Allen SH, Wong KP. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes.
Arch Biochem Biophys 1986;
249:137-47. [PMID:
3527066 DOI:
10.1016/0003-9861(86)90568-0]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In an attempt to understand the role of magnesium ion in ribosome assembly in vitro, the hydrodynamic shape, conformation, and thermal stability of ribosomal 16 S RNA were studied systematically as a function of Mg2+ concentration by sedimentation velocity, intrinsic viscosity, circular dichroism, and difference ultraviolet absorption spectroscopy. These results were then compared with the corresponding parameters obtained for 16 S RNA under the optimal conditions of reconstitution, i.e., at 37 degrees C, 20 mM Mg2+, an ionic strength equal to 0.37, and pH 7.8 [S. H. Allen, and K.-P. Wong (1978) J. Biol. Chem. 253, 8759-8766]. When the 360 mM KCl required for reconstitution of 30 S ribosomes is added to the medium, only subtle conformational changes are observed, consistent with the destabilization of the conformation, thus making the RNA molecule more "open" and accessible to protein binding. However, when the concentration of Mg2+ is lowered from 20 to 1 mM, the hydrodynamic parameters indicate that the 16 S RNA is partially unfolded, while thermal denaturation studies suggest that the amount of base-stacking and base-pairing is not concomitantly altered. Further removal of the Mg2+ by dialysis against a pH 7.8 buffer containing no Mg2+ results in a drastic decrease of secondary structure and indicates that the Mg2+ is required for maintenance of the pairing, stacking, and stability of the nucleotide bases, in addition to the long range interactions which result in a compact structure. The results suggest that the 20 mM Mg2+ is required for the 16 S RNA molecules to assume the proper secondary and tertiary structure containing the protein-binding sites, while the high K+ concentration (360 mM KCl) is needed for "loosening up" the RNA, making the protein binding sites more accessible to the ribosomal proteins for molecular recognition and binding as well as for the conformational changes that occur during ribosome assembly.
Collapse