1
|
Škulj S, Kožić M, Barišić A, Vega A, Biarnés X, Piantanida I, Barisic I, Bertoša B. Comparison of two peroxidases with high potential for biotechnology applications - HRP vs. APEX2. Comput Struct Biotechnol J 2024; 23:742-751. [PMID: 38298178 PMCID: PMC10828542 DOI: 10.1016/j.csbj.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Peroxidases are essential elements in many biotechnological applications. An especially interesting concept involves split enzymes, where the enzyme is separated into two smaller and inactive proteins that can dimerize into a fully active enzyme. Such split forms were developed for the horseradish peroxidase (HRP) and ascorbate peroxidase (APX) already. Both peroxidases have a high potential for biotechnology applications. In the present study, we performed biophysical comparisons of these two peroxidases and their split analogues. The active site availability is similar for all four structures. The split enzymes are comparable in stability with their native analogues, meaning that they can be used for further biotechnology applications. Also, the tertiary structures of the two peroxidases are similar. However, differences that might help in choosing one system over another for biotechnology applications were noticed. The main difference between the two systems is glycosylation which is not present in the case of APX/sAPEX2, while it has a high impact on the HRP/sHRP stability. Further differences are calcium ions and cysteine bridges that are present only in the case of HRP/sHRP. Finally, computational results identified sAPEX2 as the systems with the smallest structural variations during molecular dynamics simulations showing its dominant stability comparing to other simulated proteins. Taken all together, the sAPEX2 system has a high potential for biotechnological applications due to the lack of glycans and cysteines, as well as due to high stability.
Collapse
Affiliation(s)
- Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matej Kožić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Antun Barišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Aitor Vega
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Ivan Barisic
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Eko Refugium, Crno Vrelo 2, Slunj 47240, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| |
Collapse
|
2
|
Liang Z, Yu Y, Zou B, Fu M, Hu T, Yin X, Wang J, Xu Y, Cheng L. The effect of structural changes on the activity of peroxidase with different initial state under high-pressure freezing. Food Chem 2024; 459:140314. [PMID: 39024881 DOI: 10.1016/j.foodchem.2024.140314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The combined impact of initial state, pressure, and freezing on peroxidase denaturation during high-pressure freezing (HPF) processing of enzyme-containing foods remains unclear. This study investigated solid-liquid (initial low/high concentration) biphasic peroxidase using spectroscopic and computer simulation techniques to analyze structural changes affecting peroxidase (POD) activity under HPF. The results indicate that the primary factors determining POD activity during HPF treatment can be ranked as follows: concentration > physical state > pressure > freezing. Higher initial concentrations strengthen protein interactions, leading to a 1% increase in the molecular diameter and a 34% increase in molecular height of HL-POD, thereby increasing aggregation likelihood during crystallization and facilitating structural changes that activate enzymes by 6-17%. The amide I peak proves to be a reliable indicator for monitoring both POD activity and structural alterations. This study offers valuable insights for optimizing HPF technology in food processing.
Collapse
Affiliation(s)
- Zhanhong Liang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China; School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528400, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Manqin Fu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Tenggen Hu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Xiaomeng Yin
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Jin Wang
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
3
|
Milne SA, Lasserre P, Corrigan DK. Fabrication of a graphite-paraffin carbon paste electrode and demonstration of its use in electrochemical detection strategies. Analyst 2024; 149:4736-4746. [PMID: 39114971 DOI: 10.1039/d4an00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Electrochemical detection methods hold many advantages over their optical counterparts, such as operation in complex sample matrices, low-cost and high volume manufacture and possible equipment miniaturisation. Despite these advantages, the use of electrochemical detection is currently limited in the clinical setting. There is a wide range of potential electrode materials, selected for optimal signal-to-noise ratios and reproducibility when detecting target analytes. The use of carbon paste electrodes (CPEs) for electrochemical detection can be limited by their analytical performance, however they remain very attractive due to their low cost and biocompatibility. This paper presents the fabrication of an easy-to-make and use graphite powder/paraffin wax paste combined with a substrate produced via additive manufacturing and confirms its functionality for both direct and indirect electrochemical measurements. The produced CPEs enable the direct voltammetric detection of hexaammineruthenium(III) chloride and dopamine at an experimental limit of detection (ELoD) of 62.5 μM. The key inflammatory biomarker Interleukin-6 through an enzyme-linked immunosorbant assay (ELISA) was also quantified, yielding a clinically-relevant ELoD of 150 pg ml-1 in 10% human serum. The performance of low-cost and easy-to-use CPEs obtained in 0.5 hours is showcased in this study, demonstrating the platform's potential uses for point-of-need electroanalytical applications.
Collapse
Affiliation(s)
- Stuart A Milne
- University of Strathclyde, Biomedical Engineering, Wolfson Centre, 106 Richmond St, Glasgow G1 1XQ, UK.
| | - Perrine Lasserre
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| | - Damion K Corrigan
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| |
Collapse
|
4
|
Bilal M, Singh AK, Iqbal HMN, Kim TH, Boczkaj G, Athmaneh K, Ashraf SS. Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 239:117192. [PMID: 37748672 DOI: 10.1016/j.envres.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A wide array of environmental pollutants is often generated and released into the ecosystem from industrial and human activities. Antibiotics, phenolic compounds, hydroquinone, industrial dyes, and Endocrine-Disrupting Chemicals (EDCs) are prevalent pollutants in water matrices. To promote environmental sustainability and minimize the impact of these pollutants, it is essential to eliminate such contaminants. Although there are multiple methods for pollutants removal, many of them are inefficient and environmentally unfriendly. Horseradish peroxidase (HRP) has been widely explored for its ability to oxidize the aforementioned pollutants, both alone and in combination with other peroxidases, and in an immobilized way. Numerous positive attributes make HRP an excellent biocatalyst in the biodegradation of diverse environmentally hazardous pollutants. In the present review, we underlined the major advancements in the HRP for environmental research. Numerous immobilization and combinational studies have been reviewed and summarized to comprehend the degradability, fate, and biotransformation of pollutants. In addition, a possible deployment of emerging computational methodologies for improved catalysis has been highlighted, along with future outlook and concluding remarks.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma aGandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland
| | - Khawlah Athmaneh
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Bizeau J, Adam A, Nadal C, Francius G, Siniscalco D, Pauly M, Bégin-Colin S, Mertz D. Protein sustained release from isobutyramide-grafted stellate mesoporous silica nanoparticles. Int J Pharm X 2022; 4:100130. [PMID: 36156982 PMCID: PMC9494245 DOI: 10.1016/j.ijpx.2022.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022] Open
Abstract
Proteins are great therapeutic candidates as endogenous biomolecules providing a wide range of applications. However, their delivery suffers from some limitations and specifically designed delivery systems having an efficient protein anchoring and delivery strategy are still needed. In this work, we propose to combine large pore stellate mesoporous silica (STMS) with isobutyramide (IBAM), as a "glue" molecule which has been shown promising for immobilization of various biomacromolecules at silica surface. We address here for the first time the ability of such IBAM-modified NPs to sustainably deliver proteins over a prolonged time. In this work, a quantitative loading study of proteins (serum albumin (HSA), peroxidase (HRP), immunoglobulin (IgG) and polylysine (PLL)) on STMS@IBAM is first presented using three complementary detection techniques to ensure precision and avoid protein quantification issues. The results demonstrated a high loading capacity for HSA and HRP (≥ ca. 350 μg.mg-1) but a moderate one for IgG and PLL. After evaluating the physicochemical properties of the loaded particles and their stability over scaling-up and washings, the ability of STMS@IBAM to release proteins over prolonged time was evaluated in equilibrium (static) and flow mimicking (dynamic) conditions and at different temperatures (25, 37, 45 °C). Results show not only the potential of such "glue" functionalized STMS to release proteins in a sustained way, but also the retention of the biological activity of immobilized and released HRP, used as an enzyme model. Finally, an AFM-force spectroscopy study was conducted to decipher the interactions between IBAM and proteins, showing the involvement of different interactions in the adsorption and release processes.
