earlier in vitro study. Activity mediated over the latent pathway is known as "crossed phrenic activity". Whether crossed phrenic activity following C2 spinal cord hemisection occurs spontaneously in the neonatal rat in vivo is still unknown. We hypothesized that crossed phrenic activity may be spontaneously expressed in neonates in vivo and may be converted from a spontaneously active state to a latent and nonfunctional state during postnatal development. Thus, a time course study was designed to analyze this activity in rat pups at different ages. The functional status of the ipsilateral and contralateral hemidiaphragms was tested by EMG analysis following hemisection. Crossed phrenic activity was expressed in ventral, lateral, and dorsal parts of the ipsilateral hemidiaphragm in P2 and some P3 and P4 neonatal rats. During postnatal development, the activity was observed only in the ventral area of the ipsilateral hemidiaphragm in P7, P14, P21 and P28 animals. Significant decreases in the extent of ventral crossed phrenic activity were observed from P2 to P28. The pathway generating this activity becomes latent by postnatal day 35. The present results suggest that spontaneous crossed phrenic activity occurs in vivo following C2 hemisection and the activity gradually decreases during the first four postnatal weeks.
Collapse
Affiliation(s)
- Yonglu Huang
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, 540 East Canfield, Detroit, MI 48201, USA
| | | |
Collapse
|
8
|
Alilain WJ, Goshgarian HG. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury. Exp Neurol 2008; 212:348-57. [PMID: 18534577 DOI: 10.1016/j.expneurol.2008.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
High cervical spinal cord hemisection results in paralysis of the ipsilateral hemidiaphragm; however, functional recovery of the paralyzed hemidiaphragm can occur spontaneously. The mechanisms mediating this recovery are unknown. In chronic, experimental contusive spinal cord injury, an upregulation of the NMDA receptor 2A subunit and a downregulation of the AMPA receptor GluR2 subunit have been correlated with improved hind limb motor recovery. Therefore, we hypothesized that NR2A is upregulated, whereas GluR2 is down-regulated following chronic C2 hemisection to initiate synaptic strengthening in respiratory motor pathways. Since NMDA receptor activation can lead to the delivery of AMPA receptor subunits to the post-synaptic membrane, we also hypothesized that there would be an upregulation of the GluR1 AMPA receptor subunit and that activity-regulated cytoskeletal associated protein may mediate the post-synaptic membrane delivery. Female rats were hemisected at C2 and allowed to recover for different time points following hemisection. At these time points, protein levels of NR2A, GluR1, and GluR2 subunits were assessed via Western blot analysis. Western blot analysis revealed that there were increases in NR2A subunit at six and twelve weeks post C2 hemisection. At six, twelve, and sixteen weeks post hemisection, the GluR1 subunit was increased over controls, whereas the GluR2 subunit decreased sixteen weeks post hemisection. Immunocytochemical data qualitatively supported these findings. Results also indicated that activity-regulated cytoskeletal associated protein may be associated with the above changes. These findings suggest a role of NR2A, GluR1, and GluR2 in mediating chronic spontaneous functional recovery of the paralyzed hemidiaphragm following cervical spinal cord hemisection.
Collapse
Affiliation(s)
- Warren J Alilain
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | |
Collapse
|
9
|
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the neural regulation of respiratory function. Exp Neurol 2008; 209:399-406. [PMID: 17603041 DOI: 10.1016/j.expneurol.2007.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 01/05/2023]
Abstract
Injury at any level of the spinal cord can impair respiratory motor function. Indeed, complications associated with respiratory function are the number one cause of mortality in humans following spinal cord injury (SCI) at any level of the cord. This review is aimed at describing the effect of SCI on respiratory function while highlighting the recent advances made by basic science research regarding the neural regulation of respiratory function following injury. Models of SCI that include upper cervical hemisection and contusion injury have been utilized to examine the underlying neural mechanisms of respiratory control following injury. The approaches used to induce motor recovery in the respiratory system are similar to other studies that examine recovery of locomotor function after SCI. These include strategies to initiate regeneration of damaged axons, to reinnervate paralyzed muscles with peripheral nerve grafts, to use spared neural pathways to induce motor function, and finally, to initiate mechanisms of neural plasticity within the spinal cord to increase motoneuron firing. The ultimate goals of this research are to restore motor function to previously paralyzed respiratory muscles and improve ventilation in patients with SCI.
Collapse
Affiliation(s)
- M Beth Zimmer
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
10
|
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med 2007; 203:98-108. [PMID: 17853653 DOI: 10.1016/j.resp.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 02/09/2023] Open
Abstract
Spinal cord injury (SCI) often leads to an impairment of the respiratory system. The more rostral the level of injury, the more likely the injury will affect ventilation. In fact, respiratory insufficiency is the number one cause of mortality and morbidity after SCI. This review highlights the progress that has been made in basic and clinical research, while noting the gaps in our knowledge. Basic research has focused on a hemisection injury model to examine methods aimed at improving respiratory function after SCI, but contusion injury models have also been used. Increasing synaptic plasticity, strengthening spared axonal pathways, and the disinhibition of phrenic motor neurons all result in the activation of a latent respiratory motor pathway that restores function to a previously paralyzed hemidiaphragm in animal models. Human clinical studies have revealed that respiratory function is negatively impacted by SCI. Respiratory muscle training regimens may improve inspiratory function after SCI, but more thorough and carefully designed studies are needed to adequately address this issue. Phrenic nerve and diaphragm pacing are options available to wean patients from standard mechanical ventilation. The techniques aimed at improving respiratory function in humans with SCI have both pros and cons, but having more options available to the clinician allows for more individualized treatment, resulting in better patient care. Despite significant progress in both basic and clinical research, there is still a significant gap in our understanding of the effect of SCI on the respiratory system.
Collapse
Affiliation(s)
- M Beth Zimmer
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
11
|
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med 2007; 30:319-30. [PMID: 17853653 PMCID: PMC2031930 DOI: 10.1080/10790268.2007.11753947] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/05/2007] [Indexed: 10/21/2022] Open
Abstract
Spinal cord injury (SCI) often leads to an impairment of the respiratory system. The more rostral the level of injury, the more likely the injury will affect ventilation. In fact, respiratory insufficiency is the number one cause of mortality and morbidity after SCI. This review highlights the progress that has been made in basic and clinical research, while noting the gaps in our knowledge. Basic research has focused on a hemisection injury model to examine methods aimed at improving respiratory function after SCI, but contusion injury models have also been used. Increasing synaptic plasticity, strengthening spared axonal pathways, and the disinhibition of phrenic motor neurons all result in the activation of a latent respiratory motor pathway that restores function to a previously paralyzed hemidiaphragm in animal models. Human clinical studies have revealed that respiratory function is negatively impacted by SCI. Respiratory muscle training regimens may improve inspiratory function after SCI, but more thorough and carefully designed studies are needed to adequately address this issue. Phrenic nerve and diaphragm pacing are options available to wean patients from standard mechanical ventilation. The techniques aimed at improving respiratory function in humans with SCI have both pros and cons, but having more options available to the clinician allows for more individualized treatment, resulting in better patient care. Despite significant progress in both basic and clinical research, there is still a significant gap in our understanding of the effect of SCI on the respiratory system.
