1
|
Delbari A, Tabatabaei F, Ghasemi H, Azimi A, Bidkhori M, Saatchi M, Foroughan M, Hooshmand E. Prevalence and associated factors of mild cognitive impairment among middle-aged and older adults: Results of the first phase of Ardakan Cohort Study on Aging. Health Sci Rep 2024; 7:e1827. [PMID: 38264157 PMCID: PMC10803666 DOI: 10.1002/hsr2.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Background and Aims Data on mild cognitive impairment (MCI) in low- to middle-income countries are still being determined, despite the fact that most future older adults are expected to reside in these regions. This study aimed to investigate the prevalence and associated factors of MCI in Iran. Methods A cross-sectional study was conducted on 4938 community-dwelling subjects aged 50 years or above in the first wave of the Ardakan Cohort Study on Aging. MCI was evaluated using the Mini-Mental State Examination (MMSE) and the Abbreviated Mental Test Score (AMTS) in literate and illiterate individuals. The relationship between factors associated with the odds of MCI was assessed through logistic regression. Results The prevalence of MCI among all participants, the literates and illiterates, was 15.8%, 6.3%, and 36.4%, respectively. It was found that failure to accomplish any of the MMSE or AMTS items was significantly related to MCI (p < 0.001). Age ([odds ratio (OR): 1.05; p < 0.001 in the literates], [OR: 1.06; p < 0.001 in the illiterates]), sex (OR: 0.13; p < 0.001 in the illiterates), history of stroke ([OR: 2.86; p = 0.006 in the literates], [OR: 2.04; p = 0.045 in the illiterates]), and depression ([OR: 1.87; p < 0.001 in the literates], [OR: 1.41; p = 0.008 in the illiterates]) were significantly associated with MCI. Conclusion This study highlights the significant associations between age, education, depression, stroke, and MCI in Iranian participants. These findings emphasize the need for targeted interventions in low-literacy populations, mental health screening, and stroke prevention strategies to mitigate the burden of MCI and enhance cognitive health.
Collapse
Affiliation(s)
- Ahmad Delbari
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Fatemeh‐Sadat Tabatabaei
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Hoomaan Ghasemi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amirali Azimi
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Mohammad Bidkhori
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Mohammad Saatchi
- Department of Biostatistics and EpidemiologyUniversity of Social Welfare and Rehabilitation ScienceTehranIran
- Health in Emergency and Disaster Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Mahshid Foroughan
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Elham Hooshmand
- Iranian Research Center on AgingUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| |
Collapse
|
2
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
4
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. Dopaminergic and cholinergic modulation of the amygdala is altered in female mice with oestrogen receptor β deprivation. Sci Rep 2023; 13:897. [PMID: 36650256 PMCID: PMC9845293 DOI: 10.1038/s41598-023-28069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The amygdala is modulated by dopaminergic and cholinergic neurotransmission, and this modulation is altered in mood disorders. Therefore, this study was designed to evaluate the presence/absence of quantitative alterations in the expression of main dopaminergic and cholinergic markers in the amygdala of mice with oestrogen receptor β (ERβ) knock-out which exhibit increased anxiety, using immunohistochemistry and quantitative methods. Such alterations could either contribute to increased anxiety or be a compensatory mechanism for reducing anxiety. The results show that among dopaminergic markers, the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine D2-like receptor (DA2) is significantly elevated in the amygdala of mice with ERβ deprivation when compared to matched controls, whereas the content of dopamine D1-like receptor (DA1) is not altered by ERβ knock-out. In the case of cholinergic markers, muscarinic acetylcholine type 1 receptor (AChRM1) and alpha-7 nicotinic acetylcholine receptor (AChRα7) display overexpression while the content of acetylcholinesterase (AChE) and vesicular acetylcholine transporter (VAChT) remains unchanged. In conclusion, in the amygdala of ERβ knock-out female the dopaminergic and cholinergic signalling is altered, however, to determine the exact role of ERβ in the anxiety-related behaviour further studies are required.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
5
|
Ovariectomy reduces cholinergic modulation of excitatory synaptic transmission in the rat entorhinal cortex. PLoS One 2022; 17:e0271131. [PMID: 35939438 PMCID: PMC9359571 DOI: 10.1371/journal.pone.0271131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17β-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17β-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 μM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17β-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17β-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.
Collapse
|
6
|
Udeh-Momoh C, Watermeyer T. Female specific risk factors for the development of Alzheimer's disease neuropathology and cognitive impairment: Call for a precision medicine approach. Ageing Res Rev 2021; 71:101459. [PMID: 34508876 DOI: 10.1016/j.arr.2021.101459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) includes a long asymptomatic stage, which precedes the formal diagnosis of dementia. AD biomarker models provide a framework for precision medicine approaches during this stage. However, such approaches have ignored the possible influence of sex on cognition and brain health, despite female sex noted as a major risk factor. Since AD-related changes may emerge in midlife, intervention efforts are being redirected around this period. Midlife coincides with several endocrinological changes, such as the menopausal transition experienced by women. In this narrative review, we discuss evidence for sex-differences in AD neuropathological burden and outline key endocrinological mechanisms for both sexes, focussing on hormonal events throughout the lifespan that may influence female susceptibility to AD neuropathology and dementia onset. We further consider common non-modifiable (genetic) and modifiable (lifestyle and health) risk factors, highlighting possible sex-dependent differential effects for the AD disease course. Finally, we evaluate the studies selected for this review demonstrating sex-differences in cognitive, pathological and health factors, summarising the state of sex differences in AD risk factors. We further provide recommendations for targeted research on female-specific risk factors, to inform personalised strategies for AD-prevention and the promotion of female brain health.
