1
|
Dargel C, Moleiro LH, Radulescu A, Stank TJ, Hellweg T. Decomposition of mixed DMPC-aescin vesicles to bicelles is linked to the lipid's main phase transition: A direct evidence by using chain-deuterated lipid. J Colloid Interface Sci 2024; 679:209-220. [PMID: 39447464 DOI: 10.1016/j.jcis.2024.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
This work investigates the conversion of bicelles into larger sheets or closed vesicles upon dilution and temperature increase for a system composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin aescin. Due to its peculiar amphiphilic character, aescin is able to decompose DMPC bilayers into smaller, rim-stabilized bicelles. Aspects of the transition process are analyzed in an aescin content- and temperature-dependent manner by photon correlation spectroscopy (PCS), turbidimetry and small-angle neutron scattering (SANS). Both the conversion of bicelles into vesicles induced by temperature increase and the decomposition process upon cooling are presumably related to the main phase transition temperature Tm of DMPC. Therefore, not only conventional DMPC, but also chain-deuterated d54-DMPC was used due to its significantly lower Tm-value compared to the conventional DMPC. It will be demonstrated that the reconversion of vesicle structures (present at low aescin content) into bicelles shows a strong hysteresis effect whereas this is not observed for the reconversion at high aescin amounts, at which for high temperature still bicelle structures are present. The results indicate formation of a trapped state, correlated with the lipid's Tm and the decomposition of vesicles into bicelles is only possible if the lipid membrane entirely adopts the rigid phase state.
Collapse
Affiliation(s)
- Carina Dargel
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, Münster, 48149, Germany; Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany
| | - Lara H Moleiro
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany; Department of Physical Chemistry, Complutense University, Avda. Complutense s/n, Madrid, 28040, Spain
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, Garching, 85747, Germany
| | - Tim Julian Stank
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany.
| |
Collapse
|
2
|
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, Kučerka N. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184237. [PMID: 37820938 DOI: 10.1016/j.bbamem.2023.184237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (Tm) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state 31P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm. Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Dina Badreeva
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Artyom Shutikov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ayzira Timerova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
3
|
Alahmadi I, Hoy D, Tahmasbi Rad A, Patil S, Alahmadi A, Kinnun J, Scott HL, Katsaras J, Nieh MP. Changes Experienced by Low-Concentration Lipid Bicelles as a Function of Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4332-4340. [PMID: 35357197 DOI: 10.1021/acs.langmuir.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Differential scanning calorimetry (DSC) of dipalmitoyl phosphatidylcholine (DPPC), dihexanoyl phosphatidylcholine, and dipalmitoyl phosphatidylglycerol bicelles reveals two endothermic peaks. Based on analysis of small angle neutron scattering and small angle X-ray scattering data, the two DSC peaks are associated with the melting of DPPC and a change in bicellar morphology─namely, either bicelle-to-spherical vesicle or oblate-to-spherical vesicle. The reversibility of the two structural transformations was examined by DSC and found to be consistent with the corresponding small angle scattering data. However, the peak that is not associated with the melting of DPPC does not correspond to any structural transformation for bicelles containing distearoyl phosphatidylethanolamine conjugated with polyethylene glycol. Based on complementary experimental data, we conclude that membrane flexibility, lipid miscibility, and differential solubility between the long- and short-chain lipids in water are important parameters controlling the reversibility of morphologies experienced by the bicelles.
Collapse
Affiliation(s)
- Ibtihal Alahmadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Donyeil Hoy
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sanyukta Patil
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anas Alahmadi
- Department of Electrical Engineering, Technical and Vocational Training Corporation, Riyadh 11472, Saudi Arabia
| | - Jacob Kinnun
- Large Scale Structures Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Haden L Scott
- Large Scale Structures Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Labs and Soft Matter Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Muraoka T, Shima T, Kajitani T, Hoshino N, Morvan E, Grélard A, Dufourc EJ, Fukushima T, Akutagawa T, Nabeya K, Kinbara K. Heat-Triggered Crystallization of Liquid Crystalline Macrocycles Allowing for Conductance Switching through Hysteretic Thermal Phase Transitions. Chem Asian J 2019; 14:141-148. [PMID: 30371022 DOI: 10.1002/asia.201801372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/11/2022]
Abstract
A polymesomorphic thermal phase-transition of a macrocyclic amphiphile consisting of aromatic groups and oligoethylene glycol (OEG) chains is reported. The macrocyclic amphiphile exists in a highly-ordered liquid crystal (LC) phase at room temperature. Upon heating, this macrocycle shows phase-transition from columnar-lamellar to nematic LC phases followed by crystallization before melting. Spectroscopic studies suggest that the thermally induced crystallization is triggered by a conformational change at the OEG chains. Interestingly, while the macrocycle returns to the columnar-lamellar phase after cooling from the isotropic liquid, it retains the crystallinity after cooling from the thermally-induced crystal. Thanks to this bistability, conductance switching was successfully demonstrated. A different macrocyclic amphiphile also shows an analogous phase-transition behavior, suggesting that this molecular design is universal for developing switchable and memorizable materials, by means of hysteretic phase-transition processes.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tatsuya Shima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takashi Kajitani
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Estelle Morvan
- European Institute of Chemistry and Biology, University of Bordeaux, UMS 3033, CNRS, INSERM, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Axelle Grélard
- Institute of Chemistry and Biology of Membranes and Nano-objects, University of Bordeaux, UMR 5248, CNRS, Bordeaux INP, allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Erick J Dufourc
