1
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
2
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
3
|
Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015; 9:e0004264. [PMID: 26701602 PMCID: PMC4689532 DOI: 10.1371/journal.pntd.0004264] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/05/2015] [Indexed: 11/27/2022] Open
Abstract
Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 Plasmodium vivax causes malaria in millions of people each year, primarily in Southeast Asia and Central and South America. P. vivax has a dormant liver stage, which can lead to disease recurrence in infected individuals even in the absence of mosquito transmission. The development of vaccines that target blood-stage P. vivax parasites is therefore likely to be an essential component of any worldwide effort to eradicate malaria. Studying P. vivax is very difficult as this parasite grows poorly in the laboratory and invades only small numbers of young red blood cells in patients. Due to these and other challenges, only a handful of P. vivax proteins have been tested as potential vaccines. To generate more vaccine candidates, we expressed the entire ectodomains of 37 proteins that are predicted to be involved in P. vivax invasion of red blood cells. Antibodies from Cambodian patients with P. vivax malaria recognized heat-sensitive epitopes in the majority of these proteins, suggesting that they are natively folded. We also used the proteins to screen for both predicted and novel protein-protein interactions, confirming that the proteins are functional and further supporting their potential as vaccine candidates. As a new community resource, this P. vivax recombinant protein library will facilitate future studies of P. vivax pathogenesis and immunity, and greatly expands the list of candidate vaccine antigens.
Collapse
Affiliation(s)
- Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sumana Sharma
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - S. Josefin Bartholdson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (RMF); (JCR)
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (RMF); (JCR)
| |
Collapse
|
4
|
Chan ER, Menard D, David PH, Ratsimbasoa A, Kim S, Chim P, Do C, Witkowski B, Mercereau-Puijalon O, Zimmerman PA, Serre D. Whole genome sequencing of field isolates provides robust characterization of genetic diversity in Plasmodium vivax. PLoS Negl Trop Dis 2012; 6:e1811. [PMID: 22970335 PMCID: PMC3435244 DOI: 10.1371/journal.pntd.0001811] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022] Open
Abstract
Background An estimated 2.85 billion people live at risk of Plasmodium vivax transmission. In endemic countries vivax malaria causes significant morbidity and its mortality is becoming more widely appreciated, drug-resistant strains are increasing in prevalence, and an increasing number of reports indicate that P. vivax is capable of breaking through the Duffy-negative barrier long considered to confer resistance to blood stage infection. Absence of robust in vitro propagation limits our understanding of fundamental aspects of the parasite's biology, including the determinants of its dormant hypnozoite phase, its virulence and drug susceptibility, and the molecular mechanisms underlying red blood cell invasion. Methodology/Principal Findings Here, we report results from whole genome sequencing of five P. vivax isolates obtained from Malagasy and Cambodian patients, and of the monkey-adapted Belem strain. We obtained an average 70–400 X coverage of each genome, resulting in more than 93% of the Sal I reference sequence covered by 20 reads or more. Our study identifies more than 80,000 SNPs distributed throughout the genome which will allow designing association studies and population surveys. Analysis of the genome-wide genetic diversity in P. vivax also reveals considerable allele sharing among isolates from different continents. This observation could be consistent with a high level of gene flow among parasite strains distributed throughout the world. Conclusions Our study shows that it is feasible to perform whole genome sequencing of P. vivax field isolates and rigorously characterize the genetic diversity of this parasite. The catalogue of polymorphisms generated here will enable large-scale genotyping studies and contribute to a better understanding of P. vivax traits such as drug resistance or erythrocyte invasion, partially circumventing the lack of laboratory culture that has hampered vivax research for years. Plasmodium vivax is the most frequently transmitted and widely distributed cause of malaria in the world. Each year P. vivax is responsible for approximately 250 million clinical cases of malaria and its global economic burden, placed largely on the poor, has been estimated to exceed US$1.4 billion. In contrast to P. falciparum, P. vivax cannot be propagated in continuous in vitro culture and this limits our understanding of the parasite’s biology. In this study, we sequenced the entire genome of five P. vivax isolates directly from blood samples of infected patients. Our data indicated that each patient was infected with multiple P. vivax strains. We also identified more than 80,000 DNA polymorphisms distributed throughout the genome that will enable future studies of the P. vivax population and association mapping studies. Our study illustrates the potential of genomic studies for better understanding P. vivax biology and how the parasite successfully evades malaria elimination efforts worldwide.
