Effects of beta-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi.
Arch Biochem Biophys 1985;
240:273-80. [PMID:
2409922 DOI:
10.1016/0003-9861(85)90033-5]
[Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Incubation of Trypanosoma cruzi epimastigotes with beta-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione), a lipophilic o-quinone, produced inhibition of [3H]thymidine, [3H]uridine, and L-[3H]leucine incorporation into DNA, RNA, and protein, respectively. With 1.6 microM beta-lapachone, DNA synthesis was preferentially inhibited. The inhibition was irreversible, and time and concentration dependent. Other effects of beta-lapachone were (a) inhibition of 3H precursor uptake into epimastigotes, (b) exaggerated degradation of DNA, RNA, and protein, (c) increased unscheduled synthesis of DNA, and (d) increased number of strand breaks in nuclear and kinetoplast DNA. DNA damage by 1.6 microM beta-lapachone was repaired by reincubating the drug-treated epimastigotes in fresh medium for 24 h, but with 7.8 microM beta-lapachone DNA damage was irreversible. The p-quinone isomer alpha-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[2,3-b]pyran-5,10-dione), was less effective than beta-lapachone, especially on DNA and RNA synthesis, and did not stimulate unscheduled DNA synthesis. Since beta-lapachone redox cycling in T. cruzi generates oxygen radicals while alpha-lapachone does not (A. Boveris, R. Docampo, J. F. Turrens, and A. O. M. Stoppani (1978) Biochem. J. 175, 431-439), the summarized results support the hypothesis that oxygen radicals contribute to beta-lapachone toxicity in T. cruzi.
Collapse