Collapse
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Alexandre Adam
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Clémence Nadal
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - David Siniscalco
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034, Strasbourg BP 84047, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| |
Collapse
|
6
|
Zhang S, Zheng Z, Zheng C, Zhao Y, Jiang Z. Effect of high hydrostatic pressure on activity, thermal stability and structure of horseradish peroxidase. Food Chem 2022; 379:132142. [PMID: 35063856 DOI: 10.1016/j.foodchem.2022.132142] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022]
Abstract
The mechanism of the high hydrostatic pressure (HHP) effect on horseradish peroxidase (HRP) is still unclear. The activity, thermal stability and structural changes of HRP after HHP treatments were studied in this work. Compared with the untreated sample, the enzyme activity reduces by 36% after 800 MPa processing. The results indicated that the conformation of the enzyme active center changes under pressure. Furthermore, HHP also changes the conformation of disulfide bonds and some secondary structures in HRP. These structural and conformational changes induce decreased activity. In addition, differential thermal scanning (DSC) results showed that the thermal denaturation temperature decreased from 103.74 °C to 85.78 °C after pressure treatment, suggesting HRP molecules formed large aggregates after pressure treatment. In this study, the interaction mechanism between pressure and enzyme was studied as well, and the results can provide some guidance for the application of HHP technology in fruit and vegetable products processing.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhong Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuyao Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yadong Zhao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Škulj S, Barišić A, Mutter N, Spadiut O, Barišić I, Bertoša B. Effect of N-glycosylation on horseradish peroxidase structural and dynamical properties. Comput Struct Biotechnol J 2022; 20:3096-3105. [PMID: 35782731 PMCID: PMC9233188 DOI: 10.1016/j.csbj.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
|
8
|
Humer D, Spadiut O. Enzyme prodrug therapy: cytotoxic potential of paracetamol turnover with recombinant horseradish peroxidase. MONATSHEFTE FUR CHEMIE 2021; 152:1389-1397. [PMID: 34759433 PMCID: PMC8542555 DOI: 10.1007/s00706-021-02848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022]
Abstract
Targeted cancer treatment is a promising, less invasive alternative to chemotherapy as it is precisely directed against tumor cells whilst leaving healthy tissue unaffected. The plant-derived enzyme horseradish peroxidase (HRP) can be used for enzyme prodrug cancer therapy with indole-3-acetic acid or the analgesic paracetamol (acetaminophen). Oxidation of paracetamol by HRP in the presence of hydrogen peroxide leads to N-acetyl-p-benzoquinone imine and polymer formation via a radical reaction mechanism. N-acetyl-p-benzoquinone imine binds to DNA and proteins, resulting in severe cytotoxicity. However, plant HRP is not suitable for this application since the foreign glycosylation pattern is recognized by the human immune system, causing rapid clearance from the body. Furthermore, plant-derived HRP is a mixture of isoenzymes with a heterogeneous composition. Here, we investigated the reaction of paracetamol with defined recombinant HRP variants produced in E. coli, as well as plant HRP, and found that they are equally effective in paracetamol oxidation at a concentration ≥ 400 µM. At low paracetamol concentrations, however, recombinant HRP seems to be more efficient in paracetamol oxidation. Yet upon treatment of HCT-116 colon carcinoma and FaDu squamous carcinoma cells with HRP-paracetamol no cytotoxic effect was observed, neither in the presence nor absence of hydrogen peroxide. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00706-021-02848-x.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
9
|
Citartan M. Aptamers as the powerhouse of dot blot assays. Talanta 2021; 232:122436. [PMID: 34074421 DOI: 10.1016/j.talanta.2021.122436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Dot blot assays have always been associated with antibodies as the main molecular recognition element, which are widely employed in a myriad of diagnostic applications. With the rising of aptamers as the equivalent molecular recognition elements of antibodies, dot blot assays are also one of the diagnostic avenues that should be scrutinized for their amenability with aptamers as the potential surrogates of antibodies. In this review, the stepwise procedures of an aptamer-based dot blot assays are underscored before reviewing the existing aptamer-based dot blot assays developed so far. Most of the applications center on monitoring the progress of SELEX and as the validatory assays to assess the potency of aptamer candidates. For the purpose of diagnostics, the current effort is still languid and as such possible suggestions to galvanize the move to spur the aptamer-based dot blot assays to a point-of-care arena are discussed.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
10
|
Ramos LD, Prado FM, Stevani CV, Di Mascio P, Bechara EJH. l-Tryptophan Interactions with the Horseradish Peroxidase-Catalyzed Generation of Triplet Acetone. Photochem Photobiol 2021; 97:327-334. [PMID: 33296511 DOI: 10.1111/php.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Triplet carbonyls generated by chemiexcitation are involved in typical photobiochemical processes in the absence of light. Due to their biradical nature, ultraweak light emission and long lifetime, electronically excited triplet species display typical radical reactions such as isomerization, fragmentation, cycloaddition and hydrogen abstraction. In this paper, we report chemical reactions in a set of amino acid residues induced by the isobutanal/horseradish peroxidase (IBAL/HRP) system, a well-known source of excited triplet acetone (Ac3* ). Accordingly, quenching of Ac3* by tryptophan (Trp) unveiled parallel enzyme damage and inactivation, likely explained by scavenging of IBAL tertiary radical reaction intermediate and Ac3* -derived 2-hydroxy-i-propyl radical. Quenching constants were calculated from Stern-Volmer plots, and the structure of radical adducts was revealed by mass spectrometry. As expected, a concurrent Schiff-type adduct was found to be one of the reaction by-products. These findings draw attention to potential structural and functional changes in enzymes involved in the electronic chemiexcitation of their products.
