1
|
Oyesola OO, Souza COS, Loke P. The Influence of Genetic and Environmental Factors and Their Interactions on Immune Response to Helminth Infections. Front Immunol 2022; 13:869163. [PMID: 35572520 PMCID: PMC9103684 DOI: 10.3389/fimmu.2022.869163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
2
|
Moyat M, Lebon L, Perdijk O, Wickramasinghe LC, Zaiss MM, Mosconi I, Volpe B, Guenat N, Shah K, Coakley G, Bouchery T, Harris NL. Microbial regulation of intestinal motility provides resistance against helminth infection. Mucosal Immunol 2022; 15:1283-1295. [PMID: 35288644 PMCID: PMC9705251 DOI: 10.1038/s41385-022-00498-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Soil-transmitted helminths cause widespread disease, infecting ~1.5 billion people living within poverty-stricken regions of tropical and subtropical countries. As adult worms inhabit the intestine alongside bacterial communities, we determined whether the bacterial microbiota impacted on host resistance against intestinal helminth infection. We infected germ-free, antibiotic-treated and specific pathogen-free mice, with the intestinal helminth Heligmosomoides polygyrus bakeri. Mice harboured increased parasite numbers in the absence of a bacterial microbiota, despite mounting a robust helminth-induced type 2 immune response. Alterations to parasite behaviour could already be observed at early time points following infection, including more proximal distribution of infective larvae along the intestinal tract and increased migration in a Baermann assay. Mice lacking a complex bacterial microbiota exhibited reduced levels of intestinal acetylcholine, a major excitatory intestinal neurotransmitter that promotes intestinal transit by activating muscarinic receptors. Both intestinal motility and host resistance against larval infection were restored by treatment with the muscarinic agonist bethanechol. These data provide evidence that a complex bacterial microbiota provides the host with resistance against intestinal helminths via its ability to regulate intestinal motility.
Collapse
Affiliation(s)
- Mati Moyat
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Luc Lebon
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Olaf Perdijk
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Lakshanie C. Wickramasinghe
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Mario M. Zaiss
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.5330.50000 0001 2107 3311Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilaria Mosconi
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Beatrice Volpe
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Nadine Guenat
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen Shah
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Gillian Coakley
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Tiffany Bouchery
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Nicola L. Harris
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| |
Collapse
|
3
|
Midha A, Goyette-Desjardins G, Goerdeler F, Moscovitz O, Seeberger PH, Tedin K, Bertzbach LD, Lepenies B, Hartmann S. Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. Int J Mol Sci 2021; 22:ijms22168739. [PMID: 34445445 PMCID: PMC8395819 DOI: 10.3390/ijms22168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Guillaume Goyette-Desjardins
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Felix Goerdeler
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence:
| |
Collapse
|
4
|
Zaini A, Good-Jacobson KL, Zaph C. Context-dependent roles of B cells during intestinal helminth infection. PLoS Negl Trop Dis 2021; 15:e0009340. [PMID: 33983946 PMCID: PMC8118336 DOI: 10.1371/journal.pntd.0009340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim L. Good-Jacobson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
5
|
Coakley G, Harris NL. The Intestinal Epithelium at the Forefront of Host-Helminth Interactions. Trends Parasitol 2020; 36:761-772. [PMID: 32713764 DOI: 10.1016/j.pt.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal helminth infection still constitutes a major public health issue, particularly in the developing world. As these parasites can undergo a large part of their lifecycle within the intestinal tract the host has developed various structural and cellular specializations at the epithelial barrier to contend with infection. Detailed characterization of these cells will provide important insights about their contributions to the protective responses mediated against helminths. Here, we discuss how key components of the intestinal epithelium may function to limit the initial establishment of helminths, and how these cells are altered during an active response to infection.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia.