Collapse
|
7
|
Han G, Choi J, Cha SY, Kim BI, Kho HK, Jang MJ, Kim MA, Maeng S, Hong H. Effects of Radix Polygalae on Cognitive Decline and Depression in Estradiol Depletion Mouse Model of Menopause. Curr Issues Mol Biol 2021; 43:1669-1684. [PMID: 34698102 PMCID: PMC8929121 DOI: 10.3390/cimb43030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal syndrome refers to symptoms caused by the gradual decrease in female hormones after mid-40 years. As a target organ of estrogen, decrease in estrogen causes various changes in brain function such as a decrease in choline acetyltransferase and brain-derived neurotrophic factor; thus, postmenopausal women experience cognitive decline and more depressive symptoms than age-matched men. Radix Polygalae has been used for memory boosting and as a mood stabilizer and its components have shown neuroprotective, antidepressant, and stress relief properties. In a mouse model of estrogen depletion induced by 4-vinylcyclohexene diepoxide, Radix Polygalae was orally administered for 3 weeks. In these animals, cognitive and depression-related behaviors and molecular changes related to these behaviors were measured in the prefrontal cortex and hippocampus. Radix Polygalae improved working memory and contextual memory and despair-related behaviors in 4-vinylcyclohexene diepoxide-treated mice without increasing serum estradiol levels in this model. In relation to these behaviors, choline acetyltransferase and brain-derived neurotrophic factor in the prefrontal cortex and hippocampus and bcl-2-associated athanogene expression increased in the hippocampus. These results implicate the possible benefit of Radix Polygalae in use as a supplement of estrogen to prevent conditions such as postmenopausal depression and cognitive decline.
Collapse
Affiliation(s)
- Gaeul Han
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Junhyuk Choi
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Byung Il Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Hee Kyung Kho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Maeng-Jin Jang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Mi Ae Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| | - Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| |
Collapse
|
8
|
Sex-Related Motor Deficits in the Tau-P301L Mouse Model. Biomedicines 2021; 9:biomedicines9091160. [PMID: 34572348 PMCID: PMC8471835 DOI: 10.3390/biomedicines9091160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023] Open
Abstract
The contribution of mouse models for basic and translational research at different levels is important to understand neurodegenerative diseases, including tauopathies, by studying the alterations in the corresponding mouse models in detail. Moreover, several studies demonstrated that pathological as well as behavioral changes are influenced by the sex. For this purpose, we performed an in-depth characterization of the behavioral alterations in the transgenic Tau-P301L mouse model. Sex-matched wild type and homozygous Tau-P301L mice were tested in a battery of behavioral tests at different ages. Tau-P301L male mice showed olfactory and motor deficits as well as increased Tau pathology, which was not observed in Tau-P301L female mice. Both Tau-P301L male and female mice had phenotypic alterations in the SHIRPA test battery and cognitive deficits in the novel object recognition test. This study demonstrated that Tau-P301L mice have phenotypic alterations, which are in line with the histological changes and with a sex-dependent performance in those tests. Summarized, the Tau-P301L mouse model shows phenotypic alterations due to the presence of neurofibrillary tangles in the brain.
Collapse
|
9
|
Baumgartner NE, Black KL, McQuillen SM, Daniel JM. Previous estradiol treatment during midlife maintains transcriptional regulation of memory-related proteins by ERα in the hippocampus in a rat model of menopause. Neurobiol Aging 2021; 105:365-373. [PMID: 34198140 PMCID: PMC8338908 DOI: 10.1016/j.neurobiolaging.2021.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Previous midlife estradiol treatment, like continuous treatment, improves memory and results in lasting increases in hippocampal levels of estrogen receptor (ER) α and ER-dependent transcription in ovariectomized rodents. We hypothesized that previous and continuous midlife estradiol act to specifically increase levels of nuclear ERα, resulting in transcriptional regulation of proteins that mediate estrogen effects on memory. Ovariectomized middle-aged rats received estradiol or vehicle capsule implants. After 40 days, rats initially receiving vehicle received another vehicle capsule (ovariectomized controls). Rats initially receiving estradiol received either another estradiol (continuous estradiol) or a vehicle (previous estradiol) capsule. One month later, hippocampi were dissected and processed. Continuous and previous estradiol increased levels of nuclear, but not membrane or cytosolic ERα and had no effect on Esr1. Continuous and previous estradiol impacted gene expression and/or protein levels of mediators of estrogenic action on memory including ChAT, BDNF, and PSD-95. Findings demonstrate a long-lasting role for hippocampal ERα as a transcriptional regulator of memory following termination of previous estradiol treatment in a rat model of menopause.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA.
| | - Katelyn L Black
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Shannon M McQuillen
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA; Psychology Department, Tulane University, New Orleans, LA
| |
Collapse
|
10
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
11
|
Reuben R, Karkaby L, McNamee C, Phillips NA, Einstein G. Menopause and cognitive complaints: are ovarian hormones linked with subjective cognitive decline? Climacteric 2021; 24:321-332. [PMID: 33719785 DOI: 10.1080/13697137.2021.1892627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Subjective cognitive decline (SCD) and the loss of ovarian hormones after menopause have been independently linked to later-life Alzheimer's disease (AD). The objective of this review was to determine whether menopause and the loss of ovarian hormones contribute to cognitive complaints and SCD in women. This would suggest that SCD at the menopausal transition might be an important marker of eventual cognitive decline and AD. We conducted a literature search using PubMed, PsycINFO and Web of Science in July 2020. All English-language studies assessing SCD and cognitive complaints with respect to menopause and ovarian hormones were included. A total of 19 studies were included. Studies found that cognitive complaints increased across the menopause transition and were associated with reductions in attention, verbal and working memory, and medial temporal lobe volume. Women taking estrogen-decreasing treatments also had increased cognitive complaints and reduced working memory and executive function. The current literature provides impetus for further research on whether menopause and the loss of ovarian hormones are associated with cognitive complaints and SCD. Clinicians may take particular note of cognitive complaints after menopause or ovarian hormone loss, as they might presage future cognitive decline.