Collapse
Affiliation(s)
- M Beth Zimmer
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
12
|
Petrov T, Kreipke C, Alilain W, Nantwi KD. Differential expression of adenosine A1 and A2A receptors after upper cervical (C2) spinal cord hemisection in adult rats. J Spinal Cord Med 2007; 30:331-7. [PMID: 17853654 PMCID: PMC2031933 DOI: 10.1080/10790268.2007.11753948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated via adenosine receptors to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although spinal phrenic motoneurons immunopositive for adenosine receptors have been demonstrated (C3-C5), it is unclear if adenosine receptor protein levels are altered after C2 hemisection and theophylline administration. OBJECTIVE To assess the effects of C2 spinal cord hemisection and theophylline administration on the expression of adenosine receptor proteins. METHODS Adenosine A1 and A2A receptor protein levels were assessed in adult rats classified as (a) noninjured and theophylline treated, (b) C2 hemisected, (c) C2 hemisected and administered theophylline orally (3x daily) for 3 days only, and (d) C2 hemisected and administered theophylline (3x daily for 3 days) and assessed 12 days after drug administration. Assessment of A1 protein levels was carried out via immunohistochemistry and A2A protein levels by densitometry. RESULTS Adenosine A1 protein levels decreased significantly (both ipsilateral and contralateral to injury) after C2 hemisection; however, the decrease was attenuated in hemisected and theophylline-treated animals. Attenuation in adenosine A1 receptor protein levels persisted when theophylline administration was stopped for 12 days prior to assessment. Adenosine A2A protein levels were unchanged by C2 hemisection; however, theophylline reduced the levels within the phrenic motoneurons. Furthermore, the decrease in A2A levels persisted 12 days after theophylline was withdrawn. CONCLUSION Our findings suggest that theophylline mitigates the effects of C2 hemisection by attenuating the C2 hemisection-induced decrease in A1 protein levels. Furthermore, A2A protein levels are unaltered by C2 hemisection but decrease after continuous or interrupted theophylline administration. The effects on protein levels may underlie the stimulant actions of theophylline.
Collapse
Affiliation(s)
- Theodor Petrov
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Christian Kreipke
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Warren Alilain
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Kwaku D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
- Please address correspondence to Kwaku D. Nantwi, PhD, Wayne State University, Department of Anatomy and Cell Biology, 8326 Scott Hall, 540 East Canfield, Detroit, MI 48202; phone: 313.577.7925; fax: 313.577.3125 (e-mail: )
| |
Collapse
|
13
|
Alilain WJ, Goshgarian HG. MK-801 upregulates NR2A protein levels and induces functional recovery of the ipsilateral hemidiaphragm following acute C2 hemisection in adult rats. J Spinal Cord Med 2007; 30:346-54. [PMID: 17853656 PMCID: PMC2031932 DOI: 10.1080/10790268.2007.11753950] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND C2 hemisection results in paralysis of the ipsilateral hemidiaphragm. Recent data indicate that an upregulation of the N-methyl-D-aspartate (NMDA) receptor 2A subunit following chronic C2 hemisection is associated with spontaneous hemidiaphragmatic recovery following injury. MK-801, an antagonist of the NMDA receptor, upregulates the NR2A subunit in neonatal rats. HYPOTHESIS We hypothesized that administration of MK-801 to adult, acute C2-hemisected rats would result in an increase of NR2A in the spinal cord. Furthermore, we hypothesized that upregulation of NR2A would be associated with recovery of the ipsilateral hemidiaphragm as in the chronic studies. DESIGN To develop a dose-response curve, adult rats were treated with varying doses of MK-801 and their spinal cords harvested and assessed for NR2A as well as AMPA GluR1 and GluR2 subunit protein levels. In the second part of this study, C2-hemisected animals received MK-801. Following treatment, the animals were assessed for recovery of the hemidiaphragm through electromyographic recordings and their spinal cords assessed for NR2A, GluR1, and GluR2. RESULTS Treatment with MK-801 leads to an increase of the NR2A subunit in the spinal cords of adult noninjured rats. There were no changes in the expression of GluR1 and GluR2 in these animals. Administration of MK-801 to C2-hemisected rats resulted in recovery of the ipsilateral hemidiaphragm, an increase of NR2A, and a decrease of GluR2. CONCLUSION Our findings strengthen the evidence that the NR2A subunit plays a substantial role in mediating recovery of the paralyzed hemidiaphragm following C2 spinal cord hemisection.
Collapse
Affiliation(s)
- Warren J Alilain
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | |
Collapse
|
14
|
Minor KH, Akison LK, Goshgarian HG, Seeds NW. Spinal cord injury-induced plasticity in the mouse--the crossed phrenic phenomenon. Exp Neurol 2006; 200:486-95. [PMID: 16631169 DOI: 10.1016/j.expneurol.2006.02.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/12/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
The crossed phrenic phenomenon (CPP) describes respiratory functional plasticity that arises following spinal cord injury. Cervical spinal cord hemisection rostral to the phrenic nucleus paralyzes the ipsilateral hemidiaphragm by interrupting the descending flow of respiratory impulses from the medulla to phrenic motoneurons in the spinal cord. This loss of activity converts some synapses on phrenic motoneurons from a "functionally ineffective" state pre-hemisection to a "functionally latent" state post-hemisection. If the animal is subjected to respiratory stress by transecting the contralateral phrenic nerve, this latent respiratory pathway is activated and function is restored to the paralyzed hemidiaphragm. The mechanisms underlying this plasticity are not well-defined, particularly at the molecular level. Therefore, we explored whether it was possible to demonstrate the CPP in mice, a species amenable to a molecular genetic approach. We show the CPP qualitatively in mice using electromyographic (EMG) recordings from the diaphragm. Interestingly, our data also suggest that in the mouse latent fibers in the ventral funiculus ipsilateral to an anatomically incomplete hemisection may also play a role in the CPP. In particular, we examined the inter-operative delay time between the spinal cord injury and contralateral phrenicotomy required for a response. As the inter-operative delay was reduced, the proportion of mice displaying the CPP decreased from 95% for overnight animals, 86% in 4-8 h, to 77% for 1-2 h mice, and less than 28% for animals receiving a phrenicotomy under 0.5 h post-spinal cord lesion. This is the first study to demonstrate the CPP in mice.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | |
Collapse
|
15
|
Makii EA, Rodinskii AG. Extrapyramidal descending influences on neurons of the spinal cord in a superreflexia state. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
James E, Nantwi KD. Involvement of peripheral adenosine A2 receptors in adenosine A1 receptor-mediated recovery of respiratory motor function after upper cervical spinal cord hemisection. J Spinal Cord Med 2006; 29:57-66. [PMID: 16572566 PMCID: PMC1864794 DOI: 10.1080/10790268.2006.11753857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection. METHODS Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n=12) or excised (H-CBE; n=12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve. RESULTS Administration of CGS-21680 before DPCPX (n=6) in H-CBI rats induced a significantly greater recovery (58.5 +/- 3.6%) than when DPCPX (42.6 +/- 4.6%) was administered (n=6) alone. In H-CBE rats, prior administration of CGS-21680 (n=6) did not enhance recovery over that induced by DPCPX (n=6) alone. Recovery in H-CBE rats amounted to 39.7 +/- 3.7% and 38.4 + 4.2%, respectively. CONCLUSIONS Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor-mediated recovery of respiratory function after C2 hemisection. We conclude that a novel approach of targeting peripheral and central adenosine receptors can be therapeutically beneficial in alleviating compromised respiratory function after cervical spinal cord injury.