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol 2020; 23:81-98. [PMID: 33000528 DOI: 10.1111/1462-2920.15264] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
The activity of individual microorganisms can be measured within environmental samples by detecting uptake of isotope-labelled substrates using nano-scale secondary ion mass spectrometry (nanoSIMS). Recent studies have demonstrated that sample preparation can decrease 13 C and 15 N enrichment in bacterial cells, resulting in underestimates of activity. Here, we explore this effect with a variety of preparation types, microbial lineages and isotope labels to determine its consistency and therefore potential for correction. Specifically, we investigated the impact of different protocols for fixation, nucleic acid staining and catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) on >14 500 archaeal and bacterial cells (Methanosarcina acetivorans, Sulfolobus acidocaldarius and Pseudomonas putida) enriched in 13 C, 15 N, 18 O, 2 H and/or 34 S. We found these methods decrease isotope enrichments by up to 80% - much more than previously reported - and that the effect varies by taxa, growth phase, isotope label and applied protocol. We make recommendations for how to account for this effect experimentally and analytically. We also re-evaluate published nanoSIMS datasets and revise estimated microbial turnover times in the marine subsurface and nitrogen fixation rates in pelagic unicellular cyanobacteria. When sample preparation is accounted for, cell-specific rates increase and are more consistent with modelled and bulk rates.
Collapse
Affiliation(s)
- Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Julian L Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Scalable High-Performance Production of Recombinant Horseradish Peroxidase from E. coli Inclusion Bodies. Int J Mol Sci 2020; 21:ijms21134625. [PMID: 32610584 PMCID: PMC7369975 DOI: 10.3390/ijms21134625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
Horseradish peroxidase (HRP), an enzyme omnipresent in biotechnology, is still produced from hairy root cultures, although this procedure is time-consuming and only gives low yields. In addition, the plant-derived enzyme preparation consists of a variable mixture of isoenzymes with high batch-to-batch variation preventing its use in therapeutic applications. In this study, we present a novel and scalable recombinant HRP production process in Escherichia coli that yields a highly pure, active and homogeneous single isoenzyme. We successfully developed a multi-step inclusion body process giving a final yield of 960 mg active HRP/L culture medium with a purity of ≥99% determined by size-exclusion high-performance liquid chromatography (SEC-HPLC). The Reinheitszahl, as well as the activity with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, are comparable to commercially available plant HRP. Thus, our preparation of recombinant, unglycosylated HRP from E. coli is a viable alternative to the enzyme from plant and highly interesting for therapeutic applications.
Collapse
|
13
|
Improving the Performance of Horseradish Peroxidase by Site-Directed Mutagenesis. Int J Mol Sci 2019; 20:ijms20040916. [PMID: 30791559 PMCID: PMC6412888 DOI: 10.3390/ijms20040916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/17/2023] Open
Abstract
Horseradish peroxidase (HRP) is an intensely studied enzyme with a wide range of commercial applications. Traditionally, HRP is extracted from plant; however, recombinant HRP (rHRP) production is a promising alternative. Here, non-glycosylated rHRP was produced in Escherichia coli as a DsbA fusion protein including a Dsb signal sequence for translocation to the periplasm and a His tag for purification. The missing N-glycosylation results in reduced catalytic activity and thermal stability, therefore enzyme engineering was used to improve these characteristics. The amino acids at four N-glycosylation sites, namely N13, N57, N255 and N268, were mutated by site-directed mutagenesis and combined to double, triple and quadruple enzyme variants. Subsequently, the rHRP fusion proteins were purified by immobilized metal affinity chromatography (IMAC) and biochemically characterized. We found that the quadruple mutant rHRP N13D/N57S/N255D/N268D showed 2-fold higher thermostability and 8-fold increased catalytic activity with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as reducing substrate when compared to the non-mutated rHRP benchmark enzyme.
Collapse
|
14
|
Saud Al-Bagmi M, Shahnawaz Khan M, Alhasan Ismael M, Al-Senaidy AM, Ben Bacha A, Mabood Husain F, Alamery SF. An efficient methodology for the purification of date palm peroxidase: Stability comparison with horseradish peroxidase (HRP). Saudi J Biol Sci 2019; 26:301-307. [PMID: 31485169 PMCID: PMC6717102 DOI: 10.1016/j.sjbs.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/02/2018] [Accepted: 04/01/2018] [Indexed: 11/28/2022] Open
Abstract
In the present study, Peroxidase from date palm (Phoenix dactylifera) leaves was purified to homogeneity by three-step procedure including aqueous two-phase system, hydrophobic and Ion-exchange chromatography. The enzyme migrated as single band on SDS-PAGE giving molecular weight of 68 ± 3 kDa. The purification factor for purified date palm peroxidase was 68 with high 41% yield. Enzymatic assays together with far-UV circular dichroism (CD), intrinsic and extrinsic fluorescence studies were carried out to monitor the structural stability of date palm and horseradish peroxidase (HRP) against various pH and temperatures. Activity measurements illustrated different pH stability for date palm and HRP. Both peroxidases are more susceptible to extreme acidic conditions as suggested by 4 & 15 nm red shift in date palm and HRP, respectively. Secondary structure analysis using far UV-CD exhibited predominance of α-helical (43.8%) structure. Also, pH induces loss in the secondary structure of date palm peroxidase. Thermal stability analysis revealed date palm peroxidase is more stable in comparison to HRP. In summary, date palm peroxidases could be promising enzymes for various applications where extreme pH and temperature is required.
Collapse
Affiliation(s)
- Moneera Saud Al-Bagmi
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Alhasan Ismael
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman M. Al-Senaidy
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food and Agriculture science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Freeh Alamery
- Center of Excellence in Biotechnology Research, Dept. Of Biochemistry, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
15
|
Alshawafi WM, Aldhahri M, Almulaiky YQ, Salah N, Moselhy SS, Ibrahim IH, El-Shishtawy RM, Mohamed SA. Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S973-S981. [PMID: 30314411 DOI: 10.1080/21691401.2018.1522321] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present study, nanodiamond (ND) was blended with polymethyl methacrylate (PMMA) and then electrospun into nanofibers (nfPMMA-ND) for the immobilization of horseradish peroxidase (HRP). The maximum immobilization efficiency of HRP (96%) was detected at 10% ND and pH 7.0. ATR-FTIR, SEM and TEM were used to characterize the immobilized enzyme. The immobilized enzyme retained 60% of its initial activity after ten reuses. The pH was shifted from 7.0 for soluble HRP to 7.5 for the immobilized enzyme. The soluble HRP had an optimum temperature of 30 °C, whereas this temperature was shifted to 40 °C for the immobilized enzyme. The substrate analogs were oxidized by immobilized HRP with higher efficiencies than those of soluble HRP. The kinetic results showed that the soluble HRP had more affinity toward guiacol and H2O2 than immobilized HRP. The effect of metal ions on soluble and immobilized HRP was studied. The immobilized HRP was markedly more stable when it exposed to urea, isopropanol, butanol and heptane compared with the soluble enzyme. The immobilized HRP exhibited high resistance to proteolysis by trypsin than that of soluble enzyme. In conclusion, the nfPMMA-ND-HRP could be employed in several applications such as biosensor, biomedical and bioremediation.