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Shute A, Wang A, Jayme TS, Strous M, McCoy KD, Buret AG, McKay DM. Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. Gut Microbes 2020; 11:497-510. [PMID: 31928118 PMCID: PMC7524392 DOI: 10.1080/19490976.2019.1688065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tapeworm Hymenolepis diminuta fails to establish in mice. Given the potential for helminth-bacteria interaction in the gut and the influence that commensal bacteria exert on host immunity, we tested if worm expulsion was related to alterations in the gut microbiota. Specific pathogen-free (SPF) mice, treated with broad-spectrum antibiotics, or germ-free wild-type mice were infected with H. diminuta, gut bacterial composition assessed by 16S rRNA gene sequencing, and worm counts, blood eosinophilia, goblet cells, splenic IL-4, -5 and -10, and colonic cytokines/chemokines mRNA were assessed. Effects of a PBS-soluble extract of adult H. diminuta on bacterial growth in vitro was tested. H. diminuta-infected mice displayed increased α and β diversity in colonic mucosa-associated and fecal bacterial communities, characterized by increased Lachnospiraceae and clostridium cluster XIVa. In vitro analysis revealed that the worm extract promoted the growth of anaerobic bacteria on M2GSC agar. H. diminuta-infection was accompanied by increased Th2 immune responses, and colon from infected mice had increased levels of IL-10, IL-25, Muc2, trefoil factor 3, and β2-defensin mRNA. SPF-mice treated with antibiotics, or germ-free mice, expelled H. diminuta with kinetics similar to control SPF mice. In both settings, measurements of Th2-immune responses were not significantly different across the groups. Thus, while infection with H. diminuta results in subtle but distinct changes to the colonic microbiota, we have no evidence to support an essential role for gut bacteria in the expulsion of the worm from the mouse host.
Collapse
Affiliation(s)
- Adam Shute
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy S. Jayme
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Kathy D. McCoy
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,CONTACT Derek M. McKay Department of Physiology & Pharmacology, 1877 HSC, University of Calgary, 3330 Hospital Drive NW, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
7
|
Ali Mubaraki M, Ahmad M, Hafiz TA, Marie MA. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol Ecol 2019; 94:4966977. [PMID: 29796663 DOI: 10.1093/femsec/fiy065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The peaceful phenomenon of the co-evolution between the prokaryotes (microbiota) and the eukaryotes (parasites including protozoa and helminths) in the animal gut has drawn the researchers' attention. Importantly, exploring the potential of helminths for therapeutic uses was one of the reasons behind understanding the physiological and immunological crosstalk existing between them. Here we discuss the interactive immunological associations of helminths and microbial responses individually and in combination with their hosts. Considering that there is probably crosstalk between eukaryotic organisms like helminths and protozoa with their host's gut microbiota, in this review we searched the literature identifying the privileged and favourable relationship generated between them in the host. Understanding the possibilities of the role of helminths along with gut microbiota as a black box would certainly help decode the therapeutic intrusion with helminths in experimental clinical trials, and a successful trial could be used to consider possible future and safe treatments for various immune-inflammatory diseases in humans.
Collapse
Affiliation(s)
- Murad Ali Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammad Ahmad
- Medical Surgical Nursing Department, College of Nursing, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed A Marie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
8
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Rausch S, Midha A, Kuhring M, Affinass N, Radonic A, Kühl AA, Bleich A, Renard BY, Hartmann S. Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Front Immunol 2018; 9:2282. [PMID: 30349532 PMCID: PMC6186814 DOI: 10.3389/fimmu.2018.02282] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
Intestinal parasitic nematodes live in intimate contact with the host microbiota. Changes in the microbiome composition during nematode infection affect immune control of the parasites and shifts in the abundance of bacterial groups have been linked to the immunoregulatory potential of nematodes. Here we asked if the small intestinal parasite Heligmosomoides polygyrus produces factors with antimicrobial activity, senses its microbial environment and if the anti-nematode immune and regulatory responses are altered in mice devoid of gut microbes. We found that H. polygyrus excretory/secretory products exhibited antimicrobial activity against gram+/− bacteria. Parasites from germ-free mice displayed alterations in gene expression, comprising factors with putative antimicrobial functions such as chitinase and lysozyme. Infected germ-free mice developed increased small intestinal Th2 responses coinciding with a reduction in local Foxp3+RORγt+ regulatory T cells and decreased parasite fecundity. Our data suggest that nematodes sense their microbial surrounding and have evolved factors that limit the outgrowth of certain microbes. Moreover, the parasites benefit from microbiota-driven immune regulatory circuits, as an increased ratio of intestinal Th2 effector to regulatory T cells coincides with reduced parasite fitness in germ-free mice.