Collapse
Affiliation(s)
- Elysia James
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
| | - Kwaku D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
- Please address correspondence to Kwaku D. Nantwi, PhD, Wayne State University, School of Medicine, Department of Anatomy and Cell Biology, 540 East Canfield Avenue, Detroit, MI 48202; phone: 313.577.7925; fax: 313.577.3125 (e-mail: )
| |
Collapse
|
17
|
Zimmer MB, Goshgarian HG. Spinal activation of serotonin 1A receptors enhances latent respiratory activity after spinal cord injury. J Spinal Cord Med 2006; 29:147-55. [PMID: 16739558 PMCID: PMC1864797 DOI: 10.1080/10790268.2006.11753868] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/25/2005] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE Hemisection of the cervical spinal cord results in paralysis of the ipsilateral hemidiaphragm. Removal of sensory feedback through cervical dorsal rhizotomy activates latent respiratory motor pathways and restores hemidiaphragm function. Because systemic administration of serotonin 1A receptor (5HT1A) agonists reversed the altered breathing patterns after spinal cord injury (SCI), we predicted that 5HT1A receptor activation after SCI (C2) would activate latent crossed motor pathways. Furthermore, because 5HT1 A receptors are heavily localized to dorsal horn neurons, we predicted that spinal administration of 5HT1A agonists should also activate latent motor pathways. METHODS Hemisection of the C2 spinal cord was performed 24 to 48 hours, 1 week, or 16 weeks before experimentation. Bilateral phrenic nerve activity was recorded in anesthetized, vagotomized, paralyzed Sprague-Dawley rats, and 8-OH-DPAT (5HT1A agonist) was applied to the dorsal aspect of the cervical spinal cord (C3-C7) or injected systemically. RESULTS Systemic administration of 8-OH-DPAT led to a significant increase in phrenic frequency and amplitude, whereas direct application to the spinal cord increased phrenic amplitude alone. Both systemic and spinal administration of 8-OH-DPAT consistently activated latent crossed phrenic activity. 8-OH-DPAT induced a greater respiratory response in spinal injured rats compared with controls. CONCLUSION The increase in crossed phrenic output after application of 8-OH-DPAT to the spinal cord suggests that dorsal horn inputs, respiratory and/or nonrespiratory, may inhibit phrenic motor output, especially after SCI. These findings support the idea that the administration of 5HT1A agonists may be a beneficial therapy in enhancing respiratory neural output in patients with SCI.
Collapse
Affiliation(s)
- M Beth Zimmer
- Wayne State University School of Medicine, Department of Anatomy and Cell Biology, 540 East Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
18
|
Zimmer MB, Goshgarian HG. Spontaneous crossed phrenic activity in the neonatal respiratory network. Exp Neurol 2005; 194:530-40. [PMID: 16022876 DOI: 10.1016/j.expneurol.2005.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/16/2022]
Abstract
Hemisection of the cervical spinal cord causes paralysis of the ipsilateral hemidiaphragm in adult rats. Activation of a latent crossed phrenic motor pathway can restore diaphragmatic function, although structural changes take place before the pathway can be activated. Since mechanisms are employed to eliminate non-functional projections during development, we predicted that this latent neural pathway might be active during development. Therefore, we examined the effect of spinal hemisection (C2) on respiratory-like activity bilaterally using the brainstem--spinal cord preparation from neonatal rats (0-4 days). Spontaneous crossed phrenic activity (respiratory-like activity recorded from the ipsilateral C4 or C5 ventral roots following C2 hemisection) was observed in an age-dependent manner; younger preparations exhibited more than older preparations. Increasing drive (increasing [K+] or superfusion of theophylline) either increased or induced crossed phrenic activity. Hemisection caused no change in the frequency, the burst area, duration or peak amplitude contralateral to hemisection. Unlike adult rats, this study shows that crossed phrenic activity is present in the in vitro respiratory network of neonatal rats suggesting that a crossed neural pathway may be functionally active in neonates.
Collapse
Affiliation(s)
- M Beth Zimmer
- Wayne State University, School of Medicine, Department of Anatomy and Cell Biology, 540 East Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
19
|
Bae H, Nantwi KD, Goshgarian H. Effects of carotid body excision on recovery of respiratory function in C2 hemisected adult rats. Exp Neurol 2005; 195:140-7. [PMID: 15919075 DOI: 10.1016/j.expneurol.2005.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/18/2005] [Accepted: 04/18/2005] [Indexed: 11/16/2022]
Abstract
In a previous study, we described the spontaneous recovery of respiratory motor function in adult rats subjected to a left C2 hemisection 6-16 weeks post-injury without any therapeutic intervention. We extend the previous findings by demonstrating in the present study that rats subjected to a left C2 hemisection with bilateral carotid body excision will also recover respiratory-related activity in the paralyzed ipsilateral hemidiaphragm. However, in this instance, recovery is significantly accelerated; i.e., it is evident as early as 2 weeks after spinal cord injury. Two experimental groups (and noninjured and sham-operated controls) of rats were employed in the study. H-CBE animals were subjected to a left C2 hemisection plus bilateral carotid body excision while H-CBI animals were subjected to a left C2 hemisection only. Carotid body excision was confirmed by the sodium cyanide test. The animals were allowed to survive for 2 weeks after hemisection. Thereafter, electrophysiologic assessment of respiratory activity was conducted in all animals. Spontaneous recovery of respiratory-related activity in the paralyzed hemidiaphragm (indicated by left phrenic nerve activity) was detected in all H-CBE animals while H-CBI animals did not express spontaneous recovery of diaphragmatic activity. The magnitude of recovered activity when expressed as a function of contralateral phrenic nerve activity was 48.8 +/- 3.8%. When expressed as a function of the homolateral phrenic nerve in noninjured animals, the magnitude amounted to 25.6 +/- 2.8%. Although the mechanisms responsible for the apparent early onset of spontaneous recovery are unknown, it is likely that a reorganization of the respiratory circuitry in the CNS may be involved. The significance of the findings is that it may be feasible to modulate the onset of functional recovery following cervical spinal cord injury by specifically targeting peripheral chemoreceptors.
Collapse
Affiliation(s)
- Han Bae
- Department of Otolaryngology, Wayne State University, School of Medicine, Detroit, MI 48202, USA
| | | | | |
Collapse
|
20
|
|
21
|
Bae H, Nantwi KD, Goshgarian HG. Recovery of respiratory function following C2 hemi and carotid body denervation in adult rats: influence of peripheral adenosine receptors. Exp Neurol 2005; 191:94-103. [PMID: 15589516 DOI: 10.1016/j.expneurol.2004.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 09/02/2004] [Accepted: 09/20/2004] [Indexed: 11/26/2022]
Abstract
The efficacy of the methylxanthine, theophylline, as a respiratory stimulant has been demonstrated previously in an animal model of spinal cord injury. In this model, an upper cervical (C2) spinal cord hemi paralyzes the ipsilateral hemidiaphragm. Theophylline restores respiratory-related activity in the paralyzed hemidiaphragm via activation of a latent respiratory motor pathway. Antagonism of central adenosine A1 receptors mediates this action. Theophylline also enhances respiratory frequency, f, defined as breaths per minute. Thus, long-term use may result in respiratory muscle or motoneuron fatigue particularly after spinal cord injury. We assessed the effects of an adenosine A1 receptor agonist, N6-p-sulfophenyladenosine (p-SPA) on theophylline's action in our model under standardized recording conditions. Four groups of rats, classified as hemisected/nonhemisected with the carotid bodies denervated (H-CBD or NH-CBD), and hemisected/nonhemisected with the carotid bodies intact (H-CBI or NH-CBI ) were used in the study. Eight days after recovery from carotid denervation, a left C2 hemi was performed in H-CBD rats. C2 hemi was also performed in H-CBI animals, and 24 h later, electrophysiologic experiments on respiratory activity were conducted in both groups of animals. Two groups using nonhemisected controls were also employed as described above. In H-CBD rats, theophylline significantly (P < 0.05) enhanced f and induced respiratory-related activity in the previously quiescent left phrenic nerve. In NH-CBD rats, theophylline significantly enhanced f. In both H-CBD and NH-CBD rats, p-SPA (0.25 mg/kg) did not significantly change theophylline-induced effects. In H-CBI rats, theophylline significantly (P < 0.05) enhanced f and induced activity in the previously quiescent left phrenic nerve. In H-CBI rats, p-SPA reduced the values to pre-theophylline discharge levels. Recovered activity was not obliterated with the agonist. In NH-CBI rats, p-SPA reduced theophylline-induced effects to pre-drug discharge levels. Adenosine A1 and A2A receptor immunoreactivity was detected in the carotid bodies. The significance of our findings is that theophylline-induced effects can be normalized to pre-drug levels by the selective activation of peripheral adenosine A1 receptors. The therapeutic benefits of theophylline, i.e., recovered respiratory function after paralysis, however, persists. The potential therapeutic impact is that respiratory muscle fatigue associated with long-term theophylline use may be minimized by a novel therapeutic approach.