Collapse
Affiliation(s)
- R Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - L Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden
| | - C McNamee
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - N A Phillips
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - G Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Kirshner ZZ, Yao JK, Li J, Long T, Nelson D, Gibbs RB. Impact of estrogen receptor agonists and model of menopause on enzymes involved in brain metabolism, acetyl-CoA production and cholinergic function. Life Sci 2020; 256:117975. [PMID: 32565251 PMCID: PMC7448522 DOI: 10.1016/j.lfs.2020.117975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022]
Abstract
Our goal is to understand how loss of circulating estrogens and estrogen replacement affect brain physiology and function, particularly in brain regions involved in cognitive processes. We recently conducted a large metabolomics study characterizing the effects of rodent models of menopause and treatment with estrogen receptor (ER) agonists on neurochemical targets in hippocampus, frontal cortex, and striatum. Here we characterize effects on levels of several key enzymes involved in glucose utilization and energy production, specifically phosphofructokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase. We also evaluated effects on levels of β-actin and α-tubulin, choline acetyltransferase (ChAT) activity, and levels of ATP citrate lyase. All experiments were conducted in young adult rats. Experiment 1 compared the effects of ovariectomy (OVX), a model of surgical menopause, and 4-vinylcyclohexene diepoxide (VCD)-treatments, a model of transitional menopause, with tissues collected at proestrus and at diestrus. Experiment 2 used a separate cohort of rats to evaluate the same targets in OVX and VCD-treated rats treated with estradiol or with selective ER agonists. Differences in the expression of metabolic enzymes between cycling animals and models of surgical and transitional menopause were detected. These differences were model-, region- and time- dependent, and were modulated by selective ER agonists. Collectively, the findings demonstrate that loss of ovarian function and ER agonist treatments have differing effects in OVX vs. VCD-treated rats. Differences may help to explain differences in the effects of estrogen treatments on brain function and cognition in women who have experienced surgical vs. transitional menopause.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Jeffrey K Yao
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Junyi Li
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Tao Long
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Doug Nelson
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Nunes EJ, Rupprecht LE, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 2020; 171:108089. [PMID: 32268153 PMCID: PMC7313677 DOI: 10.1016/j.neuropharm.2020.108089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Acetylcholine is implicated in mood disorders including depression and anxiety. Increased cholinergic tone in humans and rodents produces pro-depressive and anxiogenic-like effects. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate these responses in male rats, as measured by the sucrose preference test (SPT), elevated plus maze (EPM), and the forced swim test (FST). However, these effects have not been examined in females, and the VTA muscarinic receptor subtype(s) mediating the pro-depressive and anxiogenic-like behavioral effects of increased cholinergic tone are unknown. We first examined the behavioral effects of increased VTA cholinergic tone in male and female rats, and then determined whether VTA muscarinic M5 receptors were mediating these effects. VTA infusion of the acetylcholinesterase inhibitor physostigmine (0.5 μg, 1 μg and 2 μg/side) in males and females produced anhedonic-like, anxiogenic, pro-depressive-like responses on the SPT, EPM, and FST. In females, VTA administration of the muscarinic M5 selective negative allosteric modulator VU6000181 (0.68 ng, 2.3 ng, 6.8 ng/side for a 3 μM, 10 μM, 30 μM/side infusion) did not alter SPT, EPM nor FST behavior. However, in males intra-VTA infusion of VU6000181 alone reduced time spent immobile on the FST. Furthermore, co-infusion of VU6000181 with physostigmine, in male and female rats, attenuated the pro-depressive and anxiogenic-like behavioral responses induced by VTA physostigmine alone, in the SPT, EPM, and FST. Together, these data reveal a critical role of VTA M5 receptors in mediating the anhedonic, anxiogenic, and depressive-like behavioral effects of increased cholinergic tone in the VTA.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, 06511, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
14
|
Abstract
This review highlights fifty years of progress in research on estradiol's role in regulating behavior(s). It was initially thought that estradiol was only involved in regulating estrus/menstrual cycles and concomitant sexual behavior, but it is now clear that estradiol also influences the higher order neural function of cognition. We provide a brief overview of estradiol's regulation of memory and some mechanisms which underlie its effects. Given systemically or directly into the hippocampus, to ovariectomized female rodents, estradiol or specific agonists, enhance learning and/or memory in a variety of rodent cognitive tasks. Acute (within minutes) or chronic (days) treatments enhance cognitive functions. Under the same treatment conditions, dendritic spine density on pyramidal neurons in the CA1 area of the hippocampus and medial prefrontal cortex increase which suggests that these changes are an important component of estrogen's ability to impact memory processes. Noradrenergic, dopaminergic and serotoninergic activity are also altered in these areas following estrogen treatments. Memory enhancements and increased spine density by estrogens are not limited to females but are also present in castrate males. In the next fifty years, neuroscientists need to determine how currently described neural changes mediate improved memory, how interactions among areas important for memory promote memory and the potential significance of neurally derived estrogens in normal cognitive processing. Answering these questions may provide significant advances for treatment of dementias as well as age and neuro-degenerative disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
15
|
Kim SS, Hwang KS, Yang JY, Chae JS, Kim GR, Kan H, Jung MH, Lee HY, Song JS, Ahn S, Shin DS, Lee KR, Kim SK, Bae MA. Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. CHEMOSPHERE 2020; 239:124751. [PMID: 31518922 DOI: 10.1016/j.chemosphere.2019.124751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a chemical monomer widely used in the production of hard plastics for food containers and personal items. Through improper industrial control and disposal, BPA has become a pervasive environmental contaminant, and toxicological studies have shown potent xenobiotic endocrine disruptor activity. Prenatal exposure in particular can lead to infertility and nervous system disorders characterized by behavioral aggression, depression, and cognitive impairment, thus necessitating careful hazard assessment. In this study, we evaluated BPA accumulation rate, blood-brain barrier (BBB) permeability, lethality, cardiotoxicity, behavioral effects, and impacts on multiple neurochemical pathways in zebrafish larvae. The bioconcentration factor (BCF) ranged from 1.95 to 10.0, resulting in a high rate of accumulation in the larval body. Also, high BBB permeability allowed BPA to accumulate at similar rates in both zebrafish and adult mouse (blood to brain concentration ratios of 3.2-6.7 and 1.8 to 5.5, respectively). In addition, BPA-exposed zebrafish larvae exhibited developmental deformities, reduced heart rate, and impaired behavioral patterns, including decreased total distance traveled, slower movement velocity, and altered color-preference. These impairments were associated with inhibition of the phenylalanine to dopamine synthesis pathway and an imbalance between excitatory and inhibitory neurotransmitter systems. Our results suggest that behavioral alteration in BPA-exposed zebrafish result from high accumulation and ensuing dysregulation of serotonergic, kynurenergic, dopaminergic, cholinergic, and GABAergic neurotransmitter systems. In conclusion, similarities in toxic responses to mammalian models highlight the utility of the zebrafish larva as a convenient model for screening environmental toxins.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Sil Chae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Geum Ran Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kan
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Myeong Hun Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ha-Yeon Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Sunjoo Ahn
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Kim S, Barad Z, Cheong RY, Ábrahám IM. Sex differences in rapid nonclassical action of 17β-oestradiol on intracellular signalling and oestrogen receptor α expression in basal forebrain cholinergic neurones in mouse. J Neuroendocrinol 2020; 32:e12830. [PMID: 31943420 DOI: 10.1111/jne.12830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Rapid nonclassical effects of 17β-oestradiol (E2 ) on intracellular signalling have been identified in the basal forebrain, although the extent to which these actions may be different in males and females is unknown. Previous work has shown that E2 rapidly phosphorylates cAMP responsive element binding protein (CREB) via ΕRα in female cholinergic neurones. Using this indicator, the present study examined whether nonclassical actions of E2 occur in a sexually dimorphic manner within basal forebrain cholinergic neurones in mice. In addition, we investigated the expression and intracellular distribution of oestrogen receptor (ΕR)α in cholinergic neurones in female and male mice. Animals were gonadectomised and treated 2 weeks later with E2 . The number of CREB-expressing cholinergic neurones was not altered in any of the brain regions after E2 treatment in both males and females. However, E2 treatment rapidly (< 15 minutes) increased (P < 0.05) the number of cholinergic neurones expressing phosphorylated CREB (pCREB) in the substantia innominata and medial septum but not in the striatum in female mice. By contrast, E2 did not change pCREB expression in cholinergic neurones in male mice at any time point (15 minutes, 1 hour, 4 hours), irrespective of the neuroanatomical location. We also observed that, in females, more cholinergic neurones expressed nuclear ΕRα in all regions, whereas males showed more cholinergic neurones with cytoplasmic or both nuclear and cytoplasmic expression of ΕRα. Taken together, these results demonstrate a marked sex difference in the E2 -induced nonclassical effect and intracellular distribution of ΕRα in basal forebrain cholinergic neurones in vivo.