- Institute of Chemistry and Biology of Membranes and Nano-objects, University of Bordeaux, UMR 5248, CNRS, Bordeaux INP, allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kota Nabeya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazushi Kinbara
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
5
|
Therrien A, Lafleur M. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups. Biophys J 2016; 110:400-410. [PMID: 26789763 DOI: 10.1016/j.bpj.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Therrien A, Fournier A, Lafleur M. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation. J Phys Chem B 2016; 120:3993-4002. [PMID: 27054924 DOI: 10.1021/acs.jpcb.5b11705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| | - Alain Fournier
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 Boul. des Prairies, Ville de Laval (Québec) H7V 1B7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| |
Collapse
|
7
|
Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [PMID: 26210299 DOI: 10.1016/j.bbamem.2015.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures. Membrane thinning and formation of quasi-interdigitated lipid-peptide structures was observed in PG bilayers, while OP-145 led to disintegration of PC liposomes into disk-like micelles and bilayer sheets. Although OP-145 was capable of binding lipoteichoic acid and peptidoglycan, the presence of these bacterial cell wall components did not retain OP-145 and hence did not interfere with the activity of the peptide toward PG membranes. Furthermore, physiological Ca++ concentrations did neither influence the membrane activity of OP-145 in model systems nor the killing of Staphylococcus aureus. However, addition of OP-145 at physiological Ca++-concentrations to PG membranes, but not PC membranes, resulted in the formation of elongated enrolled structures similar to cochleate-like structures. In summary, phospholipid-driven differences in incorporation of OP-145 into the lipid bilayers govern the membrane activity of the peptide on bacterial and mammalian membrane mimics.
Collapse
|
8
|
Liu Y, Li M, Yang Y, Xia Y, Nieh MP. The effects of temperature, salinity, concentration and PEGylated lipid on the spontaneous nanostructures of bicellar mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1871-80. [DOI: 10.1016/j.bbamem.2014.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/23/2013] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
9
|
Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by (1)H-, (2)H-, (31)P-NMR and Electron Spin Resonance. JOURNAL OF DRUG DELIVERY 2014; 2014:575719. [PMID: 24883210 PMCID: PMC4027026 DOI: 10.1155/2014/575719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022]
Abstract
The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.
Collapse
|
10
|
Furlan AL, Castets A, Nallet F, Pianet I, Grélard A, Dufourc EJ, Géan J. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5518-26. [PMID: 24787144 DOI: 10.1021/la5005006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.
Collapse
Affiliation(s)
- Aurélien L Furlan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux , IPB, F-33600 Pessac, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Guinan T, Godefroy C, Lautrédou N, Pace S, Milhiet PE, Voelcker N, Cunin F. Interaction of antibiotics with lipid vesicles on thin film porous silicon using reflectance interferometric Fourier transform spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10279-86. [PMID: 23844993 DOI: 10.1021/la401804e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to observe interactions of drugs with cell membranes is an important area in pharmaceutical research. However, these processes are often difficult to understand due to the dynamic nature of cell membranes. Therefore, artificial systems composed of lipids have been used to study membrane properties and their interaction with drugs. Here, lipid vesicle adsorption, rupture, and formation of planar lipid bilayers induced by various antibiotics (surfactin, azithromycin, gramicidin, melittin and ciprofloxacin) and the detergent dodecyl-b-D-thiomaltoside (DOTM) was studied using reflective interferometric Fourier transform spectroscopy (RIFTS) on an oxidized porous silicon (pSi) surface as a transducer. The pSi transducer surfaces are prepared as thin films of 3 μm thickness with pore dimensions of a few nanometers in diameter by electrochemical etching of crystalline silicon followed by passivation with a thermal oxide layer. Furthermore, the sensitivity of RIFTS was investigated using three different concentrations of surfactin. Complementary techniques including atomic force microscopy, fluorescence recovery after photobleaching, and fluorescence microscopy were used to validate the RIFTS-based method and confirm adsorption and consequent rupture of vesicles to form a phospholipid bilayer upon the addition of antibiotics. The method provides a sensitive and real-time approach to monitor the antibiotic-induced transition of lipid vesicles to phospholipid bilayers.
Collapse
Affiliation(s)
- Taryn Guinan
- Mawson Institute, University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins (Basel) 2013; 5:637-64. [PMID: 23594437 PMCID: PMC3705284 DOI: 10.3390/toxins5040637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023] Open
Abstract
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Collapse
|
13
|
Mosley GL, Yamanishi CD, Kamei DT. Mathematical Modeling of Vesicle Drug Delivery Systems 1. ACTA ACUST UNITED AC 2013; 18:34-45. [DOI: 10.1177/2211068212457161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Use of X-ray scattering to aid the design and delivery of membrane-active drugs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:915-29. [DOI: 10.1007/s00249-012-0821-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
|
15
|
Abstract
In recent years there has been an abundance of research into the potential of helical peptides to influence cell function. These peptides have been used to achieve a variety of different outcomes from cell repair to cell death, depending upon the peptide sequence and the nature of its interactions with cell membranes and membrane proteins. In this critical review, we summarise several mechanisms by which helical peptides, acting as either transporters, inhibitors, agonists or antibiotics, can have significant effects on cell membranes and can radically affect the internal mechanisms of the cell. The various approaches to peptide design are discussed, including the role of naturally-occurring proteins in the design of these helical peptides and current breakthroughs in the use of non-natural (and therefore more stable) peptide scaffolds. Most importantly, the current successful applications of these peptides, and their potential uses in the field of medicine, are reviewed (131 references).