Collapse
Affiliation(s)
- Han Bae
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | | | | |
Collapse
|
22
|
Fujiki M, Kobayashi H, Inoue R, Ishii K. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials. Exp Neurol 2004; 187:468-77. [PMID: 15144873 DOI: 10.1016/j.expneurol.2004.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/02/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The present study evaluates motor functional recovery after C2 spinal cord hemisection with or without contralateral brachial root transection, which causes a condition that is similar to the crossed phrenic phenomenon on rats. Descending motor pathways, including the reticulospinal extrapyramidal tract and corticospinal pyramidal tracts, were evaluated by transcranial magnetic motor-evoked potentials (mMEPs) and direct cortical electrical motor-evoked potentials (eMEP), respectively. All MEPs recorded from the left forelimb were abolished immediately after the left C2 hemisection. Left mMEPs recovered dramatically immediately after contralateral right brachial root transection. Corticospinal eMEPs never recovered, regardless of transection. The facilitation of mMEPs in animals that had undergone combined contralateral root transection was well correlated with open-field behavioral motor performance. Both electrophysiological and neurological facilitations were significantly attenuated by the selective serotonin synthesis inhibitor para-chlorophenylalanine (p-CPA). These results suggest that serotonergic reticulospinal fibers located contralateral to hemisection contribute to the behavioral and electrophysiological improvement that immediately follows spinal cord injury (SCI).
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Japan.
| | | | | | | |
Collapse
|
23
|
Goshgarian HG. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol (1985) 2003; 94:795-810. [PMID: 12531916 DOI: 10.1152/japplphysiol.00847.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemisection of the cervical spinal cord rostral to the level of the phrenic nucleus interrupts descending bulbospinal respiratory pathways, which results in a paralysis of the ipsilateral hemidiaphragm. In several mammalian species, functional recovery of the paretic hemidiaphragm can be achieved by transecting the contralateral phrenic nerve. The recovery of the paralyzed hemidiaphragm has been termed the "crossed phrenic phenomenon." The physiological basis for the crossed phrenic phenomenon is as follows: asphyxia induced by spinal hemisection and contralateral phrenicotomy increases central respiratory drive, which activates a latent crossed respiratory pathway. The uninjured, initially latent pathway mediates the hemidiaphragm recovery by descending into the spinal cord contralateral to the hemisection and then crossing the midline of the spinal cord before terminating on phrenic motoneurons ipsilateral and caudal to the hemisection. The purpose of this study is to review work conducted on the crossed phrenic phenomenon and to review closely related studies focusing particularly on the plasticity associated with the response. Because the review deals with recovery of respiratory muscles paralyzed by spinal cord injury, the clinical relevance of the reviewed studies is highlighted.
Collapse
Affiliation(s)
- Harry G Goshgarian
- Department of Anatomy/Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
24
|
Abstract
Although recent evidence demonstrates considerable neuroplasticity in the respiratory control system, a comprehensive conceptual framework is lacking. Our goals in this review are to define plasticity (and related neural properties) as it pertains to respiratory control and to discuss potential sites, mechanisms, and known categories of respiratory plasticity. Respiratory plasticity is defined as a persistent change in the neural control system based on prior experience. Plasticity may involve structural and/or functional alterations (most commonly both) and can arise from multiple cellular/synaptic mechanisms at different sites in the respiratory control system. Respiratory neuroplasticity is critically dependent on the establishment of necessary preconditions, the stimulus paradigm, the balance between opposing modulatory systems, age, gender, and genetics. Respiratory plasticity can be induced by hypoxia, hypercapnia, exercise, injury, stress, and pharmacological interventions or conditioning and occurs during development as well as in adults. Developmental plasticity is induced by experiences (e.g., altered respiratory gases) during sensitive developmental periods, thereby altering mature respiratory control. The same experience later in life has little or no effect. In adults, neuromodulation plays a prominent role in several forms of respiratory plasticity. For example, serotonergic modulation is thought to initiate and/or maintain respiratory plasticity following intermittent hypoxia, repeated hypercapnic exercise, spinal sensory denervation, spinal cord injury, and at least some conditioned reflexes. Considerable work is necessary before we fully appreciate the biological significance of respiratory plasticity, its underlying cellular/molecular and network mechanisms, and the potential to harness respiratory plasticity as a therapeutic tool.
Collapse
Affiliation(s)
- Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
25
|
Nantwi KD, Goshgarian HG. Actions of specific adenosine receptor A1 and A2 agonists and antagonists in recovery of phrenic motor output following upper cervical spinal cord injury in adult rats. Clin Exp Pharmacol Physiol 2002; 29:915-23. [PMID: 12207572 DOI: 10.1046/j.1440-1681.2002.03750.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Previous studies from our laboratory have established that a latent respiratory motor pathway can be activated to restore function to a hemidiaphragm paralysed by upper cervical (C2) spinal cord hemisection during a reflex known as the 'crossed phrenic phenomenon'. In addition, theophylline, a general adenosine A1 and A2 receptor antagonist, can activate the latent pathway by acting centrally through antagonism at adenosine receptors. 2. The present study was designed to assess the relative contributions of adenosine A1 and A2 receptors in inducing functional recovery in our model of spinal cord injury. Specific adenosine A1 and A2 agonists and antagonists were used in an electrophysiological study. 3. Our results demonstrate that, in hemisected rats, systemic administration of the adenosine A1 receptor-specific antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) restores, in a dose-dependent manner, phrenic nerve respiratory related output that is lost following hemisection. Furthermore, DPCPX augments respiratory activity in non-injured animals. The A2 receptor agonist CGS-21680 mediates its effects by predominantly acting on peripheral rather than central nervous system (CNS) receptors. CGS-21680 modulates respiratory related phrenic nerve activity in non-injured animals by enhancing tonic activity, but does not induce recovery of phrenic nerve activity in hemisected animals in the majority of cases. When CGS-21680 was administered prior to DPCPX in hemisected rats, the magnitude of recovery of respiratory function was significantly greater than that elicited by DPCPX alone. However, when the A2 receptor agonist was administered after DPCPX, the magnitude of recovery was virtually unchanged, whereas activity in the right phrenic nerve was significantly enhanced. The A1 receptor agonist N6-cyclohexyladenosine depressed respiratory activity in non-injured, as well as hemisected, rats. The A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine did not affect respiratory activity. 4. We conclude that while antagonism at central adenosine A1 receptors mediates functional restitution in hemisected animals, activation of A2 receptors located outside of the CNS subserves the A1 receptor-mediated respiratory recovery.
Collapse
Affiliation(s)
- K D Nantwi
- Wayne State University, School of Medicine, Department of Anatomy and Cell Biology, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
26
|
Calancie B, Molano MR, Broton JG. Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain 2002; 125:1150-61. [PMID: 11960903 DOI: 10.1093/brain/awf114] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Persons with long-standing injury to the cervical spinal cord resulting in complete or partial paralysis typically develop a wide spectrum of involuntary movements in muscles receiving innervation caudal to the level of injury. We have previously shown that these movements include brief and discrete contraction of muscles in the hand and forearm in response to innocuous sensory stimulation to the feet and legs, but we have been unable to replicate these interlimb reflexes in able- bodied subjects. Properties of these muscle responses indicate that the synaptic contacts between ascending sensory fibres and motor neurones of the cervical enlargement are more efficacious than normal. If these connections are present at all times, and require the more rostrally-placed spinal cord injury to allow their emergence, one might expect their appearance relatively soon following injury, as has been shown for studies of 'latent' synapses. Conversely, delayed appearance of these interlimb reflexes would suggest either the development of new synaptic connections or a profound strengthening of existing circuits in the cervical spinal cord due to a combination of afferent target loss and motor neurone denervation from motor tracts originating rostral to the injury site. In this study, we used repeated examinations of persons with acute injury to the cervical spinal cord to examine the time post-injury at which interlimb reflexes are first seen. Using tibial nerve stimulation at the knee as a screening test, a total of 24 subjects were found to develop interlimb reflexes following spinal cord injury. Latencies between stimulation and EMG were as brief as 32 ms for muscles of the forearm and 44 ms for muscles in the hand. These minimal delays all but rule out a supraspinal route for these interlimb reflexes. Interlimb reflexes first became evident no sooner than approximately 6 months following injury, and in some individuals were not seen until well over 1 year post-injury. Enhanced lower limb segmental excitability had emerged in nearly all of these subjects weeks or months prior to the first appearance of interlimb reflexes, arguing against a manifestation of traditional post-traumatic spasticity as a basis for this activity. This prolonged delay between time of injury and emergence of interlimb reflex activity lends support to the hypothesis that this activity represents an example of plasticity-and perhaps 'regenerative sprouting'-in the human spinal cord following traumatic injury.
