1
|
Raffin C, Vo LT, Bluestone JA. T reg cell-based therapies: challenges and perspectives. Nat Rev Immunol 2020; 20:158-172. [PMID: 31811270 PMCID: PMC7814338 DOI: 10.1038/s41577-019-0232-6] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Cellular therapies using regulatory T (Treg) cells are currently undergoing clinical trials for the treatment of autoimmune diseases, transplant rejection and graft-versus-host disease. In this Review, we discuss the biology of Treg cells and describe new efforts in Treg cell engineering to enhance specificity, stability, functional activity and delivery. Finally, we envision that the success of Treg cell therapy in autoimmunity and transplantation will encourage the clinical use of adoptive Treg cell therapy for non-immune diseases, such as neurological disorders and tissue repair.
Collapse
Affiliation(s)
- Caroline Raffin
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Linda T Vo
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Abstract
The parasitic protozoa belonging to the kinetoplastids can use both sugars and amino acids as carbon and energy sources. In this review, Benno ter Kuile discusses nutrient acquisition and utilization and how the metabolic strategies reflect the environment encountered in host and vector. Recent genetic and physiological evidence suggests that facilitated diffusion may be the primary uptake mechanism for glucose, and possibly for proline as well, even though there is biochemical and genetic evidence suggesting that active transport occurs, if not across the plasma membrane, then across the membranes of organelles. Trypanosoma brucei seems to have a metabolic strategy that strives for maximum energy efficiency, making no storage materials and thereby limiting the control over its internal conditions. On the other hand, Leishmania donovani does create a storage buffer, entrapping glucose in the cell. In this manner, it maintains constant internal conditions at the expense of energy, enabling it to survive more adverse conditions in the macrophage and in its vector.
Collapse
Affiliation(s)
- B H ter Kulle
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| |
Collapse
|
3
|
Willson M, Sanejouand YH, Perie J, Hannaert V, Opperdoes F. Sequencing, modeling, and selective inhibition of Trypanosoma brucei hexokinase. CHEMISTRY & BIOLOGY 2002; 9:839-47. [PMID: 12144928 DOI: 10.1016/s1074-5521(02)00169-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
For Trypanosoma brucei, a parasite responsible for African sleeping sickness, carbohydrate metabolism is the only source of ATP, and glycolytic enzymes are localized within membrane-bound organelles called glycosomes. Hexokinase, the first enzyme of the glycolytic pathway, was chosen as a target for selective drug design. We have cloned and sequenced the hexokinase gene of T. brucei. In parallel, we have synthesized several inhibitors. Kinetic analysis revealed differences in the binding mode of these compounds toward yeast and T. brucei hexokinases, while the m-bromophenyl glucosamide was found to be selective for T. brucei. The modeled structure of T. brucei hexokinase-inhibitor complex (using the crystal structure of the Schistosoma mansoni hexokinase as a template) allows us to propose a mode of action of this inhibitor for the trypanosome hexokinase and to account for the observed selectivity.
Collapse
Affiliation(s)
- Michèle Willson
- Groupe de Chimie Organique Biologique, Laboratoire Synthèse Physico-Chimie des Molécules d'Intérêt Biologique, UMR-CNRS-5068, Université Paul Sabatier, 31062 Cedex, Toulouse, France.
| | | | | | | | | |
Collapse
|
4
|
Bayele HK. Critical parameters for functional reconstitution of glucose transport in Trypanosoma brucei membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:223-31. [PMID: 11470094 DOI: 10.1016/s0005-2736(01)00363-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The glucose transporter of Trypanosoma brucei was reconstituted by incorporating Escherichia coli phospholipid liposomes into detergent-solubilised trypanosome membranes. Proteoliposome vesicles were formed by detergent dilution and used in glucose-uptake assays. The minima for functional reconstitution of the glucose transporter were established and used to probe the mechanism of glucose transport. The uptake pattern of radiolabelled glucose showed a counterflow transient at about 3 s, after which the sugar equilibrated across the proteoliposomal membrane. This observation is consistent with a facilitated transporter. There was a six-fold increase in the initial rate of glucose uptake compared to non-reconstituted or native membranes. In addition, the transporter exhibited stereospecificity to D-glucose but poorly transported L-glucose. Directionality, stereoselectivity or substrate specificity and cis-inhibition by phloridzin were therefore the main criteria for validation of glucose transport. The observed counterflow transient also provided further evidence for a facilitated glucose transporter within the trypanosome plasma membrane, and was the single most important criterion for this assertion. A stoichiometry of 0.78 mol of glucose per mol of transporter was estimated.