Collapse
Affiliation(s)
- Ernest R. Chan
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- * E-mail: (DM); (OM-P); (PAZ); (DS)
| | - Peter H. David
- Unité d'lmmunologie Moléculaire des Parasites, Institut Pasteur, Paris, France
| | - Arsène Ratsimbasoa
- Direction de la lute contre les maladies infectieuses, Ministère de la santé, du planning familial et de la protection sociale, Antananarivo, Madagascar
| | - Saorin Kim
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Pheaktra Chim
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Catherine Do
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Odile Mercereau-Puijalon
- Unité d'lmmunologie Moléculaire des Parasites, Institut Pasteur, Paris, France
- * E-mail: (DM); (OM-P); (PAZ); (DS)
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (DM); (OM-P); (PAZ); (DS)
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail: (DM); (OM-P); (PAZ); (DS)
| |
Collapse
|
5
|
Singh B, Cabrera-Mora M, Jiang J, Galinski M, Moreno A. Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate. Vaccine 2010; 28:2580-92. [PMID: 20097151 DOI: 10.1016/j.vaccine.2010.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/28/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
We have reported the design of polyvalent synthetic and recombinant chimeras that include promiscuous T cell epitopes as a viable delivery system for pre-erythrocytic subunit malaria vaccines. To further assess the ability of several Plasmodium T cell epitopes to enhance vaccine potency, we designed a synthetic gene encoding four Plasmodium yoelii merozoite surface protein 1 (PyMSP1) CD4(+) promiscuous T cell epitopes fused in tandem to the homologous carboxyl terminal PyMSP1(19) fragment. This Recombinant Modular Chimera (PyRMC-MSP1(19)) was tested for immunogenicity and protective efficacy in comparative experiments with a recombinant protein expressing only the PyMSP1(19) fragment. Both proteins induced comparable antibody responses. However PyRMC-MSP1(19) elicited higher anti-parasite antibody titers and more robust protection against both hyper-parasitemia and malarial anemia. Most importantly, passive transfer of anti-PyRMC-MSP1(19), but not anti-PyMSP1(19) antibodies protected against heterologous challenge. These studies show that protective efficacy can be significantly improved by inclusion of an array of autologous promiscuous T cell epitopes in vaccine constructs.
Collapse
Affiliation(s)
- Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | | | | | | | | |
Collapse
|
6
|
Wickramarachchi T, Illeperuma RJ, Perera L, Bandara S, Holm I, Longacre S, Handunnetti SM, Udagama-Randeniya PV. Comparison of naturally acquired antibody responses against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 under low transmission and unstable malaria conditions in Sri Lanka. Int J Parasitol 2006; 37:199-208. [PMID: 17055511 DOI: 10.1016/j.ijpara.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/17/2022]
Abstract
We report here, for the first time, a comparison of naturally acquired antibody responses to the 42 and 19 kDa C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 assayed by ELISA using p42 and p19 baculovirus-derived recombinant proteins, respectively. Test populations comprised patients with microscopy confirmed acute P. vivax infections from two regions endemic for vivax malaria where low transmission and unstable malaria conditions prevail, and a non-endemic urban area, in Sri Lanka. The antibody prevalence to the two proteins, both at the individual and population levels, tend to respond more to p42 than to p19 in all test areas, where >14% of individuals preferentially recognized p42, compared with <2% for p19. In patients with no previous exposure to malaria, 21% preferentially recognized p42, whereas none exclusively recognized p19. A significantly lower prevalence of anti-p19 IgM, but not anti-p42 IgM, was observed among residents from endemic areas compared with their non-endemic counterparts. Individuals from both endemic areas produced significantly less anti-p19 IgM compared with anti-p42 IgM. IgG1 was the predominant IgG isotype for both antigens in all individuals. With increasing exposure to malaria in both endemic areas, anti-p19 antibody responses were dominated by the functionally important IgG1 and IgG3 isotypes, with a concurrent reduction in IgM that was lacking in the non-endemic residents. This antibody switch was also reflected for PvAMA-1 as we previously reported with the identical battery of sera. In contrast, the antibody switch for p42 was restricted to endemic residents with more extensive exposure. These results suggest that an IgM-dominated antibody response against the p42 polymorphic region in endemic residents may interfere with the development of an IgG-dominated "protective" isotype shift to p19, that may complicate vaccine development.