Collapse
Affiliation(s)
- Andrew J Beevers
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
16
|
Arseneault M, Bédard S, Boulet-Audet M, Pézolet M. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3468-3478. [PMID: 20112931 DOI: 10.1021/la903014w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.
Collapse
Affiliation(s)
- Marjolaine Arseneault
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Québec, Québec Canada, G1V OA6
| | | | | | | |
Collapse
|
17
|
Macháň R, Miszta A, Hermens W, Hof M. Real-time monitoring of melittin-induced pore and tubule formation from supported lipid bilayers and its physiological relevance. Chem Phys Lipids 2010; 163:200-6. [DOI: 10.1016/j.chemphyslip.2009.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/12/2009] [Accepted: 11/12/2009] [Indexed: 11/30/2022]
|
18
|
Anti-Clostridium difficile potential of tetramic acid derivatives from Pseudomonas aeruginosa quorum-sensing autoinducers. Antimicrob Agents Chemother 2009; 54:683-8. [PMID: 19917748 DOI: 10.1128/aac.00702-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have examined the potential bactericidal activities of several tetramic acids derived from Pseudomonas autoinducers against Clostridium difficile, a cause of antibiotic-associated pseudomembranous colitis. Clinical isolates of C. difficile (n=4) were incubated in broth with a chemically synthesized Pseudomonas autoinducer and its tetramic acid derivatives. The structure-activity relationship and the mechanisms of action were examined by a time-killing assay and by determination of the morphological/staining characteristics. The use of some tetramic acids derived from N-3-oxododecanoyl L-homoserine lactone resulted in more than 3-log reductions in the viability of C. difficile within 30 min at 30 microM. The outer membrane was suggested to be one of the targets for the bactericidal activity of tetramic acid, because disturbance of the bacterial outer surface was demonstrated by alteration of the Gram-staining characteristic and electron microscopy. The data for the tetramic acid derivatives demonstrate that the keto-enol structure and the length of the acyl side chain of tetramic acid may be essential for the antibacterial activity of this molecule. These results suggest the potential for tetramic acid derivatives to be novel agents with activity against C. difficile.
Collapse
|
19
|
Biophysical studies of the membrane location of the voltage-gated sensors in the HsapBK and KvAP K+ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1976-86. [DOI: 10.1016/j.bbamem.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022]
|
20
|
Lundquist A, Wessman P, Rennie AR, Edwards K. Melittin–Lipid interaction: A comparative study using liposomes, micelles and bilayerdisks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2210-6. [DOI: 10.1016/j.bbamem.2008.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/09/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
21
|
Abstract
We investigate the mode of action of Cateslytin, an antimicrobial peptide, on zwitterionic biomembranes by performing numerical simulations and electrophysiological measurements on membrane vesicles. Using this natural beta-sheet antimicrobial peptide secreted during stress as a model we show that a single peptide is able to form a stable membrane pore of 1 nm diameter of 0.25 nS conductance found both from calculation and electrical measurements. The resulting structure does not resemble the barrel-stave or carpet models earlier predicted, but is very close to that found in the simulation of alpha-helical peptides. Based on the simulation of a mutated peptide and the effects of small external electric fields, we conclude that electrostatic forces play a crucial role in the process of pore formation.
Collapse
|
22
|
Sterols and membrane dynamics. J Chem Biol 2008; 1:63-77. [PMID: 19568799 DOI: 10.1007/s12154-008-0010-6] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/23/2008] [Accepted: 08/07/2008] [Indexed: 01/11/2023] Open
Abstract
The effect of sterols from mammals, plants, fungi, and bacteria on model and natural membrane dynamics are reviewed, in the frame of ordering-disordering properties of membranes. It is shown that all sterols share a common property: the ability to regulate dynamics in order to maintain membranes in a microfluid state where it can convey important biological processes. Depending on the sterol class, this property is modulated by molecular modifications that have occurred during evolution. The role of sterols in rafts, antibiotic complexes, and in protecting membranes from the destructive action of amphipathic toxins is also discussed.
Collapse
|
23
|
Abstract
The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements.
Collapse
|
24
|
Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism. Biophys J 2008; 95:3840-9. [PMID: 18515378 DOI: 10.1529/biophysj.107.128322] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular mode of action of the lipopeptide SF with zwitterionic and negatively charged model membranes has been investigated with solid-state NMR, light scattering, and electron microscopy. It has been found that this acidic lipopeptide (negatively charged) induces a strong destabilization of negatively charged micrometer-scale liposomes, leading to the formation of small unilamellar vesicles of a few 10s of nanometers. This transformation is detected for very low doses of SF (Ri = 200) and is complete for Ri = 50. The phenomenon has been observed for several membrane mixtures containing phosphatidylglycerol or phosphatidylserine. The vesicularization is not observed when the lipid negative charges are neutralized and a cholesterol-like effect is then evidenced, i.e., increase of gel membrane dynamics and decrease of fluid membrane microfluidity. The mechanism for small vesicle formation thus appears to be linked to severe changes in membrane curvature and could be described by a two-step action: 1), peptide insertion into membranes because of favorable van der Waals forces between the rather rigid cyclic and lipophilic part of SF and lipid chains and 2), electrostatic repulsion between like charges borne by lipid headgroups and the negatively charged SF amino acids. This might provide the basis for a novel mode of action of negatively charged lipopeptides.