Collapse
Affiliation(s)
- SooHyun Kim
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachel Y Cheong
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - István M Ábrahám
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
Georgakis MK, Beskou-Kontou T, Theodoridis I, Skalkidou A, Petridou ET. Surgical menopause in association with cognitive function and risk of dementia: A systematic review and meta-analysis. Psychoneuroendocrinology 2019; 106:9-19. [PMID: 30928686 DOI: 10.1016/j.psyneuen.2019.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Experimental and epidemiological studies suggest female sex hormones to have long-lasting neuroprotective and anti-ageing properties. Surgically-induced menopause leads to a premature cessation of exposure to female sex hormones and could thus impact late-life cognitive function. Yet, evidence remains controversial. METHODS We systematically reviewed literature for articles investigating the association of surgical menopause (defined as bilateral oophorectomy before the onset of menopause) with risk of dementia, cognitive performance, cognitive decline, and Alzheimer's disease neuropathological indices later in life. We evaluated study quality with the Newcastle-Ottawa scale and performed random-effects meta-analyses. RESULTS We identified 11 eligible studies (N = 18,867). Although surgical menopause at any age was not associated with risk of dementia (4 studies; HR: 1.16, 95%CI: 0.96-1.43), early surgical menopause (≤45 years of age) was associated with a statistically significantly higher risk (2 studies; HR: 1.70, 95%CI: 1.07-2.69). Surgical menopause at any age was associated with faster decline in verbal memory, semantic memory, and processing speed, whereas early surgical menopause was further associated with faster global cognitive decline. No heterogeneity was noted. Among women undergoing surgical menopause, a younger age at surgery was associated with faster decline in global cognition, semantic and episodic memory, worse performance in verbal fluency and executive function, and accumulation of Alzheimer's neuropathology. CONCLUSIONS Current evidence is limited, but suggests surgical menopause induced by bilateral oophorectomy at ≤45 years of age to be associated with higher risk of dementia and cognitive decline. Additional large-scale cohort studies are necessary to replicate these findings.
Collapse
Affiliation(s)
- Marios K Georgakis
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany.
| | - Theano Beskou-Kontou
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Theodoridis
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Song Y, Lu Y, Liang Z, Yang Y, Liu X. Association between rs10046, rs1143704, rs767199, rs727479, rs1065778, rs1062033, rs1008805, and rs700519 polymorphisms in aromatase (CYP19A1) gene and Alzheimer’s disease risk: a systematic review and meta-analysis involving 11,051 subjects. Neurol Sci 2019; 40:2515-2527. [DOI: 10.1007/s10072-019-04003-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
|
19
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
20
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
21
|
Cansino S, Torres-Trejo F, Estrada-Manilla C, Ramírez-Barajas L, Pérez-Loyda M, Nava-Chaparro A, Hernández-Ladrón-deGuevara M, Ruiz-Velasco S. Predictors of Source Memory Success and Failure in Older Adults. Front Aging Neurosci 2019; 11:17. [PMID: 30804777 PMCID: PMC6371062 DOI: 10.3389/fnagi.2019.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 01/17/2023] Open
Abstract
Source memory decline has been identified as one of the types of memory most seriously affected during older age. It refers to our capacity to recollect the contextual information in which our experiences take place. Although most elderly adults will be affected by progressive source memory decline, a subset of individuals will not follow this average pattern; instead, their source memory capabilities will remain functional. Likewise, a minority of individuals will manifest an extreme decay of their source memory abilities. The objective of the present study was to identify among 120 potential predictors that significantly contributed to these two extreme source memory outcomes. Spatial source memory was measured in a sample of 519 healthy individuals between 61 and 80 years old. Individuals who performed below the 20th and above the 80th percentiles in the source memory task were defined as individuals whose episodic memory failed and succeeded, respectively. Logistic models identified five and six significant predictors of source memory success and failure in older age, respectively. High source memory performance was mainly predicted by healthy cardiovascular markers and psychological traits, whereas low source memory performance was primarily predicted by consumption habits and by less engagement in mental activities. The models identified relevant biological and life experiences that underlie these unusual source memory outcomes in older age.