Collapse
|
7
|
Fernandez-Becerra C, Pein O, de Oliveira TR, Yamamoto MM, Cassola AC, Rocha C, Soares IS, de Bragança Pereira CA, del Portillo HA. Variant proteins of Plasmodium vivax are not clonally expressed in natural infections. Mol Microbiol 2006; 58:648-58. [PMID: 16238616 DOI: 10.1111/j.1365-2958.2005.04850.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite and responsible for 70-80 million clinical cases each year and a large socio-economical burden. The sequence of a chromosome end from P. vivax revealed the existence of a multigene superfamily, termed vir (P. vivax variant antigens), that can be subdivided into different subfamilies based on sequence similarity analysis and which represents close to 10-20% of the coding sequences of the parasite. Here we show that there is a vast repertoire of vir genes abundantly expressed in isolates obtained from human patients, that different vir gene subfamilies are transcribed in mature asexual blood stages by individual parasites, that VIR proteins are not clonally expressed and that there is no significant difference in the recognition of VIR-tags by immune sera of first-infected patients compared with sera of multiple-infected patients. These data provide to our knowledge the first comprehensive study of vir genes and their encoding variant proteins in natural infections and thus constitute a baseline for future studies of this multigene superfamily. Moreover, whereas our data are consistent with a major role of vir genes in natural infections, they are inconsistent with a predominant role in the strict sense of antigenic variation.
Collapse
Affiliation(s)
- Carmen Fernandez-Becerra
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jalah R, Sarin R, Sud N, Alam MT, Parikh N, Das TK, Sharma YD. Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 2005; 142:158-69. [PMID: 15869815 DOI: 10.1016/j.molbiopara.2005.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Plasmodium vivax is most common but non-cultivable human malaria parasite which is poorly characterized at the molecular level. Here, we describe the identification and characterization of a P. vivax Tryptophan-Rich Antigen (PvTRAg) which contains unusually high (8.28%) tryptophan residues and is expressed by all blood stages of the parasite. The pvtrag gene comprises a 978bp open reading frame interrupted by two introns. The first intron is located in the 5'-untranslated region while the second one is positioned 174bp downstream to the ATG codon. The encoded approximately 40kDa protein contains a transmembrane domain near the N-terminus followed by a tryptophan-rich domain with significantly high surface probability and antigenic index. It is localized in the parasite cytoplasm as well as in the cytoplasm of the parasitized erythrocyte. The purified E. coli expressed recombinant PvTRAg protein showed a very high seropositivity rate for the presence of antibodies amongst the P. vivax patients, indicating that the antigen generates significant humoral immune response during the natural course of P. vivax infection. Analysis of various field isolates revealed that the tryptophan-rich domain is highly conserved except for three-point mutations. The PvTRAg could be a potential vaccine candidate since similar tryptophan-rich antigens of P. yoelii have shown protection against malaria in murine model.