Collapse
Affiliation(s)
- Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Matthias Kuhring
- Bioinformatics Unit (MF 1), Robert Koch Institute, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole Affinass
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Aleksandar Radonic
- Centre for Biological Threats and Special Pathogens (ZBS 1), Robert Koch Institute, Berlin, Germany.,Genome Sequencing Unit (MF 2), Robert Koch Institute, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Core Unit for Immunopathology for Experimental Models, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Rapin A, Harris NL. Helminth-Bacterial Interactions: Cause and Consequence. Trends Immunol 2018; 39:724-733. [PMID: 29941203 DOI: 10.1016/j.it.2018.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 01/16/2023]
Abstract
Intestinal helminths, along with mutualistic microbes, have cohabited the intestine of mammals throughout evolution. Interactions between helminths, bacteria, and their mammalian hosts may shape not only host-helminth and host-microbiome interactions, but also the relationship between helminths and the microbiome. This 'ménage à trois' situation may not be completely balanced in that it may favor either the host or the parasite, possibly at the cost of the other partner. Similarly, helminths may favor the establishment of a particular microbiome with either positive or negative consequences for the overall health and well-being of the host. Recent studies indicate that infection with intestinal helminths can and does impact the intestinal microbiome, with important consequences for each partner in this tripartite relationship.
Collapse
Affiliation(s)
- Alexis Rapin
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicola L Harris
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol 2018; 9:843. [PMID: 29867790 PMCID: PMC5960673 DOI: 10.3389/fmicb.2018.00843] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
12
|
Leung JM, Budischak SA, Chung The H, Hansen C, Bowcutt R, Neill R, Shellman M, Loke P, Graham AL. Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biol 2018. [PMID: 29518091 PMCID: PMC5843147 DOI: 10.1371/journal.pbio.2004108] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and environmental factors shape host susceptibility to infection, but how and how rapidly environmental variation might alter the susceptibility of mammalian genotypes remains unknown. Here, we investigate the impacts of seminatural environments upon the nematode susceptibility profiles of inbred C57BL/6 mice. We hypothesized that natural exposure to microbes might directly (e.g., via trophic interactions) or indirectly (e.g., via microbe-induced immune responses) alter the hatching, growth, and survival of nematodes in mice housed outdoors. We found that while C57BL/6 mice are resistant to high doses of nematode (Trichuris muris) eggs under clean laboratory conditions, exposure to outdoor environments significantly increased their susceptibility to infection, as evidenced by increased worm burdens and worm biomass. Indeed, mice kept outdoors harbored as many worms as signal transducer and activator of transcription 6 (STAT6) knockout mice, which are genetically deficient in the type 2 immune response essential for clearing nematodes. Using 16S ribosomal RNA sequencing of fecal samples, we discovered enhanced microbial diversity and specific bacterial taxa predictive of nematode burden in outdoor mice. We also observed decreased type 2 and increased type 1 immune responses in lamina propria and mesenteric lymph node (MLN) cells from infected mice residing outdoors. Importantly, in our experimental design, different groups of mice received nematode eggs either before or after moving outdoors. This contrasting timing of rewilding revealed that enhanced hatching of worms was not sufficient to explain the increased worm burdens; instead, microbial enhancement and type 1 immune facilitation of worm growth and survival, as hypothesized, were also necessary to explain our results. These findings demonstrate that environment can rapidly and significantly shape gut microbial communities and mucosal responses to nematode infections, leading to variation in parasite expulsion rates among genetically similar hosts. The environment in which an individual resides is likely to change how she or he responds to infection. However, most of our understanding about host responses to infection arises from experimental studies conducted under uniform environmental conditions in the laboratory. We wished to investigate whether findings in the laboratory translate into the wild. Therefore, in this study, we placed common strains of laboratory mice into large, outdoor enclosures to investigate how a more natural environment might impact their ability to combat intestinal worm infections. We found that while mice are able to clear worm infections in the laboratory, mice residing outdoors harbored higher worm burdens and larger worms than their laboratory cousins. The longer the mice lived outdoors, the greater the number and size of worms in their guts. We found that outdoor mice harbored more diverse gut microbes and even specific bacteria that may have impacted worm growth and survival inside the mice. Mice kept outdoors also produced decreased immune responses of the type essential for worm expulsion. Together, these results demonstrate that the external environment significantly alters how a host responds to worms and germs in her or his gut, thereby leading to variation in the outcome of infections.