Collapse
Affiliation(s)
- Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Frine Torres-Trejo
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cinthya Estrada-Manilla
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Liuba Ramírez-Barajas
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Miguel Pérez-Loyda
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Aidé Nava-Chaparro
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Silvia Ruiz-Velasco
- Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
22
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
23
|
Hormone Replacement Therapy: Would it be Possible to Replicate a Functional Ovary? Int J Mol Sci 2018; 19:ijms19103160. [PMID: 30322209 PMCID: PMC6214095 DOI: 10.3390/ijms19103160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Throughout history, menopause has been regarded as a transition in a woman’s life. With the increase in life expectancy, women now spend more than a third of their lives in menopause. During these years, women may experience intolerable symptoms both physically and mentally, leading them to seek clinical advice. It is imperative for healthcare providers to improve the quality of life by reducing bothersome menopausal symptoms and preventing disorders such as osteoporosis and atherosclerosis. The current treatment in the form of hormone replacement therapy (HRT) is sometimes inadequate with several limitations and adverse effects. Objective and rationale: The current review aims to discuss the need, efficacy, and limitations of current HRT; the role of other ovarian hormones, and where we stand in comparison with ovary-in situ; and finally, explore towards the preparation of an HRT model by regeneration of ovaries tissues through stem cells which can replicate a functional ovary. Search methods: Four electronic databases (MEDLINE, Embase, Web of Science and CINAHL) were searched from database inception until 26 April 2018, using a combination of relevant controlled vocabulary terms and free-text terms related to ‘menopause’, ‘hormone replacement therapy’, ‘ovary regeneration’, ‘stem cells’ and ‘ovarian transplantation’. Outcomes: We present a synthesis of the existing data on the efficacy and limitations of HRT. HRT is far from adequate in postmenopausal women with symptoms of hormone deprivation as it fails to deliver all hormones secreted by naïve ovarian tissue. Moreover, the pharmacokinetics of synthetic hormones makes them substantially different from natural ones. Not only does the number and type of hormones given in HRT matter, but the route of delivering and their release in circulation are also imperative. The hormones are delivered either orally or topically in a non-physiological uniform manner, which brings along with it several side effects. These identify the need for a hormone delivery system which replicates, integrates and reacts as per the requirement of the female body. Wider implications: The review outlines the strengths and weaknesses of HRT and highlights the potential areas for future research. There is a tremendous potential for research in this field to understand the collective roles of the various ovarian hormones and to devise an auto-regulated hormone delivery system which replicates the normal physiology. Its clinical applications can prove to be transformative for postmenopausal women helping them to lead a healthy and productive life.
Collapse
|
24
|
Sung ES, Kim JH. The influence of ovulation on postural stability (Biodex Balance System) in young female. J Exerc Rehabil 2018; 14:638-642. [PMID: 30276186 PMCID: PMC6165977 DOI: 10.12965/jer.1836266.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/14/2018] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the influence of ovulation (OV) on dynamic balance in young female. Thirty-two eumenorrheic healthy women participated in Biodex Balance System (BBS) test for postural stability and a limit of stability menstrual cycle. BBS was tested in the menses (MS), OV, and luteal phase (LP). The limits of stabilities (total, forward-left, forward-right, backward-left, and backward-right) were significantly higher in the OV (total, 61.44±14.77; forward-left, 67.50± 15.17; forward-right, 69.50±14.43; backward-left, 64.00±20.32; and back-ward-right, 69.06±13.59) than in the MS (total, 55.44±14.63; forward-left, 60.00±15.98; forward-right, 62.17±9.78; backward-left, 57.83±19.09; and backward-right, 57.28±13.73). Furthermore, the LP (65.11±13.79) was a significantly higher limit of stability than MS (57.28±13.73) during back-ward-right. The present study showed that estrogen negatively influences postural stability. The postural sway in limits of stabilities (total, forward-left, forward-right, backward-left, and backward-right) were significantly the greatest in the OV. Since there is a different postural stability between MS, OV, and LP, this should be taken into account when devising training programs to avoid risk factor of fall and joint injury.
Collapse
Affiliation(s)
- Eun-Sook Sung
- Department of Sports Rehabilitation, College of Health Welfare, Woosong University, Daejeon, Korea
| | - Jung-Hyun Kim
- Department of Physical Therapy, College of Health Welfare, Woosong University, Daejeon, Korea
| |
Collapse
|
25
|
Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease. Neurosci Bull 2018; 34:736-746. [PMID: 30099679 DOI: 10.1007/s12264-018-0268-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
Collapse
|
26
|
Paletta P, Sheppard PAS, Matta R, Ervin KSJ, Choleris E. Rapid effects of estrogens on short-term memory: Possible mechanisms. Horm Behav 2018; 104:88-99. [PMID: 29847771 DOI: 10.1016/j.yhbeh.2018.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
27
|
Pereira LM, Guimarães IM, Oliveira VE, Bastos CP, Ribeiro FM, Prado VF, Prado MA, Pereira GS. Estradiol effect on short-term object memory under hypocholinergic condition. Brain Res Bull 2018; 140:411-417. [DOI: 10.1016/j.brainresbull.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
|
28
|
Li J, Rao D, Gibbs RB. Effects of Cholinergic Lesions and Cholinesterase Inhibitors on Aromatase and Estrogen Receptor Expression in Different Regions of the Rat Brain. Neuroscience 2018; 384:203-213. [PMID: 29852246 DOI: 10.1016/j.neuroscience.2018.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
Abstract
Cholinergic projections have been shown to interact with estrogens in ways that influence synaptic plasticity and cognitive performance. The mechanisms are not well understood. The goal of this study was to investigate whether cholinergic projections influence brain estrogen production by affecting aromatase (ARO), or influence estrogen signaling by affecting estrogen receptor expression. In the first experiment, ovariectomized rats received intraseptal injection of the selective immunotoxin 192IgG-saporin to destroy cholinergic inputs to the hippocampus. In the second experiment ovariectomized rats received daily intraperitoneal injections of the cholinesterase inhibitors donepezil or galantamine for 1 week. ARO activity and relative levels of ARO, ERα, ERß, and GPR30 mRNAs were quantified in the hippocampus, frontal cortex, amygdala and preoptic area. Results show that the cholinergic lesions effectively removed cholinergic inputs to the hippocampus, but had no significant effect on ARO or on relative levels of ER mRNAs. Likewise, injections of the cholinesterase inhibitors had no effect on ARO or ER expression in most regions of the brain. This suggests that effects of cholinergic inputs on synaptic plasticity and neuronal function are not mediated by effects on local estrogen production or ER expression. One exception was the amygdala where treating with galantamine was associated with a significant increase in ARO activity. The amygdala is a key structure involved in registering fear and anxiety. Hence this finding may be clinically relevant to elderly patients who are treated for memory impairment and who also struggle with fear and anxiety disorders.
Collapse
Affiliation(s)
- Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Di Rao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Navarro-Pardo E, Holland CA, Cano A. Sex Hormones and Healthy Psychological Aging in Women. Front Aging Neurosci 2018; 9:439. [PMID: 29375366 PMCID: PMC5767260 DOI: 10.3389/fnagi.2017.00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/19/2017] [Indexed: 01/13/2023] Open
Abstract
Besides their key role in reproduction, estrogens have effects in several organs in the body, as confirmed by the identification of estrogen receptors (ER) in multiple tissues. Experimental evidence has shown that estrogens have significant impacts on the central nervous system (CNS), and a key question is to what extent the fall in estrogen levels in the blood that occurs with increasing age, particularly around and following the menopause, has an impact on the cognitive function and psychological health of women, specifically regarding mood. This review will consider direct effects of menopausal changes in estrogens on the brain, including cognitive function and mood. Secondary pathways whereby health factors affected by changes in estrogens may interact with CNS functions, such as cardiovascular factors, will be reviewed as well insofar as they also have an impact on cognitive function. Finally, because decline in estrogens may induce changes in the CNS, there is interest in clarifying whether hormone therapy may offer a beneficial balance and the impact of hormone therapy on cognition will also be considered.