Collapse
Affiliation(s)
- Rashmi Jalah
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N, Menegon M, Severini C, Ayala FJ, Renaud F. Meager genetic variability of the human malaria agent Plasmodium vivax. Proc Natl Acad Sci U S A 2004; 101:14455-60. [PMID: 15328406 PMCID: PMC521958 DOI: 10.1073/pnas.0405186101] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria is a major human parasitic disease caused by four species of Plasmodium protozoa. Plasmodium vivax, the most widespread, affects millions of people across Africa, Asia, the Middle East, and Central and South America. We have studied the genetic variability of 13 microsatellite loci in 108 samples from 8 localities in Asia, Africa, South America, and New Guinea. Only one locus is polymorphic; nine are completely monomorphic, and the remaining three are monomorphic in all but one or two populations, which have a rare second allele. In contrast, Plasmodium falciparum displays extensive microsatellite polymorphism within and among populations. We further have analyzed, in 96 samples from the same 8 localities, 8 tandem repeats (TRs) located on a 100-kb contiguous chromosome segment described as highly polymorphic. Each locus exhibits 2-10 alleles in the whole sample but little intrapopulation polymorphism (1-5 alleles with a prevailing allele in most cases). Eight microsatellite loci monomorphic in P. vivax are polymorphic in three of five Plasmodium species related to P. vivax (two to seven individuals sampled). Plasmodium simium, a parasite of New World monkeys, is genetically indistinguishable from P. vivax. At 13 microsatellite loci and at 7 of the 8 TRs, both species share the same (or most common) allele. Scarce microsatellite polymorphism may reflect selective sweeps or population bottlenecks in recent evolutionary history of P. vivax; the differential variability of the TRs may reflect selective processes acting on particular regions of the genome. We infer that the world expansion of P. vivax as a human parasite occurred recently, perhaps <10,000 years ago.
Collapse
Affiliation(s)
- M C Leclerc
- Unité Mixte de Recherche 2724, Institut de Recherche pour le Développement et Centre National de la Recherche Scientifique, 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rogers WO, Gowda K, Hoffman SL. Construction and immunogenicity of DNA vaccine plasmids encoding four Plasmodium vivax candidate vaccine antigens. Vaccine 1999; 17:3136-44. [PMID: 10462250 DOI: 10.1016/s0264-410x(99)00146-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasmodium vivax is the second most common agent of human malaria. Although infection is rarely fatal, it nonetheless imposes a significant burden of illness in endemic areas. A successful vaccine against P. vivax will likely need to induce immune responses against both pre-erythrocytic and erythrocytic stage forms of the parasite. Accordingly, we constructed eight nucleic acid vaccines based on four antigens, the circumsporozoite protein (PvCSP) and sporozoite surface protein 2 (PvSSP2) from the pre-erythrocytic stage, and apical membrane antigen 1 (PvAMA1) and merozoite surface protein 1 (PvMSP1) from the erythrocytic stage. The constructs induced high levels of specific antibody in mice regardless of whether the antigen was expressed in native form or fused to a human tissue plasminogen activator leader peptide. High titer antibodies induced against PvCSP did not react with the protective AGDR epitope within the sequence of this antigen. These results support the immunogenicity of these four vaccine candidate antigens when delivered as nucleic acid vaccines.
Collapse
Affiliation(s)
- W O Rogers
- Naval Medical Research Center, Bethesda, MD, USA.
| | | | | |
Collapse
|
11
|
Matsumoto S, Yukitake H, Kanbara H, Yamada T. Recombinant Mycobacterium bovis bacillus Calmette-Guérin secreting merozoite surface protein 1 (MSP1) induces protection against rodent malaria parasite infection depending on MSP1-stimulated interferon gamma and parasite-specific antibodies. J Exp Med 1998; 188:845-54. [PMID: 9730886 PMCID: PMC2213399 DOI: 10.1084/jem.188.5.845] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The merozoite surface protein 1 (MSP1) has emerged as a leading malaria vaccine candidate at the erythrocytic stage. Recombinant bacillus Calmette-Guérin (rBCG), which expressed a COOH-terminal 15-kD fragment of MSP1 of Plasmodium yoelii (MSP1-15) as a fusion protein with a secretory protein of Mycobacterium kansasii, was constructed. Immunization of mice with this rBCG induced a higher degree of protection against blood-stage parasite infection than with recombinant MSP1-15 in the RIBI adjuvant (RIBI ImmunoChem Research, Inc., Hamilton, MT) or incomplete Freund's adjuvant systems. We studied the mechanism of protection induced by MSP1-15, and found that interferon (IFN)-gamma had a major role in protection in all adjuvant systems we examined. Mice that produced low amounts of MSP1-15 stimulated IFN-gamma and could not control parasite infection. The antibody against MSP1-15 did not play a major role in protection in this system. After parasite infection, immunoglobulin G2a antibodies, which had been produced by IFN-gamma stimulation, were induced and subsequently played an important role in eradicating parasites. Thus, both cellular and humoral immune responses were essential for protection from malaria disease. These data revealed that BCG is a powerful adjuvant to induce such a protective immune response against malaria parasites.