Collapse
Affiliation(s)
- Jacqueline M. Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JML); (ALG)
| | - Sarah A. Budischak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Hao Chung The
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Vo Van Kiet, Ho Chi Minh City, Viet Nam
| | - Christina Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rowann Bowcutt
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Rebecca Neill
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mitchell Shellman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - P’ng Loke
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JML); (ALG)
| |
Collapse
|
13
|
Entwistle LJ, Wilson MS. MicroRNA-mediated regulation of immune responses to intestinal helminth infections. Parasite Immunol 2017; 39. [PMID: 27977850 DOI: 10.1111/pim.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
Intestinal helminth infections are highly prevalent in the developing world, often resulting in chronic infection and inflicting high host morbidity. With the emergence of drug-resistant parasites, a limited number of chemotherapeutic drugs available and stalling vaccine efforts, an increased understanding of antihelminth immunity is essential to provide new avenues to therapeutic intervention. MicroRNAs are a class of small, nonprotein coding RNAs which negatively regulate mRNA translation, thus providing finite control over gene expression in a plethora of biological settings. The miRNA-mediated coordinated control of gene expression has been shown to be essential in infection and immunity, in promoting and fine-tuning the appropriate immune response. This review gathers together and discusses observations of miRNA-mediated effects on the immune system and the subsequent impact on our understanding of antihelminth immunity.
Collapse
Affiliation(s)
- L J Entwistle
- Allergy and Anti-Helminth Laboratory, The Francis Crick Institute, London, UK
| | - M S Wilson
- Allergy and Anti-Helminth Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
14
|
Zaiss MM, Harris NL. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol 2016; 38:5-11. [PMID: 26345715 PMCID: PMC5019230 DOI: 10.1111/pim.12274] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
Abstract
Throughout evolution, both helminths and bacteria have inhabited our intestines. As intestinal helminths and bacteria inhabit the same environmental niche, it is likely that these organisms interact with, and impact on, each other. In addition, intestinal helminths are well known to alter intestinal physiology, permeability, mucous secretion and the production of antimicrobial peptides – all of which may impact on bacterial survival and spatial organization. Yet despite rapid advances in our understanding of host–intestinal bacteria interactions, the impact of helminths on this relationship has remained largely unexplored. Moreover, although intestinal helminths are generally accepted to possess potent immuno‐modulatory activity, it is unknown whether this capacity requires interactions with intestinal bacteria. We propose that this ‘ménage à trois’ situation is likely to have exerted a strong selective pressure on the development of our metabolic and immune systems. Whilst such pressures remain in developing countries, the eradication of helminths in industrialized countries has shifted this evolutionary balance, possibly underlying the increased development of chronic inflammatory diseases. Thus, helminth–bacteria interactions may represent a key determinant of healthy homoeostasis.
Collapse
Affiliation(s)
- M M Zaiss
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - N L Harris
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Gause WC, Maizels RM. Macrobiota - helminths as active participants and partners of the microbiota in host intestinal homeostasis. Curr Opin Microbiol 2016; 32:14-18. [PMID: 27116368 DOI: 10.1016/j.mib.2016.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis.
Collapse
Affiliation(s)
- William C Gause
- RBHS Institute for Infectious and Inflammatory Diseases, Center for Immunity and Inflammation, New Jersey Medical School, Rutgers - The State University of New Jersey, Newark, NJ, USA.
| | - Rick M Maizels
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
16
|
Reynolds LA, Finlay BB, Maizels RM. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 195:4059-66. [PMID: 26477048 DOI: 10.4049/jimmunol.1501432] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Rick M Maizels
- Centre for Immunity, Infection, and Evolution, Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
17
|
Grencis RK, Humphreys NE, Bancroft AJ. Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev 2015; 260:183-205. [PMID: 24942690 PMCID: PMC4141702 DOI: 10.1111/imr.12188] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30–40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense.