Collapse
Affiliation(s)
- Blair Calancie
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
27
|
Zhou SY, Basura GJ, Goshgarian HG. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats. J Appl Physiol (1985) 2001; 91:2665-73. [PMID: 11717232 DOI: 10.1152/jappl.2001.91.6.2665] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.
Collapse
Affiliation(s)
- S Y Zhou
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | | | |
Collapse
|
28
|
Zhou SY, Castro-Moure F, Goshgarian HG. Activation of a latent respiratory motor pathway by stimulation of neurons in the medullary chemoreceptor area of the rat. Exp Neurol 2001; 171:176-84. [PMID: 11520132 DOI: 10.1006/exnr.2001.7740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that during respiratory stress (hypercapnia and hypoxia), a latent crossed respiratory pathway can be activated to produce hemidiaphragm recovery following an ipsilateral C2 spinal cord hemisection. The present study investigates the effects of ventral medullary chemoreceptor area stimulation by microinjection of (1S,3R)-aminocyclopentanedicarboxylic acid (ACPD), a glutamate metabotropic receptor agonist, on activating the latent pathway following left C2 spinal cord hemisection in rats in which end-tidal CO2 was maintained at a constant level. Experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats in which phrenic nerve activity was recorded bilaterally. Before drug injection, the phrenic nerve contralateral to hemisection showed vigorous respiratory-related activity, but the phrenic nerve ipsilateral to hemisection showed no discernible respiratory-related activity. ACPD (1-100 nl, 1 mM) was injected directly into the region of the retrotrapezoid nucleus (RTN), a known medullary chemoreceptor area. Microinjection of ACPD into the right RTN increased respiratory-related activity in the right phrenic nerve (contralateral to hemisection). ACPD (>5 nl, 1 mM) microinjection also significantly induced respiratory recovery in the phrenic nerve ipsilateral to hemisection in a dose-dependent manner. The present study indicates that respiratory recovery can be achieved by stimulation of respiratory circuitry without increasing CO2 levels.
Collapse
Affiliation(s)
- S Y Zhou
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Basura GJ, Zhou SY, Walker PD, Goshgarian HG. Distribution of Serotonin 2A and 2C Receptor mRNA Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection. Exp Neurol 2001; 169:255-63. [PMID: 11358440 DOI: 10.1006/exnr.2001.7682] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Female
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Phrenic Nerve/metabolism
- Phrenic Nerve/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Reference Values
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Transcription, Genetic
Collapse
Affiliation(s)
- G J Basura
- Department of Anatomy and Cell Biology, The Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Over the course of the past 24 years, the Paralyzed Veterans of America's Spinal Cord Research Foundation (SCRF) has provided support for more than 400 research grants in a wide range of areas, from improved wheelchair design to axon pathfinding in Drosophila. The Founders of SCRF, as well as its current trustees, believe that it is imperative to target a broad range of research areas to maximize the quality of life for people, both veterans and nonveterans, with paralysis. This approach has involved the support of basic science and clinical research directed towards repair of the spinal cord, as well as research into improved treatments for complications of spinal cord dysfunction and other projects, including engineering grants and conferences, that may enhance the quality of life for people with paralysis within the immediate future.
Collapse
Affiliation(s)
- M S Kelley
- Research and Education Program, Paralyzed Veterans of America, Washington, DC 20006, USA
| |
Collapse
|
31
|
Nantwi KD, Goshgarian HG. Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats. Exp Neurol 2001; 168:123-34. [PMID: 11170727 DOI: 10.1006/exnr.2000.7581] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous investigations from our laboratory have demonstrated qualitatively that a latent respiratory pathway can be activated by systemic theophylline administration to restore function to a hemidiaphragm paralyzed by an upper (C2) cervical spinal cord hemisection in adult rats. The present study seeks to extend the previous investigations by contrasting and quantitating the actions of theophylline, 8-phenyltheophylline, enprofylline, and 8(p-Sulfophenyl)theophylline in restoring function 24 h after hemidiaphragm paralysis. The alkylxanthines were selected based on their diverse pharmacologic profiles to elucidate the mechanisms that underlie functional recovery after spinal cord injury. To quantitatively assess the magnitude of recovery, electrophysiological experiments were conducted on pancuronium-paralyzed, hemisected animals under standardized recording conditions. The total absence of respiratory-related activity in the phrenic nerve ipsilateral to the hemisection and paralyzed hemidiaphragm was used as the index of a functionally complete hemisection. Thereafter, drug-induced recovered activity in the phrenic nerve ipsilateral to hemisection was quantified and expressed either as a percentage of contralateral phrenic nerve activity in the same animal prior to drug administration or as a percentage of predrug activity in the homolateral nerve in noninjured animals. With either approach, theophylline (5-15 mg/kg) and 8-phenyltheophylline (5-10 mg/kg) dose-dependently induced respiratory-related recovered activity. Enprofylline, a potent bronchodilator, and 8(p-Sulfophenyl)theophylline, an adenosine receptor antagonist with limited access to the central nervous system, were ineffective. Maximal recovery was attained with theophylline (15 mg/kg) and 8-phenyltheophylline (10 mg/kg). At these doses, theophylline and 8-phenyltheophylline induced recovery that was 70.0 +/- 2.5 and 69.3 +/- 4.1% of predrug contralateral nerve activity respectively. When expressed as a percentage of activity in the homolateral nerve in noninjured animals, the magnitude changed to 32.9 +/- 4.9 and 35.7 +/- 6.9%, respectively. Involvement of adenosine receptors in the alkylxanthine-induced actions was confirmed in experiments with the adenosine analog, N6 (l-2-phenylisopropyl) adenosine (L-PIA). It is concluded that central adenosine receptor-mediated mechanisms are implicated in the recovery of respiratory-related activity after spinal cord injury. Furthermore, our results suggest a potential for a new therapeutic approach in the rehabilitation of spinal cord patients with respiratory deficits.