Collapse
Affiliation(s)
- S Matsumoto
- School of Dentistry, Nagasaki University, Japan
| | | | | | | |
Collapse
|
12
|
Snewin VA, Premawansa S, Kapilananda GM, Ratnayaka L, Udagama PV, Mattei DM, Khouri E, Del Giudice G, Peiris JS, Mendis KN, David PH. Transmission blocking immunity in Plasmodium vivax malaria: antibodies raised against a peptide block parasite development in the mosquito vector. J Exp Med 1995; 181:357-62. [PMID: 7807016 PMCID: PMC2191816 DOI: 10.1084/jem.181.1.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One approach towards the development of a vaccine against malaria is to immunize against the parasite sexual stages that mediate transmission of the parasite from man to mosquito. Antibodies against these stages, ingested with the blood meal, inhibit the parasite development in the mosquito vector, constituting "transmission blocking immunity." Most epitopes involved in transmission-blocking immunity depend on the tertiary conformational structure of surface antigens. However, one of the transmission-blocking monoclonal antibodies we have raised against Plasmodium vivax reacts with a linear epitope on both asexual stages and gametes. This monoclonal antibody (A12) is capable of totally blocking development of the parasite in the mosquito host when tested in membrane feeding assays with gametocytes from P. vivax-infected patients. Immune screening of a P. vivax lambda gt11 genomic expression library with A12 led to the isolation of a clone to which was mapped the six-amino acid epitope recognized by A12. Antisera raised in mice against a 12-mer synthetic peptide containing this epitope coupled to bovine serum albumin not only had high titers of antipeptide antibodies as measured by enzyme-linked immunosorbent assay, but in addition recognized the same 24- and 57-kD parasite components as A12 on Western blots and reacted with the parasite by immunofluorescence. When tested in membrane feeding assays, these antibodies have significant suppressive effects on parasite development in the mosquito.
Collapse
Affiliation(s)
- V A Snewin
- Unité d'Immunoparasitologie, Centre National de la Recherche Scientifique URA361, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qari SH, Goldman IF, Povoa MM, di Santi S, Alpers MP, Lal AA. Polymorphism in the circumsporozoite protein of the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 1992; 55:105-13. [PMID: 1279418 DOI: 10.1016/0166-6851(92)90131-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The circumsporozoite (CS) protein that covers the surface of infectious sporozoites is a candidate antigen in malaria vaccine development. To determine the extent of B- and T-epitope polymorphism and to understand the mechanisms of antigenic variability, we have characterized the CS protein gene of Plasmodium vivax from field isolates representing geographically distant regions of Papua New Guinea (PNG) and Brazil. In the central repeat region of the CS protein, in addition to variation in the number of repeats, an array of mutations was observed which suggests that point mutations have led to the emergence of the variant CS repeat sequence ANGA(G/D)(N/D)QPG from GDRA(D/A)GQPA. Outside the repeat region of the protein, the nonsilent nucleotide substitutions of independent origin are localized in three domains of the protein that either harbor known T-cell determinants or are analogous to the Plasmodium falciparum immunodominant determinants, Th2R and Th3R. We have found that, with the exception of one CS clone sequence that was shared by one P. vivax isolate each from PNG and Brazil, the P. vivax CS protein types can be grouped into Papuan and Brazilian types. These results suggest that an in-depth study of parasite population dynamics is required before field trials for vaccine formulation based on polymorphic immunodominant determinants are conducted.