Collapse
Affiliation(s)
- Waleed M Alshawafi
- a Biochemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia.,b Centre of Nanotechnology , King AbdulAziz University , Jeddah , Saudi Arabia.,c Departments of Chemistry, Faculty of Applied Sciences , Taiz University , Taiz , Yemen
| | - Musab Aldhahri
- a Biochemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia.,b Centre of Nanotechnology , King AbdulAziz University , Jeddah , Saudi Arabia
| | - Yaaser Q Almulaiky
- c Departments of Chemistry, Faculty of Applied Sciences , Taiz University , Taiz , Yemen.,d Department of Biochemistry, Faculty of Science , University of Jeddah , Jeddah , Saudi Arabia.,e Center of University of Jeddah for Science and Medical research , University of Jeddah , Jeddah , Saudi Arabia
| | - Numan Salah
- b Centre of Nanotechnology , King AbdulAziz University , Jeddah , Saudi Arabia
| | - Said S Moselhy
- a Biochemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia.,f Biochemistry Department, Faculty of science , Ain Shams University , Cairo , Egypt
| | - Ibrahim H Ibrahim
- a Biochemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Reda M El-Shishtawy
- g Chemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia.,h Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division , National Research Centre , Cairo , Egypt
| | - Saleh A Mohamed
- a Biochemistry Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia.,i Molecular Biology Department , National Research Centre , Cairo , Egypt
| |
Collapse
|
16
|
Nomura T, Ogita S, Kato Y. Rational metabolic-flow switching for the production of exogenous secondary metabolites in bamboo suspension cells. Sci Rep 2018; 8:13203. [PMID: 30181615 PMCID: PMC6123407 DOI: 10.1038/s41598-018-31566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
The synthetic biology-driven production of high-value plant secondary metabolites in microbial hosts has attracted extensive attention despite various challenges, including correct protein expression and limited supplies of starting materials. In contrast, plant cell cultures are rarely used for this purpose owing to their slow proliferation rates and laborious transformation processes. Here, we propose a "rational metabolic-flow switching" strategy to efficiently produce exogenous secondary metabolites using suspension-cultured bamboo (Phyllostachys nigra; Pn) cells as model production hosts. The Pn cells biosynthesise hydroxycinnamic acid amides (HCAAs) of putrescine as major secondary metabolites, which indicates that the phenylpropanoid and polyamine biosynthetic pathways are highly active and that the Pn cells may produce alternative secondary metabolites derived from those pathways. Stable transformants of Pn cells expressing agmatine coumaroyltransferase of barley (Hordeum vulgare) were generated with the expectation of metabolic-flow switching from HCAAs of putrescine to those of agmatine. In the recombinant Pn cells, the levels of HCAAs of putrescine decreased and the HCAAs of agmatine were produced instead. The production titre of the major product, p-coumaroylagmatine, reached approximately 360 mg/L, providing a proof-of-concept for the usefulness of "rational metabolic-flow switching" in synthetic biology using plant cell hosts.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Shinjiro Ogita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima, 727-0023, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
17
|
Sarvandi-Dehghanpoor E, Riahi-Madvar A, Lotfi S, Torkzadeh-Mahani M. Improvement of kinetic properties and thermostability of recombinant Lepidium draba peroxidase (LDP) upon exposed to osmolytes. Int J Biol Macromol 2018; 119:1036-1041. [PMID: 30096393 DOI: 10.1016/j.ijbiomac.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
Abstract
In this study, effects of different concentrations of glycine and D-sorbitol were analyzed on the activity and thermostability of recombinant Lepidium draba peroxidase (LDP). Based on the results, activity of the enzyme increased in the presence of various concentrations of these osmolytes. Maximum activity was detected for the enzyme in the presence of 300 mM glycine and 600 mM sorbitol. In presence of the aforementioned doses of osmolytes, enzyme affinity for substrate (3,3',5,5'-tetramethylbenzidine and H2O2) and Vmax increased. According to the results, enzyme stability improved against temperature and H2O2. Furthermore, structural changes of the enzyme upon exposure to the osmolytes were revealed by the use of far-UV circular dichroism and fluorescence methods. The results showed, whereas the secondary structure of the enzyme was not significantly changed upon exposed to the osmolytes, the fluorescence studies revealed microenvironment of the aromatic residues dramatically affected by them. Overall, it may be speculated, structural changes of the enzyme upon exposed to the osmolytes, lead to the improvement of its kinetic properties and stability that can be benefit for using of it in in vitro applications.
Collapse
Affiliation(s)
- Elnaz Sarvandi-Dehghanpoor
- Department of Biochemistry, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Biotechnology, Institute of Science and High technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
18
|
Singhal A, Chauhan SMS. Free Radical Copolymerization of Acrylamide andN-Vinylpyrrolidone Catalyzed by Iron(III)porphyrins in the Presence of Ionic Liquids. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1462076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - S. M. S. Chauhan
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| |
Collapse
|
19
|
Huddy SM, Hitzeroth II, Meyers AE, Weber B, Rybicki EP. Transient Expression and Purification of Horseradish Peroxidase C in Nicotiana benthamiana. Int J Mol Sci 2018; 19:E115. [PMID: 29301255 PMCID: PMC5796064 DOI: 10.3390/ijms19010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/24/2017] [Accepted: 12/30/2017] [Indexed: 02/02/2023] Open
Abstract
Horseradish peroxidase (HRP) is a commercially important reagent enzyme used in molecular biology and in the diagnostic product industry. It is typically purified from the roots of the horseradish (Armoracia rusticana); however, this crop is only available seasonally, yields are variable and often low, and the product is a mixture of isoenzymes. Engineering high-level expression in transiently transformed tobacco may offer a solution to these problems. In this study, a synthetic Nicotiana benthamiana codon-adapted full-length HRP isoenzyme gene as well as C-terminally truncated and both N- and C-terminally truncated versions of the HRP C gene were synthesized, and their expression in N. benthamiana was evaluated using an Agrobacterium tumefaciens-mediated transient expression system. The influence on HRP C expression levels of co-infiltration with a silencing suppressor (NSs) construct was also evaluated. Highest HRP C levels were consistently obtained using either the full length or C-terminally truncated HRP C constructs. HRP C purification by ion exchange chromatography gave an overall yield of 54% with a Reinheitszahl value of >3 and a specific activity of 458 U/mg. The high level of HRP C production in N. benthamiana in just five days offers an alternative, viable, and scalable system for production of this commercially significant enzyme.