Collapse
|
18
|
Reynolds LA, Harcus Y, Smith KA, Webb LM, Hewitson JP, Ross EA, Brown S, Uematsu S, Akira S, Gray D, Gray M, MacDonald AS, Cunningham AF, Maizels RM. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2984-93. [PMID: 25114104 PMCID: PMC4157852 DOI: 10.4049/jimmunol.1401056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4+ cells. In addition, MyD88−/− mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain–containing adapter–inducing IFN-β adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1−/− mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R–MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1−/− and MyD88−/− mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1−/−) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Katherine A Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Lauren M Webb
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Ewan A Ross
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sheila Brown
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Satoshi Uematsu
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - David Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Mohini Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Andrew S MacDonald
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
| |
Collapse
|
19
|
Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, Redpath SA, Valdez Y, Yebra MJ, Finlay BB, Maizels RM. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes 2014; 5:522-32. [PMID: 25144609 PMCID: PMC4822684 DOI: 10.4161/gmic.32155] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other's persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode parasite, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
- Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
| | - Katherine A Smith
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
| | - Kara J Filbey
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
| | - Yvonne Harcus
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
| | - James P Hewitson
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
| | - Stephen A Redpath
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, BC Canada
| | - Yanet Valdez
- Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
| | - María J Yebra
- Laboratorio de Bacterias Lácticas y Probióticos; Instituto de Agroquímica y Tecnología de los Alimentos; IATA-CSIC; Valencia, Spain
| | - B Brett Finlay
- Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, BC Canada
- Department of Biochemistry and Molecular Biology; University of British Columbia; Vancouver, BC Canada
| | - Rick M Maizels
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research; Ashworth Laboratories; University of Edinburgh; Edinburgh, UK
| |
Collapse
|
20
|
Abstract
Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.
Collapse
|
21
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bourgeois AC, Scott ME, Sabally K, Koski KG. Low dietary boron reduces parasite (nematoda) survival and alters cytokine profiles but the infection modifies liver minerals in mice. J Nutr 2007; 137:2080-6. [PMID: 17709446 DOI: 10.1093/jn/137.9.2080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although boron (B) is an essential trace mineral, any interactions that it may have with gastrointestinal (GI) nematode infections are unknown. This study explored whether low dietary B would: 1) alter survival or reproduction of Heligmosomoides bakeri (Nematoda); 2) modify the resulting cytokine response to this parasitic infection; or 3) influence liver mineral concentrations in the infected host. Balb/c mice were fed either a low-B (0.2 microg B/g), marginal (2.0 microg B/g), or control (12.0 microg B/g) diet. Diets commenced 3 wk before a primary infection and were fed for 4 wk (primary infection protocol) and 8-9 wk (challenge infection protocol). Mice were killed 6 d post-primary infection (d6ppi), or dewormed then reinfected (challenge infection protocol) and killed 14 or 21 d post-challenge infection (d14pci or d21pci, respectively). Low and marginal dietary B intakes impaired survival of the parasite, reduced intestinal inflammation, and modulated a broad range of cytokines and chemokines despite similar liver B concentrations in diet groups. Compared with control mice, cytokine production was lower following low and marginal B intakes at d6ppi but was elevated at d21pci. Serum alkaline phosphatase was higher at d6ppi than at d14pci and d21pci. Compared with d14pci, liver zinc, iron, and B concentrations were reduced at d21pci when worm numbers were also lower, whereas concentrations of sodium, potassium, molybdenum, chromium, and sulfur were higher. This study shows that parasite survival and cytokine and inflammatory responses are modified by dietary B intake but indicates that a GI nematode infection alters liver mineral concentrations.