Collapse
Affiliation(s)
- Esperanza Navarro-Pardo
- Department of Developmental and Educational Psychology, Universitat de Valencia, Valencia, Spain
| | - Carol A Holland
- Division of Health Research, Centre for Ageing Research, Lancaster University, Lancaster, United Kingdom
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
30
|
Schupf N, Lee JH, Pang D, Zigman WB, Tycko B, Krinsky-McHale S, Silverman W. Epidemiology of estrogen and dementia in women with Down syndrome. Free Radic Biol Med 2018; 114:62-68. [PMID: 28843780 PMCID: PMC5748249 DOI: 10.1016/j.freeradbiomed.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
Several lines of investigation have shown a protective role for estrogen in Alzheimer's disease through a number of biological actions. This review examines studies of the role of estrogen-related factors in age at onset and risk for Alzheimer's disease in women with Down syndrome, a population at high risk for early onset of dementia. The studies are consistent in showing that early age at menopause and that low levels of endogenous bioavailable estradiol in postmenopausal women with Down syndrome are associated with earlier age at onset and overall risk for dementia. Polymorphisms in genes associated with estrogen receptor activity and in genes for estrogen biosynthesis affecting endogenous estrogen are related to age at onset and cumulative incidence of dementia, and may serve as biomarkers of risk. To date, no clinical trials of estrogen or hormone replacement therapy (ERT/HRT) have been published for women with Down syndrome. While findings from clinical trials of ERT or HRT for dementia have generally been negative among women in the neurotypical population, the short interval between menopause and onset of cognitive decline, together with a more positive balance between potential benefits and risks, suggests an opportunity to evaluate the efficacy of ERT/HRT for delaying or preventing dementia in this high risk population, although questions concerning the optimal formulation and timing of the hormone therapy are not yet resolved.
Collapse
Affiliation(s)
- Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; G.H. Sergievsky Center, Columbia University, New York, NY, United States; Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, United States.
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; G.H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, United States
| | - Deborah Pang
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Warren B Zigman
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Benjamin Tycko
- Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Sharon Krinsky-McHale
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: A role of major ovarian hormones. Neuroscience 2017; 356:89-101. [DOI: 10.1016/j.neuroscience.2017.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/23/2022]
|
32
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
33
|
Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol 2016; 94:14-23. [PMID: 27979770 DOI: 10.1016/j.exger.2016.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
34
|
Shua-Haim JR, Ross JS. Current and the near future medications for Alzheimer's disease: What can we expect from them? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153331759901400507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - J. S. Ross
- Outpatient Geriatric Department, Jersey Shore Medical Center, The Medical Center of Ocean County, Meridian Health System, and the Center of Aging at UMDNJ SOM, Stratford, New Jersey
| |
Collapse
|
35
|
Hejazian SH, Karimi S, Hosseini M, Mousavi SM, Soukhtanloo M. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats. Adv Biomed Res 2016; 5:123. [PMID: 27563633 PMCID: PMC4976525 DOI: 10.4103/2277-9175.186981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Regarding the anti-oxidative effects on the central nervous system, the possible protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments was investigated in ovariectomized (OVX) rats. Materials and Methods: The OVX rats treated by (1) vehicle, (2) scopolamine, and (3–4) scopolamine plus estradiol (20 or 20 or 60 μg/kg). Estradiol was administered (20 or 60 μg/kg, intraperitoneally) daily for 6 weeks after ovariectomy. The rats were examined for learning and memory using passive avoidance test. Scopolamine (2 mg/kg) was injected 30 min after training in the test. The brains were then removed to determine malondialdehyde (MDA) and thiol contents. Results: Scopolamine shortened the time latency to enter the dark compartment in (P < 0.01). Compared to scopolamine, pretreatment by both doses of estradiol prolonged the latency to enter the dark compartment (P < 0.01). The brain tissues MDA concentration as an index of lipid peroxidation was decreased (P < 0.05). Pretreatment by estradiol lowered the concentration of MDA, while it increased thiol content compared to scopolamine (P < 0.05 and P < 0.01). Conclusions: These results allow us to suggest a protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in OVX rats.
Collapse
Affiliation(s)
| | - Sareh Karimi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mojtaba Mousavi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Abstract
Common types of dementia occurring in old age are associated with the loss of cholinergic activity from basal forebrain neurons projecting to the cerebral cortex. In Alzheimer's disease this loss correlates with cognitive decline, and in dementia with Lewy bodies with neuropsychiatric features such a hallucinations. New therapies aimed at restoring the levels of acetylcholine, such as the cholinesterase inhibitors tacrine or donepezil, provide some symptomatic benefit and may also be protective. Similar symptomatic and protective effects of oestrogen may operate through stimulation of the affected cholinergic neurons. These neurons have oestrogen receptors and, in animal models, oestrogen elevates cortical cholinergic activity. Cholinergic control of vasodilation is also affected by oestrogen. Declining oestrogen in postmenopausal women is thus likely to contribute to age-related cognitive decline and increased risk of Alzheimer's via cholinergic mechanisms. In addition to accumulating evidence of the protective effect of oestrogen in Alzheimer's, there is already a report that oestrogen replacement therapy enhances the response of female patients to cholinergic medication (eg, tacrine).
Collapse
Affiliation(s)
- Elaine Perry
- MRC Neurochemical Pathology Unit, Newcastle upon Tyne
| |
Collapse
|
37
|
Abstract
The ovarian steroids, estrogen and progesterone, not only govern reproductive events in mammalian females but also influence an array of other processes. Of particular clinical interest is the potential of ovarian steroids to facilitate storage of new memories and to protect neurons from various threats. Research during the past decade confirms that estrogen and progesterone influence the biochemical, electrical, and structural properties of neurons in brain regions that subserve learning and memory. These mechanisms form the biological foundations for the complex effects of ovarian steroids on cognitive functions in various species, including humans. Despite significant progress in our understanding of the roles of hormonal factors in cognitive function and neuronal survival, the value of hormone replacement as a treatment and deterrent for cognitive impairments associated with age, disease, and injury remains uncertain as we enter the new century.