Collapse
Affiliation(s)
- Suzanne M Huddy
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Brandon Weber
- Aaron Klug Centre for Imaging Analysis, University of Cape Town, Rondebosch 7701, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
- Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
20
|
Tadepalli S, Wang Z, Slocik J, Naik RR, Singamaneni S. Effect of size and curvature on the enzyme activity of bionanoconjugates. NANOSCALE 2017; 9:15666-15672. [PMID: 28993826 DOI: 10.1039/c7nr02434g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biotic-abiotic hybrids comprised of globular proteins and functional nanostructures with complementary and synergistic properties are central to a number of bionanotechnological applications. A comprehensive understanding of the effect of physicochemical properties of abiotic nanostructures on the biological activity of the bionanoconjugates is critical in the design of these bio-nano hybrids. In this study, using size and curvature-controlled gold nanoparticles as a model abiotic system, we investigated the effect of hydrodynamic diameter and surface curvature on the activity of a model enzyme, horseradish peroxidase (HRP), adsorbed on the surface of the nanostructures. In contrast with the previous studies, we have employed a novel class of gold superstructures (gold nanoparticles on spheres) to deconvolute the effects of size and curvature on the catalytic activity of the bionanoconjugates. This study improves our understanding of the bio/nano interface and the design of bioinorganic hybrids with potential applications in biomimetic and bioenabled sensors, energy harvesting, optoelectronic components and devices, responsive and autonomous materials.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Institute of Material Science and Engineering and Department of Mechanical Engineering and Material Science, Washington University in St Louis, St Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
21
|
Li C, Chen H, Chen B, Zhao G. Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Crit Rev Food Sci Nutr 2017; 58:689-699. [PMID: 27558793 DOI: 10.1080/10408398.2016.1213698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Applications of nanotechnology in food have rapidly increased in the past decades. Ultra-small gold nanoclusters (Au NCs), composed of several to roughly a hundred atoms, represent a kind of novel nanomaterials. The Au NCs directed by food proteins have drawn considerable research attention due to their environment-friendly preparation, strong fluorescence, excellent photo-stability, and favorable biocompatibility. These interesting protein-Au hybrids have opened up a new area at the nano-bio-food interface, not only did they provide the missing link between single metal atoms and plasmonic metal nanoparticles, but also developed the hybrid system between biomacromolecule and inorganic ions. In this review, we highlighted the synthesis strategies and optical properties of the Au NCs stabilized by typical food proteins as well as their applications in detection of food contaminants or bioactive nutrients. In addition, we discussed current challenges and future development in food proteins- directed gold nanoclusters for size-controlled synthesis and multifunctional applications.
Collapse
Affiliation(s)
- Changan Li
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Hai Chen
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Bin Chen
- b Key Laboratory of Space Nutrition and Food Engineering , China Astronaut Research and Training Center , Beijing , China
| | - Guanghua Zhao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| |
Collapse
|
22
|
Nunavath H, Banoth C, Talluri VR, Bhukya B. An analysis of horseradish peroxidase enzyme for effluent treatment. Bioinformation 2016; 12:318-323. [PMID: 28293074 PMCID: PMC5322315 DOI: 10.6026/97320630012318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
The present study explains computational methods to design thermostable horseradish peroxidase enzyme using the crystal structure available from Protein Data Bank (PDB ID: 6ATJ). Multiple mutations were introduced to the original enzyme and developed a model by using Modeler9.14. After designing the model functional effect was confirmed in terms of protein ligand binding by molecular docking using Autodock 4.2. The implementation of modeling steps is demonstrated in the context of performing mutations for particular amino acid residue on the ligand pocket of the horseradish peroxidase, to derive the desired ligand binding properties. The docking investigation of modelled HRP with Quercetindihydroxide using Autodock 4.2 software that six amino acid residues, P139, H42, A31, L174, A38, and G169 are involved in hydrogen bonding. More importantly, it provides insight into understanding and properly interpreting the data produced by these methods. The 3D model was docked with Quercetindihydroxide (a known horseradish modulator) to understand molecular interactions at the active site region.
Collapse
Affiliation(s)
- Hanumalal Nunavath
- Department of Microbiology, Osmania University, Hyderabad - 500 007, India
| | | | - Venkateswar Rao Talluri
- Professor TNA Innovation Center, VBTIPL, Sy. No.253/A, Jiblakpally, Pochampally - 508284, Nalgonda (Dist.), Telangana, India
| | - Bhima Bhukya
- Department of Microbiology, Osmania University, Hyderabad - 500 007, India
| |
Collapse
|
23
|
Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris. J Biotechnol 2016; 233:181-9. [PMID: 27432633 DOI: 10.1016/j.jbiotec.2016.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme.
Collapse
|
24
|
Vdovenko MM, Byzova NA, Zherdev AV, Dzantiev BB, Sakharov IY. Ternary covalent conjugate (antibody–gold nanoparticle–peroxidase) for signal enhancement in enzyme immunoassay. RSC Adv 2016. [DOI: 10.1039/c6ra04785h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthesis of a new horseradish peroxidase (HRP) conjugate and antibody covalently bound with gold nanoparticles (GNPs) with a high enzyme content was first developed.
Collapse
Affiliation(s)
- M. M. Vdovenko
- Chemistry Department
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - N. A. Byzova
- A.N. Bakh Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow 119071
- Russia
| | - A. V. Zherdev
- A.N. Bakh Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow 119071
- Russia
| | - B. B. Dzantiev
- A.N. Bakh Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow 119071
- Russia
| | - I. Yu. Sakharov
- Chemistry Department
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
25
|
Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter. PLoS One 2015; 10:e0127479. [PMID: 25993095 PMCID: PMC4439038 DOI: 10.1371/journal.pone.0127479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.
Collapse
|
26
|
Krainer FW, Glieder A. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 2015; 99:1611-25. [PMID: 25575885 PMCID: PMC4322221 DOI: 10.1007/s00253-014-6346-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
Abstract
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge—the efficient recombinant production of horseradish peroxidase enzymes.
Collapse
Affiliation(s)
- Florian W Krainer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria,
| | | |
Collapse
|
27
|
Saa L, Coronado-Puchau M, Pavlov V, Liz-Marzán LM. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. NANOSCALE 2014; 6:7405-7409. [PMID: 24874748 DOI: 10.1039/c4nr01323a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gold nanorods (AuNRs) have become some of the most used nanostructures for biosensing and imaging applications due to their plasmon-related optical response, which is highly sensitive toward minute changes in the AuNR aspect ratio. In this context, H2O2 has been used to trigger the chemical etching of AuNRs, thereby inducing a decrease of their aspect ratio. However, special conditions and relatively high concentrations of H2O2 are usually required, preventing the applicability of the system for biodetection purposes. To overcome this limitation we have introduced a biocatalytic species, the enzyme horseradish peroxidase (HRP) that is able to induce a gradual oxidation of AuNRs in the presence of trace concentrations of H2O2. Interestingly, the presence of halide ions has also been found to be essential for this process. As a consequence, other enzymatic reactions, such as those catalyzed by glucose oxidase, can be easily coupled to HRP activity, allowing the detection of different amounts of glucose. On the basis of these findings, we developed a highly sensitive and simple colorimetric assay that can be read out by the naked eye and allows the detection of physiological glucose concentrations in human serum.