Collapse
Affiliation(s)
- K D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | |
Collapse
|
32
|
Abstract
Cerebral ischemia studies demonstrating that stimulation of adenosine A1 receptors by either endogenously released adenosine or the administration of selective receptor agonists causes significant reductions in the morbidity and mortality associated with focal or global brain ischemias have triggered interest in the potential of purinergic therapies for the treatment of traumatic injuries to the brain and spinal cord. Preliminary findings indicate that activation of A1 adenosine receptors can ameliorate trauma-induced death of central neurons. Other avenues of approach include the administration of agents which elevate local concentrations of adenosine at injury sites by inhibiting its metabolism to inosine by adenosine deaminase, rephosphorylation to adenosine triphosphate by adenosine kinase; or re-uptake into adjacent cells. Amplification of the levels of endogenously released adenosine in such a 'site and event specific' fashion has the advantage of largely restricting the effect of such inhibitors to areas of injury-induced adenosine release. Another approach involving purinergic therapy has been applied to the problem of respiratory paralysis following high spinal cord injuries. In this instance, the adenosine antagonist theophylline has been used to enhance residual synaptic drive to spinal respiratory neurons by blocking adenosine A1 receptors. Theophylline induced, and maintained, hemidiaphragmatic recovery for prolonged periods after C2 spinal cord hemisection in rats and may prove to be beneficial in assisting respiration in spinal cord injury patients.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
33
|
Hadley SD, Walker PD, Goshgarian HG. Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:479-88. [PMID: 10619565 DOI: 10.1006/exnr.1999.7240] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study assesses the effects of para-chlorophenylalanine (p-CPA), a serotonin-depleting drug, on the recovery of respiratory-related activity in the phrenic nerve induced by asphyxia 4 h following ipsilateral C2 hemisection in young adult rats. HPLC analysis was used to quantify levels of serotonin (5-HT), dopamine (DA), norepinephrine, and the 5-HT metabolite, 5-hydroxyindoleacetic acid, in the C4 segment of the spinal cord, all of which were significantly lower in p-CPA-treated hemisected rats compared to hemisected controls receiving saline. Hemisection alone was found to significantly increase 5-HT levels and significantly decrease DA levels compared to normal controls. Eight of eight saline-injected rats expressed recovery of respiratory-related activity in the ipsilateral phrenic nerve during asphyxia 4 h following hemisection, while only 4/8 rats in the p-CPA-treated group expressed recovery in the ipsilateral nerve. Quantification of integrated phrenic nerve wave-forms indicated that the mean amplitude of respiratory-related activity in the ipsilateral phrenic nerve was significantly lower in p-CPA-treated rats than in saline controls. In addition, saline controls demonstrated significant increases in mean respiratory frequency and mean amplitude of contralateral phrenic nerve activity during asphyxia, compared to normocapnia. However, p-CPA-treated rats did not express significant differences in either mean respiratory frequency or mean amplitude of integrated respiratory wave-forms during asphyxia, compared to normocapnia. The results suggest that p-CPA treatment attenuates the recovery of respiratory-related activity in the phrenic nerve 4 h following ipsilateral C2 hemisection and attenuates asphyxia-induced increases in respiratory frequency and respiratory burst amplitude recorded from the contralateral phrenic nerve.
Collapse
Affiliation(s)
- S D Hadley
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
34
|
Hadley SD, Walker PD, Goshgarian HG. Effects of serotonin inhibition on neuronal and astrocyte plasticity in the phrenic nucleus 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:433-45. [PMID: 10619560 DOI: 10.1006/exnr.1999.7238] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C2 spinal cord hemisection results in synaptic and astroglial changes in the phrenic nucleus which have been associated with the recovery of the ipsilateral hemidiaphragm during expression of the crossed phrenic phenomenon. As part of our ongoing analysis of the neurotransmitters involved, the present study investigated the effects of systemic administration of para-chlorophenylalanine (p-CPA), a serotonin (5-HT) synthesis inhibitor, on plasticity in the rat phrenic nucleus 4 h following C2 hemisection. Hemisected control rats demonstrated typical morphological changes in the ipsilateral phrenic nucleus including: (1) an increased number and length of synaptic active zones and (2) an increased number and length of dendrodendritic membrane appositions. p-CPA treatment 3 days prior to hemisection reduced 5-HT levels and resulted in an attenuation of these changes in the ipsilateral phrenic nucleus 4 h following hemisection compared to hemisected controls. In addition, p-CPA treatment attenuated injury-induced alterations in immunohistochemical staining of glial fibrillary acidic protein (GFAP), although Western blot analysis demonstrated that overall levels of GFAP did not differ significantly between groups. The results suggest that inhibition of 5-HT synthesis by p-CPA attenuates hemisection-induced plasticity in the phrenic nucleus 4 h following an ipsilateral C2 hemisection.
Collapse
Affiliation(s)
- S D Hadley
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
35
|
Zhou SY, Goshgarian HG. Effects of serotonin on crossed phrenic nerve activity in cervical spinal cord hemisected rats. Exp Neurol 1999; 160:446-53. [PMID: 10619561 DOI: 10.1006/exnr.1999.7213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigates the effect of 5-hydroxytryptophan (5-HTP), a serotonin precursor, on crossed phrenic nerve activity (CPNA) in rats subjected to a left C2 spinal cord hemisection. Electrophysiological experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats to assess phrenic nerve activity. The left phrenic nerve lost rhythmic activity due to the disruption of the bulbospinal respiratory pathways following spinal cord hemisection. Activity was induced in the left phrenic nerve (CPNA) by temporary asphyxia. 5-HTP administration increased CPNA during asphyxia in the left phrenic nerve in a dose-dependent fashion. Specifically, in a group of eight animals, application of 5-HTP at 0.5, 1.0, and 2.0 mg/kg significantly increased CPNA by 102.2+/-18.5%, 200.8+/-58.1%, and 615.0+/-356.9% compared with predrug control values, respectively. 5-HTP-induced increases in CPNA were reversed by methysergide (2-6 mg/kg, i.v.), a serotonin receptor antagonist. The results suggest that serotonin is involved in the modulation of crossed phrenic nerve activity following spinal cord injury.
Collapse
Affiliation(s)
- S Y Zhou
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
36
|
El-Bohy AA, Goshgarian HG. The use of single phrenic axon recordings to assess diaphragm recovery after cervical spinal cord injury. Exp Neurol 1999; 156:172-9. [PMID: 10192788 DOI: 10.1006/exnr.1999.7013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophysiological recordings taken from the whole phrenic nerve have been utilized previously to describe the gradual increase in functional recovery of a hemidiaphragm paralyzed by ipsilateral C2 hemisection during the crossed phrenic phenomenon (CPP). Although the increase in activity has been temporally correlated with hemisection-induced morphological alterations of the phrenic nucleus, suggesting an association of the increased activity with the morphological alterations, whole phrenic nerve recordings during the CPP can provide only limited information. The purpose of the present study, therefore, was to use phrenic single-axon recording techniques to better understand the mechanisms underlying the recovery of respiratory activity during the expression of the CPP. Recordings from the whole phrenic nerve on the right side and from small fascicles of the phrenic nerve that show only the activity of single phrenic axons (units) on the left side were made in the neck before left spinal hemisection and during the CPP. The results indicated that there were two types of units firing before and during the CPP: an early- and a late-firing unit based on the time of their firing onset in relation to whole phrenic nerve activity. Ten early units and 25 late units were identified according to the shape of their spikes before hemisection as well as during the CPP. In addition to these units, 20 new units were recruited during CPP activity. These new units were mainly of the late-onset type. The results also indicated that there was a significant increase in the frequency of firing of both early and late units. The results specifically indicate therefore that the increase in respiratory activity recorded previously in the whole phrenic nerve during the CPP is most likely due to: (i) an increase in firing frequency for both early- and late-firing units and (ii) a recruitment of predominantly late-firing units into the CPP response. These results are important in understanding more completely the mechanisms that can facilitate recovery of the diaphragm after spinal cord injury.
Collapse
Affiliation(s)
- A A El-Bohy
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
37
|
Nantwi KD, Goshgarian HG. Theophylline-induced recovery in a hemidiaphragm paralyzed by hemisection in rats: contribution of adenosine receptors. Neuropharmacology 1998; 37:113-21. [PMID: 9680264 DOI: 10.1016/s0028-3908(97)00190-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previously, we demonstrated that a single intravenous injection of theophylline can induce recovery in a hemidiaphragm paralyzed by cervical (C2) spinal cord hemisection for up to 3 h. The present study contrasts the actions of enprofylline and theophylline on inducing hemidiaphragmatic recovery after cervical spinal cord hemisection. Both drugs are methylxanthines; however, theophylline is an adenosine receptor antagonist while enprofylline is not. To further test the involvement of adenosine receptors, N6 (L-2-phenylisopropyl) adenosine (L-PIA), an analogue of adenosine was used in conjunction with theophylline. Following a left C2 spinal cord hemisection, animals were injected with either enprofylline (2.5-20 mg/kg) or theophylline (15 mg/kg) alone or in combination. Theophylline-injected animals demonstrated robust respiratory-related activity in the previously quiescent left phrenic nerve and hemidiaphragm. No recovery was observed in any of the enprofylline-injected rats. When enprofylline injection was followed later with theophylline, recovery occurred. Prior L-PIA administration blocked theophylline-induced recovery. When given after theophylline, L-PIA attenuated and then blocked the induced activity in both the nerve and hemidiaphragm ipsilateral to spinal cord hemisection. We conclude that adenosine receptor antagonism is implicated in hemidiaphragmatic recovery after hemisection and theophylline may be useful in the treatment of spinal cord injured patients with respiratory deficits.