Collapse
Affiliation(s)
- Gary Dohanich
- Department of Psychology, Program in Neuroscience, Tulane University, New Orleans, Louisiana
| |
Collapse
|
38
|
Engler-Chiurazzi EB, Singh M, Simpkins JW. Reprint of: From the 90׳s to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 2016; 1645:79-82. [PMID: 27317847 DOI: 10.1016/j.brainres.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Historical perspective abstract:From the 90׳s to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90׳s, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer׳s Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen׳s neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be among these. ORIGINAL ARTICLE ABSTRACT Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats: We hypothesized that estradiol (E2) serves as a neurotrophomodulatory substance for basal forebrain cholinergic neurons thought to be involved in learning and memory. Learning/memory was assessed using the two-way active avoidance paradigm and the Morris water task. Female Sprague-Dawley rats were either ovariectomized (OVX) or OVX for 3 weeks, followed by s.c. implantation of a Silastic pellet containing 17-βE2 (E2 pellet), resulting in a replacement of E2 to physiological levels. Ovary-intact (INTACT) animals served as our positive control. Active avoidance behavior and choline acetyltransferase (ChAT) activity in the frontal cortex and hippocampus were assessed at 5 and 28 weeks postovariectomy while performance on the Morris water task and high-affinity choline uptake (HACU) were measured only at the 5-week time point. At the 5-week time point, E2 replacement caused a significant elevation in the level of active avoidance performance relative to OVX animals. At the 28-week time point, OVX animals demonstrated a significantly lower number of avoidances relative to controls (61%) whereas E2-pellet animals not only demonstrated superior performance relative to OVX animals but also showed an accelerated rate of learning. Morris water task performance, on the other hand, was not significantly affected by estrogenic milieu despite a trend towards better performance in the E2-pellet group. Neurochemical analyses revealed that 5 weeks of ovariectomy was sufficient to reduce HACU in both the frontal cortex and hippocampus by 24 and 34%, respectively, while E2 replacement was successful in elevating HACU relative to OVX animals in both regions. ChAT activity was decreased in the hippocampus but not the frontal cortex of 5-week OVX animals. E2 replacement resulted in a reversal of this effect. At the 28-week time period, an unexpected decrease in ChAT activity was observed across all treatment groups. Interestingly, E2-pellet animals demonstrated the least severe decline in ChAT. This phenomenon was most evident in the frontal cortex where ChAT decreased by 61 and 56% in INTACT and OVX animals, respectively, whereas the decline in E2-pellet animals was only 16% over the same time period, suggesting a previously unreported cytoprotective effect of E2. Taken together, these findings demonstrate important effects of estrogens on cholinergic neurons and support the potential use of estrogen therapy in treatment of dementias in postmenopausal women. © 1994. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - M Singh
- Department of Pharmacology and Neuroscience, University of North Texas, Fort Worth, TX 76107, USA.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
39
|
Chronic (3-Weeks) Treatment of Estrogen (17β-Estradiol) Enhances Working and Reference Memory in Ovariectomized Rats: Role of Acetylcholine. Neurochem Res 2016; 41:1468-74. [DOI: 10.1007/s11064-016-1858-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/30/2022]
|
40
|
Park YJ, Ahn HY, Kim HR, Chung KH, Oh SM. Ginkgo biloba extract EGb 761-mediated inhibition of aromatase for the treatment of hormone-dependent breast cancer. Food Chem Toxicol 2016; 87:157-65. [DOI: 10.1016/j.fct.2015.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
|
41
|
Engler-Chiurazzi EB, Singh M, Simpkins JW. From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 2015; 1633:96-100. [PMID: 26740397 DOI: 10.1016/j.brainres.2015.12.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Historical perspective abstract:From the 90's to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90's, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer's Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen's neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be among these. ORIGINAL ARTICLE ABSTRACT Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats: We hypothesized that estradiol (E2) serves as a neurotrophomodulatory substance for basal forebrain cholinergic neurons thought to be involved in learning and memory. Learning/memory was assessed using the two-way active avoidance paradigm and the Morris water task. Female Sprague-Dawley rats were either ovariectomized (OVX) or OVX for 3 weeks, followed by s.c. implantation of a Silastic pellet containing 17-βE2 (E2 pellet), resulting in a replacement of E2 to physiological levels. Ovary-intact (INTACT) animals served as our positive control. Active avoidance behavior and choline acetyltransferase (ChAT) activity in the frontal cortex and hippocampus were assessed at 5 and 28 weeks postovariectomy while performance on the Morris water task and high-affinity choline uptake (HACU) were measured only at the 5-week time point. At the 5-week time point, E2 replacement caused a significant elevation in the level of active avoidance performance relative to OVX animals. At the 28-week time point, OVX animals demonstrated a significantly lower number of avoidances relative to controls (61%) whereas E2-pellet animals not only demonstrated superior performance relative to OVX animals but also showed an accelerated rate of learning. Morris water task performance, on the other hand, was not significantly affected by estrogenic milieu despite a trend towards better performance in the E2-pellet group. Neurochemical analyses revealed that 5 weeks of ovariectomy was sufficient to reduce HACU in both the frontal cortex and hippocampus by 24 and 34%, respectively, while E2 replacement was successful in elevating HACU relative to OVX animals in both regions. ChAT activity was decreased in the hippocampus but not the frontal cortex of 5-week OVX animals. E2 replacement resulted in a reversal of this effect. At the 28-week time period, an unexpected decrease in ChAT activity was observed across all treatment groups. Interestingly, E2-pellet animals demonstrated the least severe decline in ChAT. This phenomenon was most evident in the frontal cortex where ChAT decreased by 61 and 56% in INTACT and OVX animals, respectively, whereas the decline in E2-pellet animals was only 16% over the same time period, suggesting a previously unreported cytoprotective effect of E2. Taken together, these findings demonstrate important effects of estrogens on cholinergic neurons and support the potential use of estrogen therapy in treatment of dementias in postmenopausal women. © 1994. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - M Singh
- Department of Pharmacology and Neuroscience, University of North Texas, Fort Worth, TX 76107, USA.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
42
|
Differential role of estrogen receptor modulators in depression-like behavior and memory impairment in rats with postmenopausal diabetes. Menopause 2015; 22:1117-24. [DOI: 10.1097/gme.0000000000000435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Li FD, He F, Chen TR, Xiao YY, Lin ST, Shen W, Wang XY, Zhai YJ, Shang XP, Lin JF. Reproductive History and Risk of Cognitive Impairment in Elderly Women: A Cross-Sectional Study in Eastern China. J Alzheimers Dis 2015; 49:139-47. [DOI: 10.3233/jad-150444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fu-Dong Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ting-Rui Chen
- Cangnan Center for Disease Prevention and Control, Wenzhou, Zhejiang, China
| | - Yuan-Yuan Xiao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Shang-Tong Lin
- Cangnan Center for Disease Prevention and Control, Wenzhou, Zhejiang, China
| | - Wei Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xin-Yi Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yu-Jia Zhai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiao-Peng Shang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jun-Fen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Koebele SV, Bimonte-Nelson HA. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Horm Behav 2015; 74:86-104. [PMID: 26122297 PMCID: PMC4829405 DOI: 10.1016/j.yhbeh.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA.