Collapse
Affiliation(s)
- Laura Saa
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia/San Sebastián, Spain.
| | | | | | | |
Collapse
|
28
|
Evidence for peroxidase activity in Caralluma umbellata. Appl Biochem Biotechnol 2014; 173:1955-62. [PMID: 24943097 DOI: 10.1007/s12010-014-1013-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Vast applications of peroxidases create an increasing demand to characterize peroxidases from new sources with more applicability potential. The aim of the present study was to check the presence of peroxidase activity from Caralluma umbellata. This is the first report on the C. umbellata peroxidase (CUP). The presence of peroxidase was revealed by the histochemical analysis of the stem sections, zymographic studies, and in vitro peroxidase activity assay using various reducing substrates viz., 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine, and ferulic acid. The band pattern in zymogram confirms that CUP has a molecular weight less than that of horseradish peroxidase (44 kDa). Comparative evaluation of peroxidase activity of CUP with respect to horseradish peroxidase (HRP) indicates that CUP catalyzes ABTS and ferulic acid in a similar pattern as HRP but with guaiacol, the extent of catalysis shown by CUP over HRP is high. The standard inhibitors sodium azide and sodium meta bisulphite inhibited CUP activity in a dose dependent manner.
Collapse
|
29
|
Miyagawa-Yamaguchi A, Kotani N, Honke K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS One 2014; 9:e93054. [PMID: 24671047 PMCID: PMC3966864 DOI: 10.1371/journal.pone.0093054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts that are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins serve as a platform for important biological events. To elucidate the molecular mechanisms of these events, identification of co-clustering molecules in individual raft domains is required. Here we describe an approach to this issue using the recently developed method termed enzyme-mediated activation of radical source (EMARS), by which molecules in the vicinity within 300 nm from horseradish peroxidase (HRP) set on the probed molecule are labeled. GPI-anchored HRP fusion proteins (HRP-GPIs), in which the GPI attachment signals derived from human decay accelerating factor and Thy-1 were separately connected to the C-terminus of HRP, were expressed in HeLa S3 cells, and the EMARS reaction was catalyzed by these expressed HRP-GPIs under a living condition. As a result, these different HRP-GPIs had differences in glycosylation and localization and formed distinct clusters. This novel approach distinguished molecular clusters associated with individual GPI-anchored proteins, suggesting that it can identify co-clustering molecules in individual raft domains.
Collapse
Affiliation(s)
- Arisa Miyagawa-Yamaguchi
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
| | - Norihiro Kotani
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Koichi Honke
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Kochi University Medical School, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
30
|
Näätsaari L, Krainer FW, Schubert M, Glieder A, Thallinger GG. Peroxidase gene discovery from the horseradish transcriptome. BMC Genomics 2014; 15:227. [PMID: 24666710 PMCID: PMC3987668 DOI: 10.1186/1471-2164-15-227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana. RESULTS In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes. CONCLUSIONS This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes.
Collapse
Affiliation(s)
- Laura Näätsaari
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Florian W Krainer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Michael Schubert
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010 Graz, Austria
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
31
|
Insights into the impact of deep eutectic solvents on horseradish peroxidase: Activity, stability and structure. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Lopes GR, Pinto DCGA, Silva AMS. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv 2014. [DOI: 10.1039/c4ra06094f] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The horseradish peroxidase (HRP) potential in organic synthesis.
Collapse
Affiliation(s)
- Guido R. Lopes
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| | | | - Artur M. S. Silva
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Gawlitza K, Georgieva R, Tavraz N, Keller J, von Klitzing R. Immobilization of water-soluble HRP within poly-N-isopropylacrylamide microgel particles for use in organic media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16002-16009. [PMID: 24320795 DOI: 10.1021/la403598s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the present work, the immobilization of enzymes within poly-N-isopropylacrylamide (p-NIPAM) microgels using the method of solvent exchange is applied to the enzyme horseradish peroxidase (HRP). When the solvent is changed from water to isopropanol, HRP is embedded within the polymer structure. After the determination of the immobilized amount of enzyme, an enhanced specific activity of the biocatalyst in isopropanol can be observed. Karl Fischer titration is used to determine the amount of water within the microgel particles before and after solvent exchange, leading to the conclusion that an "aqueous cage" remains within the polymer structure. This represents the driving force for the immobilization due to the high affinity of HRP for water. Beside, confocal laser scanning microscopy (CLSM) images show that HRP is located within the microgel network after immobilization. This gives the best conditions for HRP to be protected against chemical and mechanical stress. We were able to transfer a water-soluble enzyme to an organic phase by reaching a high catalytic activity. Hence, the method of solvent exchange displays a general method for immobilizing enzymes within p-NIPAM microgels for use in organic solvents. With this strategy, enzymes that are not soluble in organic solvents such as HRP can be used in such polar organic solvents.
Collapse
Affiliation(s)
- Kornelia Gawlitza
- Stranski-Laboratory for Physical and Theoretical Chemistry and ‡Institute of Chemistry, Technische Universität Berlin , 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Morikawa MA, Takano A, Tao S, Kimizuka N. Biopolymer-Encapsulated Protein Microcapsules Spontaneously Formed at the Ionic Liquid–Water Interface. Biomacromolecules 2012; 13:4075-80. [DOI: 10.1021/bm301371t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Nobuo Kimizuka
- JST CREST, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Charbgoo F, Mirshahi M, Sarikhani S, Saifi Abolhassan M. Synthesis of a unique high-performance poly-horseradish peroxidase complex to enhance sensitivity of immunodetection systems. Biotechnol Appl Biochem 2012; 59:45-9. [DOI: 10.1002/bab.58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/09/2011] [Indexed: 11/11/2022]
|
36
|
|
37
|
Labeling of biotin antibodies with horseradish peroxidase using cyanuric chloride. Nat Protoc 2009; 4:452-60. [DOI: 10.1038/nprot.2009.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Naves AF, Carmona-Ribeiro AM, Casarano R, Catalani LH, Kawano Y, Petri DF. Crystalline particles from self-assembled divinyl oligomers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Soares VA, Severino D, Junqueira HC, Tersariol ILS, Shida CS, Baptista MS, Nascimento OR, Nantes IL. Light-Driven Horseradish Peroxidase Cycle by Using Photo-activated Methylene Blue as the Reducing Agent. Photochem Photobiol 2007; 83:1254-62. [PMID: 17880521 DOI: 10.1111/j.1751-1097.2007.00158.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the regeneration of native horseradish peroxidase (HRP), following the consecutive reduction of oxo-ferryl pi-cation (compound I) and oxo-ferryl (compound II) forms, was observed by UV-visible spectrometry and electron paramagnetic resonance (EPR) in the presence of methylene (MB+), in the dark and under irradiation. In the dark, MB+ did not affect the rate of HRP compound I and II reduction, compatible with hydrogen peroxide as the solely reducing species. Under irradiation, the dye promoted a significant increase in the native HRP regeneration rate in a pH-dependent manner. Flash photolysis measurements revealed significant redshift of the MB+ triplet absorbance spectrum in the presence of native HRP. This result is compatible with the dye binding on the enzyme structure leading to the increase in the photogenerated MB* yield. In the presence of HRP compound II, the lifetime of the dye at 520 nm decreased approximately 75% relative to the presence of native HRP that suggests MB* as the heme iron photochemical reducing agent. In argon and in air-saturated media, photoactivated MB+ led to native HRP regeneration in a time- and concentration-dependent manner. The apparent rate constant for photoactivated MB+-promoted native HRP regeneration, in argon and in air-saturated medium and measured as a function of MB+ concentration, exhibited saturation that is suggestive of dye binding on the HRP structure. The dissociation constant (KMB) observed for the binding of dye to HRP was 5.4+/-0.6 microM and 0.57+/-0.05 microM in argon and air-saturated media, respectively. In argon-saturated medium, the rate of the conversion of HRP compound II to native HRP was significantly higher, k2argon=(2.1+/-0.1)x10(-2) s(-1), than that obtained in air-equilibrated medium, k2air=(0.73+/-0.02)x10(-2) s(-1). Under these conditions the efficiency of photoactivated MB(+)-promoted native HRP regeneration was determined in argon and air-equilibrated media as being, respectively: k2/KMB=3.9x10(3) and 12.8x10(3) M(-1) s(-1).