Collapse
Affiliation(s)
- K D Nantwi
- Wayne State University, School of Medicine, Department of Anatomy and Cell Biology, Detroit, MI 48201, USA
| | | |
Collapse
|
38
|
Nantwi KD, Goshgarian HG. Effects of chronic systemic theophylline injections on recovery of hemidiaphragmatic function after cervical spinal cord injury in adult rats. Brain Res 1998; 789:126-9. [PMID: 9602093 DOI: 10.1016/s0006-8993(98)00024-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Based on a previous demonstration that acutely administered theophylline induces respiratory-related recovery in an animal model of spinal cord injury, the influence of chronically administered theophylline on maintaining recovery was assessed. The absence of respiratory-related activity in the left phrenic nerve and hemidiaphragm of rats subjected to an ipsilateral C2 spinal cord hemisection was confirmed electrophysiologically 24 h after injury. Theophylline was then injected i.p. for 3-30 consecutive days. Recovery of respiratory-related activity was observed in the majority (29 out of 32) of the experimental animals. We conclude that theophylline not only induces, but also maintains recovery for prolonged periods after cervical spinal cord injury.
Collapse
Affiliation(s)
- K D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
39
|
Zhang Z, Guth L, Steward O. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury. Exp Neurol 1998; 149:221-9. [PMID: 9454631 DOI: 10.1006/exnr.1997.6717] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. INTERPRETATION AND CONCLUSION (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
Collapse
Affiliation(s)
- Z Zhang
- Department of Neuroscience and Neurosurgery, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
40
|
Okuda B. Early morphological changes in the thalamocortical projection onto the parietal cortex following ablation of the motor cortex in the cat. Brain Res Bull 1997; 44:281-7. [PMID: 9323443 DOI: 10.1016/s0361-9230(97)00137-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following a previous report that the cerebellar-induced cerebral response in the parietal cortex changes acutely after ablation of the frontal motor cortex, the present experiments tested whether morphological changes of the thalamo-parietal projection occur after ablation of the motor cortex. Anterograde and retrograde tracing with wheat germ agglutinin conjugated with horseradish peroxidase was used in intact and lesioned cats. The thalamocortical projection was labeled anterogradely by tracer injection into the thalamic ventral anterior and ventral lateral (VA-VL) nuclear complex that mainly relays the cerebello-cerebral projection, and thalamic neurons were labeled retrogradely by injection of the tracer into the parietal cortex. The labeled terminals in the parietal cortex of the intact animals were distributed densely in layer I and sparsely in layers III-IV, whereas those of the lesioned animals were distributed densely in layers I and III-IV. The distribution of the retrogradely labeled neurons after multiple tracer injections in layers III-IV of the parietal cortex was different in the intact and lesioned cats. In the intact animals, the labeled neurons were distributed sparsely in the central lateral nucleus and in the lateral posterior and pulvinar nuclear complex. In contrast, after ablation of the frontal cortex, the labeled neurons were also observed in the VA-VL nuclear complex. These differences between the intact and lesioned animals were detectable within 48 h after the lesion.
Collapse
Affiliation(s)
- B Okuda
- Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
41
|
Tai Q, Palazzolo KL, Goshgarian HG. Synaptic plasticity of 5-hydroxytryptamine-immunoreactive terminals in the phrenic nucleus following spinal cord injury: A quantitative electron microscopic analysis. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971006)386:4<613::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Castro-Moure F, Goshgarian HG. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive. Exp Neurol 1997; 147:299-310. [PMID: 9344555 DOI: 10.1006/exnr.1997.6615] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological plasticity occurs in the phrenic nucleus within hours following an ipsilateral C2 spinal cord hemisection. The plasticity has been associated with the unmasking of a latent respiratory pathway (the crossed phrenic pathway) which allows recovery of the hemidiaphragm paralyzed by the hemisection during a reflex known as the crossed phrenic phenomenon. This study tests if the plasticity is induced by the generalized effects of spinal cord trauma or the more specific effect of interrupting the main descending respiratory drive to phrenic motoneurons. Electron microscopic quantitative morphometric analysis of the phrenic nucleus neuropil was carried out on four Sprague-Dawley rats (200-250 g) sacrificed 4 h following unilateral reversible cold block of the descending bulbospinal respiratory drive at the second cervical segment of the spinal cord (C2). The data from four sham-operated control animals were compared with those of the experimental group. The following morphological alterations were documented in cold block animals compared to controls: (1) a significant increase in the number of multiple synapses (i.e., terminals with synaptic active zones contacting two or more postsynaptic profiles in the same plane of section), (2) a significant increase in the number of dendrodendritic appositions, and (3) a significant increase in the length of symmetric and asymmetric synaptic active zones. The above changes are similar to the changes induced in the phrenic nucleus following C2 hemisection. We conclude therefore, that injury to the spinal cord is not a requirement for this type of morphological plasticity in the phrenic nucleus, but rather the induced changes are activity-dependent and are likely caused by the interruption of the descending bulbospinal respiratory drive to the phrenic nucleus.
Collapse
Affiliation(s)
- F Castro-Moure
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
43
|
Muir GD, Steeves JD. Sensorimotor stimulation to improve locomotor recovery after spinal cord injury. Trends Neurosci 1997; 20:72-7. [PMID: 9023875 DOI: 10.1016/s0166-2236(96)10068-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Functional recovery after CNS injury may depend, in part, upon reorganization of undamaged neural pathways. Spinal cord circuits are capable of significant reorganization, in the form of both activity-dependent and injury-induced plasticity. This plasticity is manifest behaviourally in the ability of spinal animals to learn new locomotor tasks. Recent work with spinal-injured humans demonstrates that training can improve functional locomotor abilities. New methodologies to enhance limb movement are designed to exploit further the plastic capabilities of the spinal cord by reinforcing appropriate connections in an activity-dependent manner. In the future, these methods might also prove useful in guiding and strengthening functional synaptogenesis of regenerating axons to maximize their contribution towards restoration of function.
Collapse
Affiliation(s)
- G D Muir
- Dept of Veterinary Physiological Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
44
|
Tai Q, Goshgarian HG. Ultrastructural quantitative analysis of glutamatergic and GABAergic synaptic terminals in the phrenic nucleus after spinal cord injury. J Comp Neurol 1996; 372:343-55. [PMID: 8873865 DOI: 10.1002/(sici)1096-9861(19960826)372:3<343::aid-cne2>3.0.co;2-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Quantitative analysis of electron microscopic postembedding immunochemically stained material indicates that 48% of all terminals in the rat phrenic nucleus are glutamatergic and 33% are gamma-aminobutyric acid (GABA)ergic. Three distinct types of glutamatergic terminals were observed in the rat phrenic nucleus: terminals characterized by large, loosely arranged spherical synaptic vesicles (SI) or small, compact spherical synaptic vesicles (Ss) and elongated terminals containing spherical synaptic vesicles with neurofilaments (NFs). All three types of glutamatergic terminals display asymmetrical synaptic membrane densities with postsynaptic dense bodies being present in some of the S-type terminals. The GABAergic immunoreactive terminals in the phrenic nucleus most closely resemble F-type terminals. They are characterized by flattened or pleomorphic synaptic vesicles and symmetric synaptic membrane densities. Among the 48% glutamatergic terminals, 27% are SI, 65% are Ss, and 8% are NFs, respectively. Significantly fewer glutamate, GABA, and unlabeled terminals per unit area are present in the phrenic nucleus 30 days after a C2 spinal cord hemisection as compared to nonhemisected controls. The average number of active zones per terminal, however, is greater in the hemisection group (1.45 +/- 0.03) than in the control group (1.34 +/- 0.03), with the active zones in the glutamate terminals mainly accounting for this difference. Moreover, the length of the active zones in the glutamate terminals was significantly longer in the hemisection group (0.37 +/- 0.013 microns) as compared to the controls (0.24 +/- 0.008 microns). In addition, the mean length of synaptic active zones in GABAergic terminals was also found to be longer in the hemisection group (0.36 +/- 0.022 microns) as compared to controls (0.28 +/- 0.014 microns). Finally, there is also a significantly higher ratio of synaptic active zones to the total number of glutamate-labeled terminals after injury (1.73 +/- 0.08) as compared to controls (1.41 +/- 0.04). The number of double/multiple synapses, the percentages of Sl, Ss, and NFs-type terminals, and the percentages of synaptic active zones contacting either distal dendrites or proximal dendrites/somata do not change significantly 30 days after injury. These results are important for a more complete understanding of the synaptic plasticity that occurs in the phrenic nucleus after spinal cord injury and to show how the plasticity may relate to the unmasking of latent bulbospinal respiratory connections which restore function to the hemidiaphragm paralyzed by an ipsilateral spinal cord hemisection.