Collapse
Affiliation(s)
- H K Bayele
- Department of Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
5
|
Fry AJ, Towner P, Holman GD, Eisenthal R. Transport of D-fructose and its analogues by Trypanosoma brucei. Mol Biochem Parasitol 1993; 60:9-18. [PMID: 8366898 DOI: 10.1016/0166-6851(93)90023-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Kinetic parameters for entry of D-fructose into Trypanosoma brucei brucei have been determined. The net uptake of D-fructose was found to be rapid and occurred at a rate which was comparable with that observed for uptake of D-glucose. The Km and Vmax were 3.91 +/- 1.58 mM and 69.1 +/- 7.2 nmol min-1 (mg protein)-1. D-Fructose was metabolized to pyruvate under aerobic conditions and to pyruvate and glycerol under anaerobic conditions in a manner similar to D-glucose. Comparisons of the kinetic parameters for D-fructose transport and metabolism indicated that uptake was rate limiting. Inhibition constants (Ki) for inhibition of 6-deoxy-D-glucose by D-fructose and D-fructose transport by 6-deoxy-D-glucose were consistent with the Km values for these two substrates. These interactions indicate that D-fructose and 6-deoxy-D-glucose share a single common transporter. 1,5-Anhydro-D-glucitol and 1,5 anhydro-D-mannitol (the fused pyranose ring analogues of D-glucose and D-mannose) have been found to interact well with the transporter, while L-sorbose (a D-fructose analogue with a pyranose ring) had only low affinity. However, 2,5-anhydro-D-mannitol (a fused furanose ring analogue of D-fructose) inhibited both 6-deoxy-D-glucose and D-fructose transport with a Ki of approx. 0.8 mM. The high affinity for 2,5-anhydro-D-mannitol (2-deoxy-D-fructofuranose) indicates that D-fructose is transported in the furanose ring form.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Fry
- Department of Biochemistry, University of Bath, UK
| | | | | | | |
Collapse
|
6
|
Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol 1993. [PMID: 8423781 DOI: 10.1128/mcb.13.2.1146] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tandemly arranged multigene family encoding putative hexose transporters in Trypanosoma brucei has been characterized. It is composed of two 80% homologous groups of genes called THT1 (six copies) and THT2 (five copies). When Xenopus oocytes are microinjected with in vitro-transcribed RNA from a THT1 gene, they express a glucose transporter with properties similar to those of the trypanosome bloodstream-form protein(s). This THT1-encoded transport system for glucose differs from the human erythrocyte-type glucose transporter by its moderate sensitivity to cytochalasin B and its capacity to transport D-fructose. These properties suggest that the trypanosomal transporter may be a good target for antitrypanosomal drugs. mRNA analysis revealed that expression of these genes was life cycle stage dependent. Bloodstream forms express 40-fold more THT1 than THT2. In contrast, procyclic trypanosomes express no detectable THT1 but demonstrate glucose-dependent expression of THT2.
Collapse
|
7
|
Bringaud F, Baltz T. Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol 1993; 13:1146-54. [PMID: 8423781 PMCID: PMC358999 DOI: 10.1128/mcb.13.2.1146-1154.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A tandemly arranged multigene family encoding putative hexose transporters in Trypanosoma brucei has been characterized. It is composed of two 80% homologous groups of genes called THT1 (six copies) and THT2 (five copies). When Xenopus oocytes are microinjected with in vitro-transcribed RNA from a THT1 gene, they express a glucose transporter with properties similar to those of the trypanosome bloodstream-form protein(s). This THT1-encoded transport system for glucose differs from the human erythrocyte-type glucose transporter by its moderate sensitivity to cytochalasin B and its capacity to transport D-fructose. These properties suggest that the trypanosomal transporter may be a good target for antitrypanosomal drugs. mRNA analysis revealed that expression of these genes was life cycle stage dependent. Bloodstream forms express 40-fold more THT1 than THT2. In contrast, procyclic trypanosomes express no detectable THT1 but demonstrate glucose-dependent expression of THT2.