Collapse
Affiliation(s)
- Vanessa A Soares
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kumar S, Dutta A, Sinha AK, Sen J. Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 2007; 274:1290-303. [PMID: 17298442 DOI: 10.1111/j.1742-4658.2007.05677.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catharanthus roseus (L.) G. Don produces a number of biologically active terpenoid indole alkaloids via a complex terpenoid indole alkaloid biosynthetic pathway. The final dimerization step of this pathway, leading to the synthesis of a dimeric alkaloid, vinblastine, was demonstrated to be catalyzed by a basic peroxidase. However, reports of the gene encoding this enzyme are scarce for C. roseus. We report here for the first time the cloning, characterization and localization of a novel basic peroxidase, CrPrx, from C. roseus. A 394 bp partial peroxidase cDNA (CrInt1) was initially amplified from the internodal stem tissue, using degenerate oligonucleotide primers, and cloned. The full-length coding region of CrPrx cDNA was isolated by screening a leaf-specific cDNA library with CrInt1 as probe. The CrPrx nucleotide sequence encodes a deduced translation product of 330 amino acids with a 21 amino acid signal peptide, suggesting that CrPrx is secretory in nature. The molecular mass of this unprocessed and unmodified deduced protein is estimated to be 37.43 kDa, and the pI value is 8.68. CrPrx was found to belong to a 'three intron' category of gene that encodes a class III basic secretory peroxidase. CrPrx protein and mRNA were found to be present in specific organs and were regulated by different stress treatments. Using a beta-glucuronidase-green fluorescent protein fusion of CrPrx protein, we demonstrated that the fused protein is localized in leaf epidermal and guard cell walls of transiently transformed tobacco. We propose that CrPrx is involved in cell wall synthesis, and also that the gene is induced under methyl jasmonate treatment. Its potential involvement in the terpenoid indole alkaloid biosynthetic pathway is discussed.
Collapse
Affiliation(s)
- Santosh Kumar
- National Centre for Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi 110-067, India
| | | | | | | |
Collapse
|
41
|
Corvis Y, Walcarius A, Rink R, Mrabet NT, Rogalska E. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 2007; 77:1622-30. [PMID: 15762565 DOI: 10.1021/ac048897w] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simple and reliable immobilization techniques that preserve the activity of enzymes are of interest in many technologies based on catalysis. Here, two redox enzymes, glucose oxidase from Aspergillus niger and horseradish peroxidase, were immobilized by physisorption on glassy carbon electrodes coated with Schizophyllum commune hydrophobin. Hydrophobins are small, interfacially active proteins that have the remarkable property of adhering to almost any surface. We showed recently that these proteins can be used to immobilize small, electroactive molecules. The results obtained in this work show a way to easily manufacture stable, enzyme-based catalytic surfaces for applications in biosensing.
Collapse
Affiliation(s)
- Yohann Corvis
- Groupe d'Etude des Vecteurs Supramoléculaires du Médicament UMR 7565 CNRS/Université Henri Poincaré Nancy 1, Faculté des Sciences, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Mogharrab N, Ghourchian H, Amininasab M. Structural stabilization and functional improvement of horseradish peroxidase upon modification of accessible lysines: experiments and simulation. Biophys J 2006; 92:1192-203. [PMID: 17114227 PMCID: PMC1783884 DOI: 10.1529/biophysj.106.092858] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.
Collapse
Affiliation(s)
- Navid Mogharrab
- Laboratory of Microanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
43
|
Dicko MH, Gruppen H, Hilhorst R, Voragen AGJ, van Berkel WJH. Biochemical characterization of the major sorghum grain peroxidase. FEBS J 2006; 273:2293-307. [PMID: 16650004 DOI: 10.1111/j.1742-4658.2006.05243.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major cationic peroxidase in sorghum grain (SPC4) , which is ubiquitously present in all sorghum varieties was purified to apparent homogeneity, and found to be a highly basic protein (pI approximately 11). MS analysis showed that SPC4 consists of two glycoforms with molecular masses of 34,227 and 35,629 Da and it contains a type-b heme. Chemical deglycosylation allowed to estimate sugar contents of 3.0% and 6.7% (w/w) in glycoform I and II, respectively, and a mass of the apoprotein of 33,246 Da. High performance anion exchange chromatography allowed to determine the carbohydrate constituents of the polysaccharide chains. The N-terminal sequence of SPC4 is not blocked by pyroglutamate. MS analysis showed that six peptides, including the N-terminal sequence of SPC4 matched with the predicted tryptic peptides of gene indice TC102191 of sorghum chromosome 1, indicating that TC102191 codes for the N-terminal part of the sequence of SPC4, including a signal peptide of 31 amino acids. The N-terminal fragment of SPC4 (213 amino acids) has a high sequence identity with barley BP1 (85%), rice Prx23 (90%), wheat WSP1 (82%) and maize peroxidase (58%), indicative for a common ancestor. SPC4 is activated by calcium ions. Ca2+ binding increased the protein conformational stability by raising the melting temperature (Tm) from 67 to 82 degrees C. SPC4 catalyzed the oxidation of a wide range of aromatic substrates, being catalytically more efficient with hydroxycinnamates than with tyrosine derivatives. In spite of the conserved active sites, SPC4 differs from BP1 in being active with aromatic compounds above pH 5.