| |
Collapse
|
45
|
Daniel JM, Witty CF, Rodgers SP. Long-term consequences of estrogens administered in midlife on female cognitive aging. Horm Behav 2015; 74:77-85. [PMID: 25917862 PMCID: PMC4573273 DOI: 10.1016/j.yhbeh.2015.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology, Tulane University New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University New Orleans, LA 70118, USA
| | | |
Collapse
|
46
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
47
|
Tibolone Prevents Oxidation and Ameliorates Cholinergic Deficit Induced by Ozone Exposure in the Male Rat Hippocampus. Neurochem Res 2014; 39:1776-86. [DOI: 10.1007/s11064-014-1385-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
48
|
Gibbs RB, Nelson D, Hammond R. Role of GPR30 in mediating estradiol effects on acetylcholine release in the hippocampus. Horm Behav 2014; 66:339-45. [PMID: 24928571 PMCID: PMC4131743 DOI: 10.1016/j.yhbeh.2014.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 06/03/2014] [Indexed: 01/16/2023]
Abstract
We have hypothesized that estradiol enhances basal forebrain cholinergic function and cognitive performance, at least in part, via activation of the novel estrogen receptor GPR30. Here we evaluated the effects of estradiol, G-1 (a selective GPR30 agonist), and tamoxifen (TAM; an ERα/ERβ antagonist that also acts as a GPR30 agonist), on acetylcholine (ACh) release in the hippocampus, as well as the ability to block the effects of 17β-estradiol (E) or TAM with the GPR30 antagonist G-15. Note that G-1 was included to evaluate the effects of selectively activating GPR30, whereas TAM was included to differentiate effects of E associated with activation of GPR30 vs. ERα or ERβ. The study was designed to test effects on potassium-stimulated release, as well as on ACh release stimulated by feeding. Effects of feeding were included because the tasks we used previously to demonstrate beneficial effects of E on cognitive performance were motivated by food reward, and we hypothesized that E may enhance performance by increasing ACh release in association with that reward. Ovariectomized rats were treated for 1week, and ACh release was evaluated using in vivo microdialysis. In addition, rats were fed at the same time daily for several days and were fasted overnight prior to microdialysis. For each rat, ACh release was evaluated under basal conditions, in response to feeding, and in response to elevated potassium. Both feeding and elevated potassium increased ACh release in the hippocampus. In response to feeding, E, G-1, and TAM all significantly increased the percent change in release. The effects of E and TAM were blocked by G-15, and the effects of combining E+TAM did not differ significantly from the effects of E or TAM alone. In response to elevated potassium, E, and TAM significantly increased the percent change in ACh release. G-1 produced a slightly lesser effect. The effect of TAM was reduced by G-15, but the effect of E was not. These findings suggest that activation of GPR30 is both necessary and sufficient to account for the effects of E on ACh release associated with feeding. In contrast, activation of GPR30 appears to be sufficient, but may not be necessary for increased release associated with elevated potassium. The changes associated with feeding are consistent with the effects of E, G-1 and G-15 on acquisition of a spatial learning task previously described. These data confirm and extend previous reports, and support a hypothesis wherein E treatment can improve learning on specific tasks by activating GPR30 and enhancing ACh release in association with food reward.
Collapse
Affiliation(s)
- R B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - D Nelson
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA
| | - R Hammond
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA
| |
Collapse
|
49
|
Vedder LC, Bredemann TM, McMahon LL. Estradiol replacement extends the window of opportunity for hippocampal function. Neurobiol Aging 2014; 35:2183-92. [PMID: 24813636 DOI: 10.1016/j.neurobiolaging.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/27/2023]
Abstract
We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17β estradiol (E2) increases CA1 spine density, NMDAR to AMPAR ratio, GluN2B-mediated NMDAR current, and long-term potentiation at CA3-CA1 synapses if administered by 15, but not at 19-month post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19-month post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low-level E2 replacement, commenced by 11-month post-OVX using subcutaneous capsules removed 2 weeks before acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19-month post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teruko M Bredemann
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
50
|
Janicki SC, Park N, Cheng R, Clark LN, Lee JH, Schupf N. Estrogen receptor α variants affect age at onset of Alzheimer's disease in a multiethnic female cohort. Dement Geriatr Cogn Disord 2014; 38:200-13. [PMID: 24732579 PMCID: PMC4141004 DOI: 10.1159/000355559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Few studies of gene variants that affect estrogen activity investigate their association with age at onset of Alzheimer's disease (AD) in women of different ethnicities. We examined the influence of ESR1 polymorphisms on age at onset of AD in a multiethnic cohort of women. METHODS Among 1,436 women participating in the Washington Heights Inwood Columbia Aging Project, association with age at AD onset was assessed for 41 single-nucleotide polymorphisms (SNPs) on the ESR1 gene using Cox proportional hazard models, adjusting for presence of an APOE ε4 allele, years of education, and body mass index. RESULTS Six SNPs in self-identified White women were protectively associated with delayed age of AD onset in this self-identified group, including the two restriction fragment length polymorphisms PvuII (rs2234693) and XbaI (rs9340799) (HR range = 0.420-0.483). Two separate SNPs were found to affect age of AD onset in self-identified Black women. CONCLUSIONS ESR1 polymorphisms affect age of onset of AD in women, and risk alleles vary by ethnicity. These effects are possibly due to different linkage disequilibrium patterns or differences in comorbid environmental or cultural risk factors mediating the SNP effect on risk for AD.
Collapse
Affiliation(s)
- S C Janicki
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, N.Y., USA
| | | | | | | | | | | |
Collapse
|