Collapse
Affiliation(s)
- F Bringaud
- Laboratoire Immunologie et Parasitologie Moléculaire, Université Bordeaux II, France
| | | |
Collapse
|
8
|
Zilberstein D. Transport of nutrients and ions across membranes of trypanosomatid parasites. ADVANCES IN PARASITOLOGY 1993; 32:261-91. [PMID: 8237616 DOI: 10.1016/s0065-308x(08)60209-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D Zilberstein
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| |
Collapse
|
9
|
Abstract
The glucose analogue, 2-deoxy-D-glucose, was used to characterise the glucose transport system in Crithidia luciliae choanomastigotes. Uptake was temperature dependent with a Q10 of 2, and saturable with a Km of 0.22 mM and Vmax of 5.5 nmol min-1 (mg protein)-1 at 23 degrees C. Preloaded cells showed rapid exchange of intracellular 2-deoxy-D-glucose when incubated with extracellular D-glucose or 2-deoxy-D-glucose but little exchange with L-glucose. The substrate specificity of the uptake was studied using a number of D-glucose analogues. 6-Deoxy-D-glucose, 3-fluoro-3-deoxy-D-glucose and 4-fluoro-4-deoxy-D-glucose all competed for the transporter and had significant inhibitory effects on 2-deoxy-D-glucose transport. In contrast, 1-thio-beta-D-glucose, trehalose, 3-O-methyl-D-glucose, arginine, thymidine, L-sorbose and L-glucose were not inhibitory. The results imply the existence of a glucose transporter. The transport was blocked by a number of inhibitors and ionophores, including fluoride, azide, cyanide, dinitrophenol, valinomycin and nigericin. Overall, the uptake, exchange and efflux of 2-deoxy-D-glucose is consistent with transport via facilitated diffusion.
Collapse
Affiliation(s)
- L A Knodler
- School of Biochemistry, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
10
|
ter Kuile BH, Opperdoes FR. Comparative physiology of two protozoan parasites, Leishmania donovani and Trypanosoma brucei, grown in chemostats. J Bacteriol 1992; 174:2929-34. [PMID: 1569022 PMCID: PMC205946 DOI: 10.1128/jb.174.9.2929-2934.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cultures of the insect stage of the protozoan parasites Leishmania donovani and Trypanosoma brucei were grown in chemostats with glucose as the growth rate-limiting substrate. L. donovani has a maximum specific growth rate (mu max) of 1.96 day-1 and a Ks for glucose of 0.1 mM; the mu max of T. brucei is 1.06 day-1 and the Ks is 0.06 mM. At each steady state (specific growth rate, mu, equals D, the dilution rate), the following parameters were measured: external glucose concentration (Glcout), cell density, dry weight, protein, internal glucose concentration (Glcin), cellular ATP level, and hexokinase activity. L. donovani shows a relationship between mu and yield that allows an estimation of the maintenance requirement (ms) and the yield per mole of ATP (YATP). Both the ms and the YATP are on the higher margin of the range found for prokaryotes grown on glucose in a complex medium. L. donovani maintains the Glcin at a constant level of about 50 mM as long as it is not energy depleted. T. brucei has a decreasing yield with increasing mu, suggesting that it oxidizes its substrate to a lesser extent at higher growth rates. Glucose is not concentrated internally but is taken up by facilitated diffusion, while phosphorylation by hexokinase is probably the rate-limiting step for glucose metabolism. The Ks is constant as long as glucose is the rate-limiting substrate. The results of this study demonstrate that L. donovani and T. brucei have widely different metabolic strategies for dealing with varying external conditions, which reflect the conditions they are likely to encounter in their respective insect hosts.
Collapse
Affiliation(s)
- B H ter Kuile
- Research Unit for Tropical Diseases, International Institute for Cellular and Molecular Pathology, Brussels, Belgium
| | | |
Collapse
|
11
|
Ziegelbauer K, Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50088-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
ter Kuile BH, Opperdoes FR. Mutual adjustment of glucose uptake and metabolism in Trypanosoma brucei grown in a chemostat. J Bacteriol 1992; 174:1273-9. [PMID: 1735718 PMCID: PMC206421 DOI: 10.1128/jb.174.4.1273-1279.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mutual adjustment of glucose uptake and metabolism in the insect stage of the protozoan parasite Trypanosoma brucei was studied. T. brucei was preadapted in the chemostat to conditions in which either glucose or proline served as the major carbon and energy source. Cells were grown and adapted to either energy or non-energy limitation at a low dilution rate (0.5 day-1) or a high dilution rate (1 day-1). The cells were then used in short- to medium-term uptake experiments with D-[14C]glucose as a tracer. In time course experiments a steady state was reached after 15 min regardless of the preadaptation conditions. This steady-state level increased with increasing glucose availability during preadaptation. The rate of glucose uptake and the hexokinase activity were linearly correlated. In short-term 5- to 90-s) uptake experiments a high transport rate was measured with cultures grown in excess glucose, an intermediate rate was measured with proline-grown cultures, and a low rate was measured in organisms grown under glucose limitation. Glucose metabolism and proline metabolism did not affect each other during the 15-min incubations. Glucose uptake, as a function of the external glucose concentration, did not obey simple Michaelis-Menten kinetics but could be described by a two-step mechanism: (i) transport of glucose by facilitated diffusion and (ii) subsequent metabolism of glucose. The respective rates of the two steps were adjusted to each other. It is concluded that T. brucei is capable of adjusting the different metabolic processes in a way that gives maximum energy efficiency at the cost of short-term flexibility.