Collapse
|
25
|
Jean-François F, Castano S, Desbat B, Odaert B, Roux M, Metz-Boutigue MH, Dufourc EJ. Aggregation of Cateslytin β-Sheets on Negatively Charged Lipids Promotes Rigid Membrane Domains. A New Mode of Action for Antimicrobial Peptides? Biochemistry 2008; 47:6394-402. [DOI: 10.1021/bi800448h] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frantz Jean-François
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Sabine Castano
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Bernard Desbat
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Benoît Odaert
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Michel Roux
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Erick J. Dufourc
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France, CEA-Saclay, Département de biologie, Gif-sur-Yvette, France, and INSERM Unité 575, Physiopathologie du Système Nerveux, Strasbourg, France
| |
Collapse
|
26
|
Interaction of lipopolysaccharide and phospholipid in mixed membranes: solid-state 31P-NMR spectroscopic and microscopic investigations. Biophys J 2008; 95:1226-38. [PMID: 18456825 DOI: 10.1529/biophysj.108.131706] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS), which constitutes the outermost layer of gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state (31)P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-alpha-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical influence on the distribution of added ReLPS in the respective lipid membranes and also on the morphology and physicochemical property of the resulting membranes. A putative major factor causing these phenomena is reasoned to be the miscibility between ReLPS and individual phospholipid compositions.
Collapse
|
27
|
Jean-François F, Khemtémourian L, Odaert B, Castano S, Grélard A, Manigand C, Bathany K, Metz-Boutigue MH, Dufourc EJ. Variability in secondary structure of the antimicrobial peptide Cateslytin in powder, solution, DPC micelles and at the air–water interface. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:1019-27. [PMID: 17619185 DOI: 10.1007/s00249-007-0169-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 11/29/2022]
Abstract
Cateslytin (bCGA (344)RSMRLSFRARGYGFR(358)), a five positively charged 15 amino-acid residues arginine-rich antimicrobial peptide, was synthesized using a very efficient procedure leading to high yields and to a 99% purity as determined by HPLC and mass spectrometry. Circular dichroism, polarized attenuated total reflectance fourier transformed infrared, polarization modulation infrared reflection Absorption spectroscopies and proton two-dimensional NMR revealed the flexibility of such a peptide. Whereas being mostly disordered as a dry powder or in water solution, the peptide acquires a alpha-helical character in the "membrane mimicking" solvent trifuoroethanol. In zwitterionic micelles of dodecylphophatidylcholine the helical character is retained but to a lesser extent, the peptide returning mainly to its disordered state. A beta-sheet contribution of almost 100% is detected at the air-water interface. Such conformational plasticity is discussed regarding the antimicrobial action of Cateslytin.
Collapse
Affiliation(s)
- Frantz Jean-François
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dufourcq J, Dufourc EJ, Maillet JC, Cornut I, Thiaudiere E, Bonmatin JM. Peptide-Induced Changes in Structure, Dynamic and Barrier Properties of Liposomes and Membranes. PHOSPHORUS SULFUR 2006. [DOI: 10.1080/10426509308045632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dufourc EJ, Maillet JC, Pott T, Leonard A. 31P-NMR Methods for Investigating Phospholipid-Based Molecular Structure and Dynamics. PHOSPHORUS SULFUR 2006. [DOI: 10.1080/10426509308045634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Andersson A, Biverståhl H, Nordin J, Danielsson J, Lindahl E, Mäler L. The membrane-induced structure of melittin is correlated with the fluidity of the lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:115-21. [PMID: 16949029 DOI: 10.1016/j.bbamem.2006.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/28/2006] [Accepted: 07/17/2006] [Indexed: 11/30/2022]
Abstract
The effect of the bee toxin melittin on DMPC dynamics in fast-tumbling bicelles has been investigated. The (13)C R(1) and (13)C-(1)H NOE relaxation parameters for DMPC were used to monitor the effect of melittin and cholesterol on lipid dynamics. It was found that melittin has the largest effect on the DMPC mobility in DMPC/DHPC bicelles, while less effect was observed in cholesterol-doped bicelles, or in bicelles made with CHAPS, indicating that the rigidity of the membrane affects the melittin-membrane interaction. CD spectra were analysed in terms of cooperativity of the alpha-helix to random coil transition in melittin, and these results also indicated similar differences between the bicelles. The study shows that bicelles can be used to investigate lipid dynamics by spin relaxation, and in particular of peptide-induced changes in membrane fluidity.
