Croxtall JD, Choudhury Q, White JO, Flower RJ. Tamoxifen inhibits the release of arachidonic acid stimulated by thapsigargin in estrogen receptor-negative A549 cells.
BIOCHIMICA ET BIOPHYSICA ACTA 1997;
1349:275-84. [PMID:
9434142 DOI:
10.1016/s0005-2760(97)00143-4]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In pre-labelled A549 cells the tumour promoter thapsigargin (50 nM) stimulates the release of [5,6,8,9,11,12,14,15-3H(N)]-arachidonic acid (3H-AA) by ca. 300% above basal levels. A549 cells are estrogen receptor negative (ER-), yet this stimulation by thapsigargin is inhibited in a dose-dependent manner by a 3 h pre-treatment with the anti-estrogen tamoxifen (1-20 microM). Moreover, the presence of excess (100 microM) estradiol does not reverse this effect of tamoxifen. Thapsigargin stimulated 3H-AA release is not inhibited over the same concentration range by 4 hydroxy-tamoxifen nor by the steroidal anti-estrogen ICI 164384. However, the steroidal anti-estrogen ICI 182780 inhibits thapsigargin stimulated 3H-AA release in a similar manner to tamoxifen and this effect is also not reversed by the presence of excess estradiol. Stimulation of 3H-AA release by EGF (10 nM), IL-1beta (1 ng ml-1) and bradykinin (100 nM) was unaffected by these concentrations of tamoxifen. Ionomycin (10 microM) stimulates 3H-AA release by ca. 700% and A23187 (10 microM) by ca. 300% above basal levels. Pre-treatment with tamoxifen (1-20 microM) inhibits 3H-AA release stimulated by both these agents and again the presence of excess estradiol does not reverse this effect. Unlike the effects of glucocorticoids on 3H-AA release in A549 cells the effects of tamoxifen are not reversed by neutralizing anti-bodies to lipocortin 1. Arachidonic acid release is central to cell proliferation in A549 cells and we propose that this action of tamoxifen could explain the anti-proliferative effect seen in these cells and could have important implications for control of cell proliferation of ER- cells in general.
Collapse