Collapse
Affiliation(s)
- B H ter Kuile
- Research Unit for Tropical Diseases, International Institute for Cellular and Molecular Pathology, Brussels, Belgium
| | | |
Collapse
|
13
|
Seyfang A, Duszenko M. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:191-6. [PMID: 1935976 DOI: 10.1111/j.1432-1033.1991.tb16362.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucose transport in the bloodstream form of the protozoan parasite Trypanosoma brucei was characterized by enzymatically measuring the D-glucose uptake. Uptake kinetics showed a concentration-dependent saturable process, typical for a carrier-mediated transport system, with an apparent Km = 0.49 +/- 0.14 mM and Vmax = 252 +/- 43 nmol.min-1.mg cell protein-1 (equal to 2.25 x 10(8) trypanosomes). The specificity of glucose transport was investigated by inhibitor studies. Glucose uptake was shown to be sodium independent; neither the Na+/K(+)-ATPase inhibitor ouabain (1 mM) nor the ionophor monensin (1 microM) inhibited uptake. Transport was also unaffected by the H(+)-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD; 20 microM) and the uncoupler carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP; 1 microM). However, highly significant inhibition was obtained with both phloretin (82% at 0.13 mM; Ki = 64 microM) and cytochalasin B (77% at 0.3 mM; Ki = 0.44 mM), and partial inhibition with phlorizin (14% at 0.5 mM; Ki = 3.0 mM). In each case, inhibition was noncompetitive, partially reversible (45%) for phloretin and completely reversible for cytochalasin B and phlorizin. Measurement of the temperature-dependent glucose uptake between 25 degrees C and 37 degrees C resulted in a temperature quotient of Q10 = 1.97 +/- 0.02 and an activation energy of Ea = 52.12 +/- 1.00 kJ/mol for glucose uptake. We conclude that glucose uptake in T. brucei bloodstream forms occurs via a facilitated diffusion system, clearly distinguished from the human erythrocyte-type glucose transporter with about a 10-fold higher affinity for glucose and about a 1000-fold decreased sensitivity to the inhibitor cytochalasin B.
Collapse
Affiliation(s)
- A Seyfang
- Physiologisch-chemisches Institut, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
14
|
Munoz-Antonia T, Richards FF, Ullu E. Differences in glucose transport between blood stream and procyclic forms of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 1991; 47:73-81. [PMID: 1857387 DOI: 10.1016/0166-6851(91)90149-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In African trypanosomes the requirements for glucose and its metabolism vary in different stages of the life cycle. Here we present evidence that cultured procyclic trypanosomes of Trypanosoma brucei rhodesiense uptake glucose against a concentration gradient in a time and dose-dependent manner. Moreover, glucose transport is completely inhibited by the sulphydryl inhibitor N-ethylmaleimide, suggesting the presence of a protein moiety as the carrier molecule. Comparison of glucose uptake in bloodstream and procyclic trypanosomes point to the possibility that different transporters may function in the 2 developmental stages. Glucose uptake by bloodstream trypanosomes requires Na+ ions and is inhibited by phlorizin, an inhibitor of Na(+)-dependent glucose transporters in mammalian cells. Conversely, procyclic trypanosomes transport glucose in a Na(+)-dependent manner, and transport is not affected by phlorizin. Finally, the putative procyclic glucose transporter has a higher affinity for glucose (apparent Km 23 microM) than the bloodstream carrier (apparent Km 237 microM).