Collapse
Affiliation(s)
- August Andersson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Nomura K, Ferrat G, Nakajima T, Darbon H, Iwashita T, Corzo G. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys J 2005; 89:4067-80. [PMID: 16199510 PMCID: PMC1366972 DOI: 10.1529/biophysj.105.070292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane disruption mechanism of pandinin 1 (pin1), an antimicrobial peptide isolated from the venom of the African scorpion, was studied using 31P, 13C, 1H solid-state and multidimensional solution-state NMR spectroscopy. A high-resolution NMR solution structure of pin1 showed that the two distinct alpha-helical regions move around the central hinge region, which contains Pro19. 31P NMR spectra of lipid membrane in the presence of pin1, at various temperatures, showed that pin1 induces various lipid phase behaviors depending on the acyl chain length and charge of phospholipids. Notably, it was found that pin1 induced formation of the cubic phase in shorter lipid membranes above Tm. Further, the 13C NMR spectra of pin1 labeled at Leu28 under magic angle spinning (MAS) indicated that the motion of pin1 bound to the lipid bilayer was very slow, with a correlation time of the order of 10(-3) s. 31P NMR spectra of dispersions of four saturated phosphatidyl-cholines in the presence of three types of pin1 derivatives, [W4A, W6A, W15A]-pin1, pin1(1-18), and pin1(20-44), at various temperatures demonstrated that all three pin1 derivatives have a reduced ability to trigger the cubic phase. 13C chemical shift values for pin1(1-18) labeled at Val3, Ala10, or Ala11 under static or slow MAS conditions indicate that pin1(1-18) rapidly rotates around the average helical axis, and the helical rods are inclined at approximately 30 degrees to the lipid long axis. 13C chemical shift values for pin1(20-44) labeled at Gly25, Leu28, or Ala31 under static conditions indicate that pin1(20-44) may be isotropically tumbling. 1H MAS chemical shift measurements suggest that pin1 is located at the membrane-water interface approximately parallel to the bilayer surface. Solid-state NMR results correlated well with the observed biological activity of pin1 in red blood cells and bacteria.
Collapse
Affiliation(s)
- Kaoru Nomura
- Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Toraya S, Nagao T, Norisada K, Tuzi S, Saitô H, Izumi S, Naito A. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature. Biophys J 2005; 89:3214-22. [PMID: 16113109 PMCID: PMC1366817 DOI: 10.1529/biophysj.105.059311] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphological changes of DMPC, DLPC, and DPPC bilayers containing melittin (lecithin/melittin molar ratio of 10:1) around the gel-to-liquid crystalline phase transition temperatures (Tc) were examined by a variety of biophysical methods. First, giant vesicles with the diameters of approximately 20 microm were observed by optical microscopy for melittin-DMPC bilayers at 27.9 degrees C. When the temperature was lowered to 24.9 degrees C (Tc = 23 degrees C for the neat DMPC bilayers), the surface of vesicles became blurred and dynamic pore formation was visible in the microscopic picture taken at different exposure times. Phase separation and association of melittin molecules in the bilayers were further detected by fluorescent microscopy and mass spectrometry, respectively. These vesicles disappeared completely at 22.9 degrees C. It was thus found that the melittin-lecithin bilayers reversibly undergo their fusion and disruption near the respective Tcs. The fluctuation of lipids is, therefore, responsible for the membrane fusion above the Tc, and the association of melittin molecules causes membrane fragmentation below the Tc. Subsequent magnetic alignments were observed by solid-state (31)P NMR spectra for the melittin-lecithin vesicles at a temperature above the respective Tcs. On the other hand, additional large amplitude motion induced by melittin at a temperature near the Tc breaks down the magnetic alignment.
Collapse
Affiliation(s)
- Shuichi Toraya
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Nomura K, Corzo G, Nakajima T, Iwashita T. Orientation and pore-forming mechanism of a scorpion pore-forming peptide bound to magnetically oriented lipid bilayers. Biophys J 2004; 87:2497-507. [PMID: 15298871 PMCID: PMC1304669 DOI: 10.1529/biophysj.104.043513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The orientation and pore-forming mechanisms of pandinin 2 (pin2), an antimicrobial peptide isolated from venom of the African scorpion Pandinus imperator, bound to magnetically oriented lipid bilayers were examined by 31P and 13C solid-state, and 15N liquid-state NMR spectroscopy. 31P NMR measurements at various temperatures, under neutral and acidic conditions, showed that membrane lysis occurred only under acidic conditions, and at temperatures below the liquid crystal-gel phase transition of the lipid bilayers, after incubation for two days in the magnet. Differential scanning calorimetry measurements showed that pin2 induced negative curvature strain in lipid bilayers. The 13C chemical shift values of synthetic pin2 labeled at Gly3, Gly8, Leu12, Phe17, or Ser18 under static or slow magic-angle spinning conditions, indicate that pin2 penetrates the membrane with its average helical axis perpendicular to the membrane surface. Furthermore, amide H-D exchange experiments of 15N-Ala4, Gly8, and Ala9 triply-labeled pin2 suggest that this peptide forms oligomers and confirms that the N-terminal region creates membrane pores.
Collapse
Affiliation(s)
- Kaoru Nomura
- Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan.
| | | | | | | |
Collapse
|
34
|
Leng J, Egelhaaf SU, Cates ME. Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys J 2003; 85:1624-46. [PMID: 12944278 PMCID: PMC1303337 DOI: 10.1016/s0006-3495(03)74593-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Accepted: 04/10/2003] [Indexed: 11/19/2022] Open
Abstract
Important routes to lipid vesicles (liposomes) are detergent removal techniques, such as dialysis or dilution. Although they are widely applied, there has been only limited understanding about the structural evolution during the formation of vesicles and the parameters that determine their properties. We use time-resolved static and dynamic light scattering to study vesicle formation in aqueous lecithin-bile salt mixtures. The kinetic rates and vesicle sizes are found to strongly depend on total amphiphile concentration and, even more pronounced, on ionic strength. The observed trends contradict equilibrium calculations, but are in agreement with a kinetic model that we present. This model identifies the key kinetic steps during vesicle formation: rapid formation of disk-like intermediate micelles, growth of these metastable micelles, and their closure to form vesicles once line tension dominates bending energy. A comparison of the rates of growth and closure provides a kinetic criterion for the critical size at which disks close and thus for the vesicle size. The model suggests that liposomes are nonequilibrium, kinetically trapped structures of very long lifetime. Their properties are hence controlled by kinetics rather than thermodynamics.