Collapse
Affiliation(s)
- S H Qari
- Malaria Branch, Centers for Disease Control, Atlanta, GA 30333
| | | | | | | | | | | |
Collapse
|
14
|
Zevering Y, Amante F, Smillie A, Currier J, Smith G, Houghten RA, Good MF. High frequency of malaria-specific T cells in non-exposed humans. Eur J Immunol 1992; 22:689-96. [PMID: 1547814 DOI: 10.1002/eji.1830220311] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A major goal of current candidate malaria vaccines is to stimulate the expansion of clones of malaria-specific lymphocytes. We have examined the in vitro T cell responses of a group of malaria exposed and non-exposed adult Caucasian donors to recombinant circumsporozoite (CS) proteins, one of which is undergoing clinical trials, to blood-stage parasites, and to synthetic peptides copying the CS protein and defined blood-stage proteins. In nearly all individuals tested, CD4 T cell proliferation or lymphokine production occurred in response to whole parasite or CS protein stimulation, and T cells from many individuals responded to synthetic peptides. T cell responses were major histocompatibility complex-restricted, and stimulation of T cells with malaria parasites or CS protein did not appear to expand a population of T cell receptor gamma/delta cells. Malaria-specific responses were independent of prior malaria exposure, and in some cases exceeded the magnitude of response to tetanus toxoid. Specific T cells are present in high frequency in the peripheral blood of many donors who have never been exposed to malaria. Although malaria-specific CD4 T cells play an important role in immunity, these data question whether vaccines need to stimulate such cells, and focus attention on other aspects of malaria immunity which may be more critical to a successful vaccine.
Collapse
Affiliation(s)
- Y Zevering
- Tropical Health Program, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Gibson HL, Tucker JE, Kaslow DC, Krettli AU, Collins WE, Kiefer MC, Bathurst IC, Barr PJ. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol Biochem Parasitol 1992; 50:325-33. [PMID: 1371329 DOI: 10.1016/0166-6851(92)90230-h] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular cloning and structure analysis of the gene encoding the Pv200 protein of the Sal-1 strain of Plasmodium vivax revealed an overall identity of 34-37% when the deduced amino acid sequence was compared with the sequences of various major merozoite surface antigens of Plasmodium falciparum, Plasmodium yoelii and Plasmodium chabaudi. When the Sal-1 Pv200 sequence was compared with the corresponding sequence from the Belèm strain of P. vivax, it was found that the two merozoite surface antigens were relatively well conserved with an overall amino acid sequence identity of 81%. A region of 23 repeated glutamine residues, found in the sequence of the Belèm isolate was not found, however, in the Sal-1 sequence. Amino- and carboxy-terminal domains of the Pv200 protein were expressed in the yeast Saccharomyces cerevisiae. Each recombinant protein was shown to react with antibodies in sera from splenectomized Bolivian Saimiri monkeys that had been infected previously with P. vivax, and in human sera from individuals with a history of exposure to vivax malaria. The availability of recombinant DNA-derived Pv200 proteins will now allow a full assessment of their utility in the diagnosis and immunoprophylaxis of the benign tertian malaria associated with P. vivax infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/isolation & purification
- Aotus trivirgatus
- Base Sequence
- Cloning, Molecular
- DNA, Protozoan/genetics
- Epitopes
- Gene Expression
- Genomic Library
- Humans
- Malaria, Falciparum/immunology
- Molecular Sequence Data
- Plasmodium vivax/genetics
- Plasmodium vivax/growth & development
- Polymerase Chain Reaction
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- H L Gibson
- Chiron Corporation, Emeryville, CA 94608
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Barnwell JW, Galinski MR. The adhesion of malaria merozoite proteins to erythrocytes: a reflection of function? RESEARCH IN IMMUNOLOGY 1991; 142:666-72. [PMID: 1817296 DOI: 10.1016/0923-2494(91)90147-b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J W Barnwell