Collapse
Affiliation(s)
- Annie-Claude Bourgeois
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
23
|
Shi HN, Scott ME, Koski KG, Boulay M, Stevenson MM. Energy restriction and severe zinc deficiency influence growth, survival and reproduction of Heligmosomoides polygyrus (Nematoda) during primary and challenge infections in mice. Parasitology 1995; 110 ( Pt 5):599-609. [PMID: 7596643 DOI: 10.1017/s003118200006532x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objectives of this study were (1) to determine the impact of severe zinc deficiency on the establishment, growth, survival and reproduction of Heligmosomoides polygyrus in the laboratory mouse, during both primary and challenge infection protocols, and (2) to determine whether the observed effects resulted from zinc deficiency per se, or from the accompanying energy restriction. Three diet groups were used: zinc-sufficient (Zn+:60 mg zinc/kg diet), zinc-deficient (Zn-:0.75 mg zinc/kg diet) and energy restricted (ER:60 mg zinc/kg diet pair fed to Zn- mice). Neither Zn- nor ER influenced the establishment of the parasite during a primary infection. However, both significantly influenced the early development of the parasite. The proportion of adult worms recovered 9 days post-infection (p.i.) was highest in Zn- mice, intermediate in ER mice and lowest in Zn+ mice. Worms were also distributed more distally in the intestine of the Zn- mice and worm survival was highest in Zn- mice, intermediate in ER mice and lowest in Zn+ mice at both 4 and 5 weeks p.i. Although the length of female worms was reduced in Zn- mice, neither per capita fecundity nor egg viability was affected by zinc deficiency. Energy restriction, on the other hand, significantly reduced worm fecundity at 5 weeks post-primary infection, but had no effect on egg viability. Zinc concentration of adult H. polygyrus was similar among dietary groups. The effects of zinc deficiency and energy restriction were also investigated 4 and 5 weeks after a challenge infection. Whereas strong host resistance was evident in Zn+ and ER mice, based on comparison of worm numbers between challenged mice and primary infection controls, no evidence of resistance was detected in Zn- mice. As in the primary infection, female worms were shorter in Zn- mice than in ER and Zn+ mice, and energy restriction but not zinc deficiency significantly affected per capita fecundity. However, in contrast to the primary infection, ER mice had elevated rather than reduced fecundity. This study demonstrates a complex interaction between H. polygyrus and zinc and energy restriction, and highlights the importance of controlling for reduced food intake in nutrition-infection studies.
Collapse
Affiliation(s)
- H N Shi
- Institute of Parasitology, Macdonald Campus of McGill University, Ste-Anne de Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Scott ME. Heligmosomoides polygyrus (Nematoda): susceptible and resistant strains of mice are indistinguishable following natural infection. Parasitology 1991; 103 Pt 3:429-38. [PMID: 1780180 DOI: 10.1017/s0031182000059953] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BALB/c mice were characterized as more resistant to infection with Heligmosomoides polygyrus (Nematoda) than C57BL/6 mice based on lower establishment and survival during a primary infection and stronger protection induced by an immunizing regime. It was hypothesized, therefore, that C57BL/6 mice would be more heavily infected than BALB/c mice when they lived together as a single population in a large indoor arena where transmission occurred through contact between the mice and damp peat trays where parasite eggs developed into larvae. Fifty female mice (including 5 infected mice) of each strain were placed in a 3.2 x 0.8 m arena. Net egg production and numbers of larvae acquired by sentinel mice of each strain were monitored every two weeks. The experiment was replicated twice. The results did not support the hypothesis. No difference was detected between strains of mice in the number of larvae acquired by sentinel mice during 24 h exposure periods, or in the numbers of worms present after 12 or 23 weeks. Net egg production was also comparable between strains. A hypothesis that the unexpected similarity of infection in the two strains was related to differences in rates of contact with the peat trays was not supported by preliminary data on mouse behaviour that revealed equal frequency of contact with peat trays between strains. A second hypothesis that continuous exposure to larvae led to similar infection levels in the two strains (in contrast to the controlled characterization experiments) was also unsupported. Mice were infected weekly with 10, 50 or 100 larvae for 5 or 10 weeks. Net egg production and numbers of worms were consistently higher in C57BL/6 than BALB/c mice. At this time it is not clear why infection in the two strains was virtually identical in the large arenas but clearly distinct in all controlled infection experiments.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Québec, Canada
| |
Collapse
|
25
|
Coles GC, Wells PD. The biology of NippostrongyLus brasiliensis in SPF rats. ZEITSCHRIFT FUR PARASITENKUNDE (BERLIN, GERMANY) 1983; 69:517-21. [PMID: 6226160 DOI: 10.1007/bf00927708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
When maintained under SPF (specific pathogen free) conditions, Wistar rats had low and variable counts of adult Nippostrongylus brasiliensis. Worm counts were increased if rats were kept in solid rather than wire-bottom cages, if rats were maintained under non-SPF conditions, or if SPF rats were orally inoculated with gut contents from non-SPF rats. It is concluded that gut flora in SPF wistar rats directly or indirectly affects the numbers of larvae establishing as adult worms.
Collapse
|