Collapse
Affiliation(s)
- J Leng
- The University of Edinburgh, School of Physics, King's Buildings, Edinburgh EH9 3JZ, United Kingdom
| | | | | |
Collapse
|
35
|
Suezaki Y. Theoretical Possibility of Cuplike Vesicles for Aggregates of Lipid and Bile Salt Mixture. J Phys Chem B 2002. [DOI: 10.1021/jp026682p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukio Suezaki
- Physics Laboratory, Saga Medical School, Saga 8498501, Japan
| |
Collapse
|
36
|
Abstract
Freeze-fracture electron microscopy is especially useful for investigation of lipid structures by the advantageous fracture course within hydrophobic zones. Freezing is, on the other hand, a restriction because the structures of lamellar and non-lamellar phase states with disordered acyl chains (L(alpha), H(II,) cubic) are difficult to preserve. An important aspect of this method is therefore the lipid structure of phase states with ordered acyl chains (crystal, gel), and with a different degree of hydration. Freeze-fracture of pure lipid systems creates a valid representation of the structure of non-lamellar phases and of the general structure of the "lamellar" lipid bilayer, and lamellar phases with characteristic deformations (ripples, curvatures, plane sectors) can be identified. Fracture through the hydrophobic bilayer centre of biological membranes reveals characteristic protein components, the intramembraneous particles (IMPs). The lateral distribution of the IMPs is a helpful marker for fluid and rigid phase states, also without deformation of the lamella. The overall history and the present state of knowledge concerning the different structures revealed by the freeze-fracture and freeze-etch techniques in lipid systems, and to a limited extent in biological membranes, is reviewed, taking into account studies from our own laboratory.
Collapse
Affiliation(s)
- H W Meyer
- Institut für Ultrastrukturforschung, Klinikum der Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany.
| | | |
Collapse
|
37
|
Pott T, Maillet JC, Abad C, Campos A, Dufourcq J, Dufourc EJ. The lipid charge density at the bilayer surface modulates the effects of melittin on membranes. Chem Phys Lipids 2001; 109:209-23. [PMID: 11269939 DOI: 10.1016/s0009-3084(00)00223-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The influence of melittin on two DMPA membrane systems at pH 4.2 and 8.2 has been investigated by solid-state 31P and 2H NMR, as a function of temperature and peptide concentration. Melittin promotes greater morphological changes for both systems in the fluid phase, the effect being larger at pH 4.2. Close inspection of fatty acyl chain dynamics suggests that some parallels can be drawn between the DMPA/melittin at pH 8.2 and PC/melittin systems. In addition, at pH 8.2 a direct neutralization at the interface of one of the lipid negative charges by a positive charge of the peptide occurs, as can be monitored by 31P NMR at the molecular level. For the system at pH 4.2 and at high temperature, a lipid-to-peptide molar ratio of 30 is sufficient to transform the whole system into an isotropic phase, proposed to be inverted micelles. When the system is cooled down towards the gel phase one observes an intermediate hexagonal phase in a narrow range of temperature.
Collapse
Affiliation(s)
- T Pott
- Centre de Recherche Paul Pascal, CNRS, Pessac, France
| | | | | | | | | | | |
Collapse
|
38
|
Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Biophys J 2000; 78:2405-17. [PMID: 10777736 PMCID: PMC1300829 DOI: 10.1016/s0006-3495(00)76784-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.
Collapse
Affiliation(s)
- A Naito
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Boggs JM, Rangaraj G, Koshy KM, Ackerley C, Wood DD, Moscarello MA. Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990815)57:4<529::aid-jnr12>3.0.co;2-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Eker F, Durmus H, Akinoglu BG, Severcan F. Application of turbidity technique on peptide-lipid and drug-lipid interactions. J Mol Struct 1999. [DOI: 10.1016/s0022-2860(98)00690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Takei J, Reményi A, Clarke AR, Dempsey CE. Self-association of disulfide-dimerized melittin analogues. Biochemistry 1998; 37:5699-708. [PMID: 9548956 DOI: 10.1021/bi9729007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two cysteine substitutions of bee venom melittin have been synthesized to investigate the effects of disulfide cross-linking on the self-association properties of the peptide in solution. K23C melittin (mltK23C) was designed to link nonpolar surfaces of the amphipathic melittin helix on the basis of the close juxtaposition of pairs of K23 side chains in the crystal of the native melittin tetramer. K23Q/Q25C melittin (mltQ25C) was designed to link the polar surfaces of the peptide such that self-association in membrane bound states might be stabilized. The mltK23C disulfide dimer, (mltK23C)2, is highly structured at low pH under conditions where native melittin, and the mltK23C monomer, are unstructured. High-resolution NMR, circular dichroism, and fluorescence spectroscopy established that (mltK23C)2 is a helical monomer (pseudodimer) with stable helical segments between residues 2-13 and 15-25. Although the symmetrical nature of the pseudodimer prevented high-resolution structure determination, analysis of calculated hydrogen bond lengths, chemical shifts, near-UV circular dichroism, and urea denaturation demonstrated similarities with alpha-helical coiled coils and with the structure of native melittin in methanol. Stopped flow fluorescence showed that (mltK23C)2 underwent pH- and divalent anion-linked dimerization to a melittin-like pseudotetramer, indicating that a pair of disulfide bonds could be accommodated in a structure similar to the native melittin crystal structure. Despite incorporation of two disulfide bonds into the melittin tetramer, the folding free energy (DeltaGw) of [(mltK23C)2]2 was similar to that for the native melittin tetramer under the condition used. Incorporation of a disulfide bond on the polar helix face in melittin did not stabilize helical structure in the absence of self-association. Instead, this molecule underwent pH- and divalent anion-linked self-association to an ill-defined aggregate which precipitated.