- New York University Medical School, Department of Medical & Molecular Parasitology, NY 10010
| | | |
Collapse
|
17
|
Affiliation(s)
- M Hommel
- Department of Tropical Medicine and Infectious Diseases Liverpool, UK
| |
Collapse
|
18
|
Sharma YD, Sharma VP, Ray P, Laal S, Sawant SD, Verma S. Isolation and serological characterization of a Plasmodium vivax recombinant antigen. Infect Immun 1991; 59:1922-6. [PMID: 2037353 PMCID: PMC257944 DOI: 10.1128/iai.59.6.1922-1926.1991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A genomic library for Plasmodium vivax was constructed in lambda gt11 and immunologically screened with pooled serum samples from vivax patients. Six seroreactive clones were isolated, and one clone, denoted PV9, was studied further. This clone has an unusual base composition (65% G + C), does not share any homology with P. falciparum, and codes for an entirely new antigenic determinant. Antibodies (immunoglobulin G type) against the PV9-encoded polypeptide were produced in all vivax patients older than 15 years. This seroreactivity was lower among patients younger than 15 years (53%). The antigenic epitope(s) of the PV9-encoded polypeptide was recognized at a similar rate by serum samples from P. vivax patients who were living 350 to 973 km apart. Fifty percent of uninfected Indian adults were also seropositive, whereas all European and American (United States) sera tested were negative, suggesting that anti-PV9 antibodies persist after infection. The seroreactivity pattern of this antigen is similar to that of the immunity developed in malaria after repeated infections.
Collapse
Affiliation(s)
- Y D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
19
|
del Portillo HA, Longacre S, Khouri E, David PH. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci U S A 1991; 88:4030-4. [PMID: 2023952 PMCID: PMC51587 DOI: 10.1073/pnas.88.9.4030] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Merozoite surface antigen 1 (MSA1) of several species of plasmodia has been shown to be a promising candidate for a vaccine directed against the asexual blood stages of malaria. We report the cloning and characterization of the MSA1 gene of the human malaria parasite Plasmodium vivax. This gene, which we call Pv200, encodes a polypeptide of 1726 amino acids and displays features described for MSA1 genes of other species, such as signal peptide and anchoring sequences, conserved cysteine residues, number of potential N-glycosylation sites, and repeats consisting here of 23 glutamine residues in a row. When the nucleotide and deduced amino acid sequences of the MSA1 of P. vivax are compared to those of another human malaria parasite, Plasmodium falciparum, and to those of the rodent parasite Plasmodium yoelii, 10 regions of high amino acid similarity are observed despite the very different dG + dC contents of the corresponding genes. All of the interspecies conserved regions reside within the conserved or semiconserved blocks delimited by the sequences of different alleles of the MSA1 gene of P. falciparum.
Collapse
|
20
|
Deleersnijder W, Hendrix D, Bendahman N, Hanegreefs J, Brijs L, Hamers-Casterman C, Hamers R. Molecular cloning and sequence analysis of the gene encoding the major merozoite surface antigen of Plasmodium chabaudi chabaudi IP-PC1. Mol Biochem Parasitol 1990; 43:231-44. [PMID: 2090945 DOI: 10.1016/0166-6851(90)90148-f] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The complete nucleotide sequence of the gene encoding the precursor to the major merozoite surface antigens of Plasmodium chabaudi chabaudi strain IP-PC1 has been determined. A single open reading frame was detected, that coded for a protein of 199 kDa. The encoded protein (p199) contains putative signal and membrane anchor sequences and shows a clustering of Cys residues in the last 120 amino acids. Incompletely conserved tandem repeat oligopeptides are present at different positions in the molecule. P199 shows 69% overall homology to the analogous antigen in Plasmodium yoelii yoelii strain YM. The divergence between these antigens is largely confined to 4 areas where a number of insertions and/or deletions have occurred. All repeats occur in these divergent regions. The overall homology with both alleles of Plasmodium falciparum PMMSA is 33%.