Collapse
Affiliation(s)
- Mamoudou H Dicko
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Heggie L, Jansen MAK, Burbridge EM, Kavanagh TA, Thorneley RNF, Dix PJ. Transgenic tobacco (Nicotiana tabacum L. cv. Samsun-NN) plants over-expressing a synthetic HRP-C gene are altered in growth, development and susceptibility to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:1067-73. [PMID: 16386428 DOI: 10.1016/j.plaphy.2005.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Indexed: 05/05/2023]
Abstract
The physiological role of class III peroxidases (EC 1.11.1.7) in controlling plant growth and development has been investigated by over-expression of both native and heterologous peroxidases. However, it has remained an enigma as to why the phenotypes of different peroxidase over-expressing transgenics vary. In order to resolve the conflicting information about the consequences of peroxidase over-expression, we have explored the role of the subcellular targeting of HRP-C in controlling stem growth, root development, axillary branching and abiotic stress tolerance in tobacco (Nicotiana tabacum L.). Altering the sub-cellular targeting of vacuolar HRP-C, such that over-expressed peroxidase accumulates in the cytoplasm and cell wall, induced phenotypic changes that are typically associated with altered auxin homeostasis, and over-expression of cell wall located peroxidases. We conclude that sub-cellular targeting is a determinant of the phenotype of peroxidase over-expressing plants.
Collapse
Affiliation(s)
- Laura Heggie
- Plant Cell Culture Unit, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Sugano Y, Sasaki K, Shoda M. cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 2005; 87:411-7. [PMID: 16232492 DOI: 10.1016/s1389-1723(99)80087-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 01/06/1999] [Indexed: 11/23/2022]
Abstract
A novel decolorizing peroxidase gene (dyp) was cloned from a cDNA library of a newly isolated strain of fungus Geotrichum candidum Dec 1. The open reading frame of 1494 nucleotides which corresponds to dyp predicts a primary translation product of 498 amino acids, M(r) 53,306. The deduced amino acid sequence of DyP does not contain the typical conserved motif which is characteristic of heme-containing peroxidases in the plant peroxidase superfamily. Comparison of the deduced amino acid sequence of DyP with that of a peroxidase from Polyporaceae sp. suggests that these proteins share highly homologous regions.
Collapse
Affiliation(s)
- Y Sugano
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
46
|
Pathirana R, Watson L, Chen B, Leung S, Voisey C, Murray T, McManus MT. Removal of the N-linked glycan structure from the peanut peroxidase prxPNC2: influence on protein stability and activity. PHYTOCHEMISTRY 2005; 66:1869-79. [PMID: 16112153 DOI: 10.1016/j.phytochem.2005.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/28/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV35S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn189) associated with the point of glycan attachment (Asn189) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35S:prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent Km) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (Ea) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases.
Collapse
Affiliation(s)
- Ranjith Pathirana
- Institute of Molecular BioSciences, Massey University, Tennent Drive, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Horseradish peroxidase is an important heme-containing enzyme that has been studied for more than a century. In recent years new information has become available on the three-dimensional structure of the enzyme and its catalytic intermediates, mechanisms of catalysis and the function of specific amino acid residues. Site-directed mutagenesis and directed evolution techniques are now used routinely to investigate the structure and function of horseradish peroxidase and offer the opportunity to develop engineered enzymes for practical applications in natural product and fine chemicals synthesis, medical diagnostics and bioremediation. A combination of horseradish peroxidase and indole-3-acetic acid or its derivatives is currently being evaluated as an agent for use in targeted cancer therapies. Physiological roles traditionally associated with the enzyme that include indole-3-acetic acid metabolism, cross-linking of biological polymers and lignification are becoming better understood at the molecular level, but the involvement of specific horseradish peroxidase isoenzymes in these processes is not yet clearly defined. Progress in this area should result from the identification of the entire peroxidase gene family of Arabidopsis thaliana, which has now been completed.
Collapse
Affiliation(s)
- Nigel C Veitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| |
Collapse
|
48
|
Carvalho ASL, Melo EPE, Ferreira BS, Neves-Petersen MT, Petersen SB, Aires-Barros MR. Heme and pH-dependent stability of an anionic horseradish peroxidase. Arch Biochem Biophys 2003; 415:257-67. [PMID: 12831850 DOI: 10.1016/s0003-9861(03)00275-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Horseradish peroxidase A1 thermal stability was studied by steady-state fluorescence, circular dichroism and differential scanning calorimetry at pH values of 4, 7 and 10. Changes in the intrinsic protein probes, tryptophan fluorescence, secondary structure, and heme group environment are not coincident. The T(m) values measured from the visible CD data are higher than those measured from Trp fluorescence and far-UV CD data at all pH values showing that the heme cavity is the last structural region to suffer significant conformational changes during thermal denaturation. However ejection of the heme group leads to an irreversible unfolding behavior at pH 4, while at pH 7 and 10 refolding is still observed. This is putatively correlated with the titration state of the heme pocket. Thermal transitions of HRPA1 showed scan rate dependence at the three pH values, showing that the denaturation process was kinetically controlled. The denaturation process was interpreted in terms of the classic scheme, N<-->U-->D and fitted to far-UV CD ellipticity. A good agreement was obtained between the experimental and theoretical T(m) values and percentages of irreversibility. However the equilibrium between N and U is probably more complex than just a two-state process as revealed by the multiple T(m) values.
Collapse
Affiliation(s)
- Ana Sofia L Carvalho
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. PLANT PHYSIOLOGY 2003; 132:1177-85. [PMID: 12857800 PMCID: PMC167058 DOI: 10.1104/pp.102.019794] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 01/24/2003] [Accepted: 04/04/2003] [Indexed: 05/18/2023]
Abstract
We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.
Collapse
Affiliation(s)
- Akiyoshi Kawaoka
- Pulp and Paper Research Laboratory, Nippon Paper Industries Co. Ltd., 5-21-1 Oji, Kita-ku, Tokyo 114-0002, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Azevedo AM, Martins VC, Prazeres DM, Vojinović V, Cabral JM, Fonseca LP. Horseradish peroxidase: a valuable tool in biotechnology. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:199-247. [PMID: 14650928 DOI: 10.1016/s1387-2656(03)09003-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peroxidases have conquered a prominent position in biotechnology and associated research areas (enzymology, biochemistry, medicine, genetics, physiology, histo- and cytochemistry). They are one of the most extensively studied groups of enzymes and the literature is rich in research papers dating back from the 19th century. Nevertheless, peroxidases continue to be widely studied, with more than 2000 articles already published in 2002 (according to the Institute for Scientific Information). The importance of peroxidases is emphasised by their wide distribution among living organisms and by their multiple physiological roles. They have been divided into three superfamilies according to their source and mode of action: plant peroxidases, animal peroxidases and catalases. Among all peroxidases, horseradish peroxidase (HRP) has received a special attention and will be the focus of this review. A brief description of the three super-families is included in the first section of this review. In the second section, a comprehensive description of the present state of knowledge of the structure and catalytic action of HRP is presented. The physiological role of peroxidases in higher plants is described in the third section. And finally, the fourth section addresses the applications of peroxidases, especially HRP, in the environmental and health care sectors, and in the pharmaceutical, chemical and biotechnological industries.
Collapse
Affiliation(s)
- Ana M Azevedo
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|