Collapse
Affiliation(s)
- T Munoz-Antonia
- Yale MacArthur Center for Molecular Parasitology, Yale University School of Medicine, New Haven, CT 06515
| | | | | |
Collapse
|
15
|
Ter Kuile BH, Opperdoes FR. Glucose uptake by Trypanosoma brucei. Rate-limiting steps in glycolysis and regulation of the glycolytic flux. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35252-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Abstract
The uptake of glucose by Acanthocheilonema viteae was studied in vitro. The process was selective for the D-isomer and saturatable with a Km of 2 mM. The rate of glucose transport/utilization was inhibited by 2-deoxyglucose, mannose, 5-thioglucose and dipyridamole but, unlike mammalian systems, was not impaired by cytochalasin B, phloretin, phloridzin, 3-O-methylglucose and 4,6-ethylideneglucose. A potential chemotherapeutic advantage of selectively inhibiting filarial glucose transport exists for the following reasons. (1) The glucose transporter present in A. viteae was shown to be different from the one present in some mammalian systems. (2) Incubation under glucose-free conditions led to glycogen depletion, loss of motility and worm death. (3) Worms maintained in vitro for more than 18 h without glucose did not survive when implanted into gerbils.
Collapse
Affiliation(s)
- D J Hayes
- Wellcome Research Laboratories, Beckenham, Kent
| | | |
Collapse
|
17
|
Eisenthal R, Game S, Holman GD. Specificity and kinetics of hexose transport in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 985:81-9. [PMID: 2790048 DOI: 10.1016/0005-2736(89)90107-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transport of 6-deoxy-D-glucose was studied in Trypanosoma brucei in order to characterise the kinetics of hexose transport in this organism using a nonphosphorylated sugar. Kinetic parameters for efflux and entry, measured using zero-trans and equilibrium exchange protocols, indicate that the transporter is probably kinetically symmetrical. Comparison of the kinetic constants of D-glucose metabolism with those for 6-deoxy-D-glucose transport shows that transport across the plasma membrane is likely to be the rate-limiting step of glucose utilisation. The transport rate is nevertheless very fast and 6-deoxy-D-glucose, at concentrations below Km, enters the cells with a half filling time of less than 2 s at 20 degrees C. Thus the high metabolic capacity of these organisms is matched by a high transport rate. The structural requirements for the trypanosome hexose transporter were explored by measuring inhibition constants (Ki) for a range of D-glucose analogues including fluoro and deoxy sugars as well as epimeric hexoses. The relative affinities shown by these analogues indicated H-bonds from the carrier to the C-3, C-4 and C-5 hydroxyl oxygens and from the C-1 and C-3 hydroxyl hydrogens to the binding site. Hydrophobic interactions are likely at the C-2 and C-6 regions of the glucose molecule. Spatial constraints appear to occur around C-4 indicating that the transport site at this position is not freely open to the external solution as is the case with the mammalian hexose transporter. However, the trypanosome transporter appears to accept D-fructose but the common mammalian (erythrocyte type) hexose transporter does not.
Collapse
Affiliation(s)
- R Eisenthal
- Department of Biochemistry, University of Bath, U.K
| | | | | |
Collapse
|
18
|
Danson MJ, Conroy K, McQuattie A, Stevenson KJ. Dihydrolipoamide dehydrogenase from Trypanosoma brucei. Characterization and cellular location. Biochem J 1987; 243:661-5. [PMID: 3663096 PMCID: PMC1147910 DOI: 10.1042/bj2430661] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dihydrolipoamide dehydrogenase has been discovered in the bloodstream form of the eukaryotic African parasite, Trypanosoma brucei. The enzyme catalysed the stoichiometric oxidation of dihydrolipoamide by NAD+ and exhibited a hyperbolic dependence of catalytic activity on the concentrations of both dihydrolipoamide and NAD+. Chemical modification with the tervalent arsenical reagent p-aminophenyldichloroarsine indicates the involvement in catalysis of a reversibly reducible disulphide bond. Plasma-membrane sheets were purified from T. brucei, and it was shown that virtually all the dihydrolipoamide dehydrogenase remained closely associated with this membrane preparation. T. brucei apparently lacks the 2-oxoacid dehydrogenase multienzyme complexes of which dihydrolipoamide dehydrogenase is usually an integral component. In the context of this absence, the possible function of trypanosomal dihydrolipoamide dehydrogenase is discussed, with particular reference to its cellular location in the plasma membrane.
Collapse
Affiliation(s)
- M J Danson
- Department of Biochemistry, University of Bath, Claverton Down, U.K
| | | | | | | |
Collapse
|