Collapse
Affiliation(s)
- Q Tai
- Wayne State University, Department of Anatomy and Cell Biology, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
45
|
Calancie B, Lutton S, Broton JG. Central nervous system plasticity after spinal cord injury in man: interlimb reflexes and the influence of cutaneous stimulation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1996; 101:304-15. [PMID: 8761040 DOI: 10.1016/0924-980x(96)95194-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In persons who have sustained severe injuries to the cervical spinal cord, electrical stimulation of mixed peripheral nerves in a lower limb can evoke short-latency, bilateral motor responses in muscles of the distal upper limbs; such motor responses have been termed interlimb reflexes. In the present study, we investigated the role that cutaneous stimulation plays in evoking interlimb reflexes. Fifteen subjects with chronic injury (> 1 year) to the cervical spinal cord were investigated. Single motor unit activity was recorded from a number of distal upper limb muscles. The lower limb cutaneous area within which stimulation recruited a given motor unit of the upper limb was defined as that motor unit's 'receptive field'. Activity from a total of 48 single motor units was analyzed. The majority of motor units responded to light touch, individual hair movement, and thermal (hot and cold) stimulation. Excitatory responses were observed bilaterally, although contralateral responses predominated. Stimulation occasionally resulted in inhibition of a spontaneously active motor unit. Receptive fields varied a great deal in size, with proximal locations being larger than those encountered in more distal lower limb locations (i.e. the toes). The spinocervical tract is a possible candidate for mediating some portion of these interlimb reflexes, the origin of which may be due to new growth (regenerative sprouting) in the spinal cord caudal to a severe injury.
Collapse
Affiliation(s)
- B Calancie
- Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
46
|
Ling L, Bach KB, Mitchell GS. Phrenic responses to contralateral spinal stimulation in rats: effects of old age or chronic spinal hemisection. Neurosci Lett 1995; 188:25-8. [PMID: 7783972 DOI: 10.1016/0304-3940(95)95690-d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serotonin reveals ineffective spinal pathways from the C2-lateral funiculus to contralateral phrenic motoneurons in young adult rats with acute spinal hemisection. We tested the hypothesis that old age (1.5-2 years) or chronic hemisection (3-5 days) strengthens these pre-existing crossed spinal pathways. There were no consistent differences between young adult rats with acute hemisection versus young adult rats with chronic hemisection or old rat with acute hemisection except that one long-latency phrenic excitation could not be elicited in old rats. The results indicate that neither old age nor chronic hemisection strengthens crossed-spinal pathways, but that old age may selectively diminish spinal pathways involved in the neural control of breathing.
Collapse
Affiliation(s)
- L Ling
- Department of Comparative Biosciences, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
47
|
O'Hara TE, Goshgarian HG. Quantitative assessment of phrenic nerve functional recovery mediated by the crossed phrenic reflex at various time intervals after spinal cord injury. Exp Neurol 1991; 111:244-50. [PMID: 1989900 DOI: 10.1016/0014-4886(91)90012-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study was carried out to determine if augmentation of phrenic nerve activity during the crossed phrenic phenomenon temporally coincides with the morphological changes in the phrenic nucleus that we have observed in previous studies. This investigation consisted of two experiments in spinal cord hemisected young adult female Sprague-Dawley rats. Crossed phrenic activity was quantitatively assessed from the left phrenic nerve after bilateral vagotomy and sectioning of the right phrenic and accessory phrenic nerves. The first experiment involved serial recordings of crossed phrenic activity performed on each of 4 animals at hourly intervals ranging from 1 to 6 h after spinal cord hemisection. The second experiment consisted of single recordings from each of 24 animals at one of the following time intervals after hemisection: 1/2, 1, 2, 4, 12, and 24 h. Recording conditions were standardized at each recording session in both experiments by paralyzing the animals, regulating temperature and blood pressure, and controlling end tidal PCO2 with a volume ventilator. Crossed phrenic activity was induced by stopping the ventilator and quantitated by measuring the area under the integrated waveform of the largest respiratory burst. The results revealed a small, statistically insignificant increase in crossed phrenic activity at 1 h compared to the 30-min recordings. At 2 h there was a large, statistically significant increase in activity. Experiment one showed further increases from 3 to 6 h. The second experiment showed a smaller increase from 2 to 4 h and then maintained this level at 12 and 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T E O'Hara
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
48
|
Goshgarian HG, Ellenberger HH, Feldman JL. Decussation of bulbospinal respiratory axons at the level of the phrenic nuclei in adult rats: a possible substrate for the crossed phrenic phenomenon. Exp Neurol 1991; 111:135-9. [PMID: 1984430 DOI: 10.1016/0014-4886(91)90061-g] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The axonal trajectories of inspiratory bulbospinal neurons were examined after deposition of the anterograde neuronal tracer phaseolus vulgaris leucoagglutinin (PHA-L) into the rostral ventral respiratory group in rats. At the level of the phrenic nucleus, PHA-L-labeled bulbospinal axons crossed the midline of the spinal cord in both the anterior gray and the anterior white commissure. These spinally decussating neurons provide a possible anatomical substrate for the respiratory reflex known as the crossed phrenic phenomenon.
Collapse
Affiliation(s)
- H G Goshgarian
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
49
|
Okuda B, Kawaguchi S, Yamamoto T, Samejima A. Changes in the cerebello-cerebral response in the parietal cortex following ablation of the motor cortex in the cat: early occurrence and persistence. Neurosci Res 1990; 8:1-11. [PMID: 2163044 DOI: 10.1016/0168-0102(90)90051-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To elucidate the compensatory mechanism which begins to work soon after damage to the brain, changes in the cerebellar-induced cerebral cortical response in the parietal association cortex after ablation of the frontal motor cortex were studied in the cat. Stimulation of the interpositus or the lateral nucleus of the cerebellum before decortication, as reported in intact animals, induced two distinct types of response in the frontal motor and parietal association cortices respectively. The response in the frontal cortex was a sequential occurrence of a surface positive-depth negative (sP-dN) wave and a surface negative-depth positive (sN-dP) wave, and the response in the parietal cortex was mainly an sN-dP wave. In a small proportion of animals, the latter wave was preceded by a small sP-dN wave or a small dN wave without an sP wave. Ablation of the frontal motor cortex induced in the majority of animals a marked change in the cerebello-parietal cortical response, i.e. the occurrence of a new sP-dN wave preceding the sN-dP wave or enhancement of the pre-existing small dN wave, resulting in the parietal cortical response similar to the frontal cortical response of intact animals. The earliest post-lesion time observed for the occurrence of change was less than 1 hour, whereas its persistence was confirmed up to 213 days post-lesion.
Collapse
Affiliation(s)
- B Okuda
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
50
|
Effects of tractotomy on reflex activity in the lumbar segment of the rat spinal cord previously disrupted by severing the sciatic nerve. NEUROPHYSIOLOGY+ 1990. [DOI: 10.1007/bf01058227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|