Collapse
Affiliation(s)
- J Takei
- Department of Biochemistry and Molecular Recognition Centre, School of Medical Sciences, University of Bristol, U.K
| | | | | | | |
Collapse
|
42
|
Picard F, Paquet MJ, Dufourc EJ, Auger M. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study. Biophys J 1998; 74:857-68. [PMID: 9533697 PMCID: PMC1302565 DOI: 10.1016/s0006-3495(98)74009-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC.
Collapse
Affiliation(s)
- F Picard
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
43
|
Ebeling SC, Kelly SM, O'Kennedy BT, Price NC, Sheehan D. Surface activity properties of cysteine-substituted C-terminal melittin analogues. Biochimie 1997; 79:503-8. [PMID: 9451451 DOI: 10.1016/s0300-9084(97)82742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to extend our knowledge of factors important in the surface activity of melittin, cysteine was substituted for lysine-21 and lysine-21/glutamine-25 in a pair of synthetic peptide analogues. The first of these changes resulted in only modest effects on secondary structure (determined in 50% trifluoroethanol), emulsification and surface tension properties. Introduction of a second cysteine greatly reduced both the rate of surface tension decay and the equilibrium surface tension attained, although secondary structure (determined in 50% trifluoroethanol) was only slightly affected by this modification. This latter peptide completely lacked emulsification and haemolytic properties and was found to oligomerise readily due to the formation of intermolecular, disulphide bridges. These results indicate that oligomerisation abolishes surface activity in melittin.
Collapse
Affiliation(s)
- S C Ebeling
- Department of Biochemistry, University College Cork, Mardyke, Ireland
| | | | | | | | | |
Collapse
|
44
|
Hincha DK, Crowe JH. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1284:162-70. [PMID: 8914580 DOI: 10.1016/s0005-2736(96)00122-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the dependence of the lytic activity of the bee venom peptide melittin on the lipid composition of its target membrane. The lysis of large unilamellar liposomes, measured as loss of the fluorescent dye carboxyfluorescein, in the presence of melittin was strongly reduced when the negatively charged lipids phosphatidylglycerol (PG) or phosphatidylserine (PS), or the plant chloroplast lipids monogalactosyldiacylglycerol (MGDG) or digalactosyldiacylglycerol (DGDG) were incorporated into egg phosphatidylcholine (EPC) membranes. This reduction was evident at concentrations below 10 wt% of the additional lipids. It was not due to reduced binding of melittin to the vesicles. It was also not related to a reduced insertion depth of the peptide into the bilayer, as shown by quenching of the intrinsic tryptophan fluorescence of the peptide by the aqueous quencher sodium nitrate. Fourier transform infrared spectroscopy (FTIR) revealed specific interactions of the peptide with the headgroups of the inhibitory lipids. The phosphate peak in PG was shifted by two wavenumbers after the addition of melittin. There was no shift in EPC or PS. Instead, in PS the COO- peak was strongly distorted in the presence of melittin. These data indicate ionic interactions between the basic peptide and the negative charges on the membrane surface. The galactolipids are uncharged. Here the evidence points to hydrogen bonding between melittin and OH-groups of the sugar headgroups. Liposomes containing DGDG were the only case where we found evidence for changes in fatty acyl chain motion due to the presence of melittin, from the CH2-scissoring peaks.
Collapse
Affiliation(s)
- D K Hincha
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität, Berlin, Germany
| | | |
Collapse
|
45
|
Abstract
The physical concepts underlying the lateral distribution of the components forming a lamellar assembly of amphiphiles are discussed in this review. The role of amphiphiles' molecular structure and/or aqueous environment (ionic strength, water soluble substances) on formation and stability of lateral patterns is investigated. A considerable effort is devoted to the analysis of the properties of patterned structure which can be different from those of randomly mixed multi-component lamellae. Examples include adhesion and fusion among laterally inhomogeneous bilayers, enhanced interfacial adsorption of ions and polymers, enhanced transport across the bilayer, modified mechanical properties, local stabilization of non-planar geometries (pores, edges) and related phenomena (electroporation, budding transition and so on). Furthermore, an analysis of chemical reactivity within or at the water interface of a laterally inhomogeneous bilayer is briefly discussed. A link between these concepts and experimental findings taken from the biological literature is attempted throughout the review.