Collapse
Affiliation(s)
- W Deleersnijder
- Laboratorium Algemene Biologie, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Goonewardene R, Carter R, Gamage CP, Del Giudice G, David PH, Howie S, Mendis KN. Human T cell proliferative responses to Plasmodium vivax antigens: evidence of immunosuppression following prolonged exposure to endemic malaria. Eur J Immunol 1990; 20:1387-91. [PMID: 2196178 DOI: 10.1002/eji.1830200626] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T cell proliferative responses, of 33 adult Sri Lankans convalescing from Plasmodium vivax infections, to several P. vivax antigens (i.e. a soluble extract of asexual erythrocytic stage parasites and two cloned antigens that are potential vaccine candidates PV200 and GAM-1) were assessed. The peripheral blood mononuclear cell proliferative responses to the soluble extract of P. vivax, as assessed by studying both the proportion of responders and the degree of the response, were significantly lower in a group of individuals resident in a malaria endemic area in Sri Lanka than in another group that did not have a life-long exposure to malaria but had acquired the disease on a visit to an endemic region. Individuals of both groups responded equally well to mitogen. The responses to a non-malarial antigen such as purified protein derivative of tuberculin were only marginally lower in residents of the malaria-endemic region. These findings suggest that exposure to endemic P. vivax malaria leads to a specific immunosuppression to P. vivax antigens. Immunosuppression of a much lower degree was evident to a non-malarial antigen.
Collapse
Affiliation(s)
- R Goonewardene
- Department of Parasitology Malaria, Faculty of Medicine, University of Colombo, Sri Lanka
| | | | | | | | | | | | | |
Collapse
|
22
|
Lewis AP. Cloning and analysis of the gene encoding the 230-kilodalton merozoite surface antigen of Plasmodium yoelii. Mol Biochem Parasitol 1989; 36:271-82. [PMID: 2797063 DOI: 10.1016/0166-6851(89)90175-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The complete nucleotide sequence of the gene for the 230-kDa precursor to the major merozoite surface antigens (PMMSA) of Plasmodium yoelii YM has been determined. A single open reading frame of 5316 bp encodes a protein of calculated molecular mass 197,000. The deduced amino acid sequence contains potential signal peptide and membrane anchor sequences of 19 and 18 residues, respectively, and a region of six tandemly repeated tetrapeptides, Gly-Ala-Val-Pro. Comparison with the 195-kDa Plasmodium falciparum analogue (Pf195) at the amino acid level indicated an overall homology of approximately 30%, with areas of as high as 60% conservation. The tripeptide repeats present near the N-terminus of the Pf195 antigen are absent from the Py230 sequence. The PMMSA can be divided into 22 blocks based upon interspecies amino acid conservation.
Collapse
Affiliation(s)
- A P Lewis
- Department of Molecular Biology, Wellcome Biotech, Beckenham, Kent, U.K
| |
Collapse
|
23
|
Früh K, Müller HM, Bujard H, Crisanti A. A new tool for the serodiagnosis of acute Plasmodium falciparum malaria in individuals with primary infection. J Immunol Methods 1989; 122:25-32. [PMID: 2668417 DOI: 10.1016/0022-1759(89)90330-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed an ELISA which detects, with high specificity, antibodies against a major surface protein of P. falciparum merozoites which is a processing product of the precursor glycoprotein gp190. This assay can be used in the diagnosis of acute malaria in individuals with primary infection. Two partial sequences of gp190 were expressed in E. coli as beta-galactosidase (beta-Gal) fusion proteins. The same sequences fused to chloramphenicol acetyltransferase (CAT) or mouse dihydrofolate reductase (DHFR) react with high frequency when sera of acute malaria patients are analyzed in immunoblots. Antibodies from such sera crosslink, via their antigen binding sites, the beta-Gal fusions to the corresponding CAT or DHFR fusions adsorbed to a solid phase as demonstrated by the captured beta-Gal activity. The assay is highly specific, shows extremely low cut off values and should therefore be widely applicable.
Collapse
Affiliation(s)
- K Früh
- Zentrum für Molekulare Biologie, Heidelberg, F.R.G
| | | | | | | |
Collapse
|