Collapse
Affiliation(s)
- A Raudino
- Dipartimento di Scienze Chimiche, Università di Catania, Italy
| |
Collapse
|
46
|
Faucon JF, Bonmatin JM, Dufourcq J, Dufourc EJ. Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1234:235-43. [PMID: 7696299 DOI: 10.1016/0005-2736(94)00298-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light scattering and 31P-NMR have been used to monitor the effect of the bee-toxin, melittin, on phosphatidylcholine (PC) bilayers of variable acyl chain length (from C16:0 to C20:0). Melittin interacts with all lipids provided the interaction is initiated in the lipid fluid phase. For low-to-moderate amounts of toxin (lipid-peptide molar ratios, Ri > or = 15), the system takes the form of large spheroidal vesicles, in the fluid phase, whose radius increases from 750 A with dipalmitoyl-PC (DPPC) to 1500 A with diarachinoyl-PC (DAPC). These vesicles fragment into small discoids of 100-150 A radius when the system is cooled down below Tc (the gel-to-fluid phase transition temperature). Little chain length dependence is observed for the small objects. Small structures are also detected independently of the physical state of lipids (gel or fluid) when Ri < or = 5 and provided the interaction has been made above Tc. Small discs clearly characterized for DPPC and distearoyl-PC (DSPC) lipids are much less stable with DAPC. However in the long term, all these small structures fuse into large lipid lamellae. Discs are thermodynamically unstable and kinetics of disappearance of the small lipid-toxin complexes increases as the chain length increases in the sense: DAPC >> DSPC > DPPC. Kinetics of fusion of the small discs into extended bilayers is described by a pseudo-first-order law involving a lag time after which fusion starts. Increasing the chain length decreases the lag time and increases the rate of fusion. Formation of both the large vesicles in the fluid phase and the small discs in the gel phase as well as their stability is discussed in terms of relative shapes and dynamics of both lipids and toxin.
Collapse
Affiliation(s)
- J F Faucon
- Centre de Recherche Paul Pascal, CNRS, Pessac, France
| | | | | | | |
Collapse
|
47
|
Polozova AI, Dubachev GE, Simonova TN, Barsukov LI. Temperature-induced micellar-lamellar transformation in binary mixtures of saturated phosphatidylcholines with sodium cholate. FEBS Lett 1995; 358:17-22. [PMID: 7821421 DOI: 10.1016/0014-5793(94)01378-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transition states of binary mixtures of dipalmitoyl- and dimyristoylphosphatidylcholines with sodium cholate at the reversible temperature-induced micellar-lamellar transformation were characterized by turbidimetry, electron microscopy, 31P NMR and differential scanning calorimetry. This transformation is triggered by the phospholipid acyl chain melting, and appears to include two structural pathways: (i) from discoidal mixed micelles to network-like structures composed of long interlaced rod-like micelles, then to multilayer membrane structures, and finally to multilamellar vesicles; and (ii) from discoidal micelles to membrane fragments and finally to unilamellar vesicles.
Collapse
Affiliation(s)
- A I Polozova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
48
|
McDonald LJ, Mamrack MD. Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La(3+), Al(3+), neomycin, polyamines, and melittin. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 11:81-91. [PMID: 7728419 DOI: 10.1016/0929-7855(94)00029-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Second messenger production from phosphoinositide hydrolysis is regulated by different pathways, such as G-proteins or tyrosine phosphorylation of phosphoinositide phospholipase C (PI-PLC). Another means of altering the activity of PI-PLC is through cation interaction with the phosphoinositide substrate. A variety of organic and inorganic multi-valent cations were examined for their effects on the activity of purified PI-PLC delta. Surprisingly, the cations produced both stimulation and inhibition of PI-PLC catalyzed phosphoinositide hydrolysis, depending on the substrate and the ion to phosphoinositide stoichiometry. These data support the hypothesis that ionic complexes with phosphoinositides may alter their hydrolysis by PI-PLC.
Collapse
Affiliation(s)
- L J McDonald
- Department of Biological Sciences, Wright State University, Dayton, OH 45345, USA
| | | |
Collapse
|
49
|
König S, Méléard P, Roux D. A comparison of DMPC membranes mixed with melittin or C12E5. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02462046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Creuzenet C, Haertlé T. Study of tensioactive properties of casein signal peptides and their interactions with phospholipids. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1994; 43:537-45. [PMID: 7928084 DOI: 10.1111/j.1399-3011.1994.tb00555.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The high degree of sequence conservation in casein signal peptides reflects their unique functional properties. A series of casein signal peptides and derivatives was synthesized in order to study their insertion in phospholipidic mono- and bilayer structures. Most of these amphiphilic peptides were found to be highly tensio-active. Their conformations differ and are solvent dependent. Fluorescence anisotropy measurements showed that all the peptides of the series could interact with dimyristoylphosphatidyl -choline and -glycerol when mixed with the lipids prior to hydration of the liposomes. The most soluble peptide, P6, was selected for insertion experiments in multilamellar vesicles. Its interaction with liposomes is efficient and rapid, being temperature dependent. On the one hand, the physico-chemical measures of interactions of signal peptides of casein beta and alpha s2 confirm their mutual genetic relationship, and on the other hand they show the divergence of casein beta and alpha s2 from casein kappa signal peptide.
Collapse
Affiliation(s)
- C Creuzenet
- LEIMA, National Institute for Agronomic Research, Nantes, France
| | | |
Collapse
|