1
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
2
|
Guo B, Sun L, Jiang S, Ren H, Sun R, Wei Z, Hong H, Luan X, Wang J, Wang X, Xu D, Li W, Guo C, Qiu LJ. Soybean genetic resources contributing to sustainable protein production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4095-4121. [PMID: 36239765 PMCID: PMC9561314 DOI: 10.1007/s00122-022-04222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.
Collapse
Affiliation(s)
- Bingfu Guo
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Sun
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Siqi Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rujian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyan Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Donghe Xu
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
da Silva RM, Guimarães VM, Veríssimo LAA, Vidigal MCTR, Minim VPR, Minim LA. Extraction, purification by cation exchange supermacroporous cryogel and physico-chemical characterization of γ-conglutin from lupin seeds (Lupinus albus L.). J Sep Sci 2021; 45:401-410. [PMID: 34687586 DOI: 10.1002/jssc.202100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
This study focused on the extraction, purification, and physicochemical characterization of γ-conglutin, a protein present in lupin seeds with properties of reducing blood glucose levels. Total protein was extracted with an alkaline-saline solvent, followed by isoelectric precipitation. Chromatographic purification of the precipitated fraction was performed using a cation exchange supermacroporous cryogel column. Electrophoresis of the eluted fraction from chromatography presented a single band of ∼48 kDa under non-reducing conditions (two bands of ∼30 and ∼17 kDa, under reducing conditions) confirming the success of the purification protocol. Liquid chromatography-tandem mass spectrometry analysis confirmed the identity of the protein as γ-conglutin. The purified γ-conglutin had an isoelectric point of 7.51, β-sheets prevailing as a secondary structure, and denaturation temperature close to 68°C. The outcome of this work showed that γ-conglutin was obtained with a high degree of purity. The proposed purification protocol is simple and can be easily scaled up.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis Antonio Minim
- Department of Food Technology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Hirano H. Basic 7S globulin in plants. J Proteomics 2021; 240:104209. [PMID: 33794343 DOI: 10.1016/j.jprot.2021.104209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Soybean seed basic 7S globulin (Bg7S)-like proteins are found in many plant species. Bg7S was originally thought to be a major seed storage protein but was later found to be multifunctional, with stress response, antibacterial activity, hormone receptor-like activity. Moreover, functional differences between Bg7S proteins from legumes and other plants have been revealed. In non-leguminous plants, Bg7S molecules inhibit the invasion of pathogenic microorganisms. However, although leguminous plants have a peptide called leg-insulin that can bind to Bg7S, non-leguminous plants do not have leginsulin. Bg7S in leguminous plants and other plants may have evolved in functionally different directions. Several homologs of Bg7S in plants are reported, but there is no homolog of this protein in peas, suggesting that the pea evolution might have followed a different route when compared to other leguminous plants. Although the functions of Bg7S are well documented in plants, recent studies suggest that this protein is also important in controlling blood glucose level, blood pressure and plasma cholesterol level, and cancer cell antiproliferative actions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Advanced Medical Science Research Center, Gunma Paz University, Shibukawa 1338-4, Shibukawa, Gunma 377-0008, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Showa 3-39-15, Maebashi 371-8512, Japan.
| |
Collapse
|
5
|
Okawara Y, Hirano H, Kimura A, Sato N, Hayashi Y, Osada M, Kawakami T, Ootake N, Kinoshita E, Fujita K. Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE. J Proteomics 2020; 231:104005. [PMID: 33035715 DOI: 10.1016/j.jprot.2020.104005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Phos-tag diagonal electrophoresis was developed to identify precisely a change in electrophoretic mobility of phosphoproteins in Phos-tag SDS-PAGE. Previously, if a single protein band was detected, it was impossible to determine whether mobility of the protein altered by Mn2+ Phos-tag in Phos-tag SDS-PAGE gels because SDS-PAGE and Phos-tag SDS-PAGE were performed on different gels. Moreover, when multiple protein bands were detected, it was difficult to determine whether the band with the highest mobility was altered mobility by Mn2+ Phos-tag. However, these problems were resolved by Phos-tag diagonal electrophoresis in which SDS-PAGE and Phos-tag SDS-PAGE patterns were provided on a single gel. Using this technique we identified phosphorylation states of various proteins such as α-lactalbumin, α- and β-casein, ovalbumin, basic 7S globulin, and 26S proteasome subunits. In the analyses of 26S proteasome subunits from humans and yeast, we could confirm that all subunits are phosphorylated, and find that the number of major proteins with different phosphorylation states is a few in each of the subunits despite having many phosphorylation sites. SIGNIFICANCE: Previously, Phos-tag SDS-PAGE has been developed to identify a change in electrophoretic mobility of phosphoproteins. However, we had a problem in this technique; it was often difficult to recognize the mobility shift by Mn2+ Phos-tag when we used separately SDS-PAGE and Phos-tag SDS-PAGE. Such a problem was resolved by Phos-tag diagonal electrophoresis in which SDS-PAGE and Phos-tag SDS-PAGE patterns are provided on a single gel. This technique was useful to identify phosphorylation states of various proteins. : Phos-tag diagonal electrophoresis, mass spectrometry, phosphoproteins, basic 7S globulin, proteasome.
Collapse
Affiliation(s)
- Yuki Okawara
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| | - Hisashi Hirano
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan.
| | - Ayuko Kimura
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| | - Natsumi Sato
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| | - Yuriko Hayashi
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| | - Makoto Osada
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| | - Takao Kawakami
- Medical Proteoscope Co., Fukuura 3-9. Kanazawa-ku, Yokohama 236-0004, Japan
| | | | - Eiji Kinoshita
- Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Kiyotaka Fujita
- Gunma Paz University, Tonyamachi 1-7-1, Takasaki 370-0006, Japan
| |
Collapse
|
6
|
Krishnan HB, Natarajan SS, Oehrle NW, Garrett WM, Darwish O. Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4572-4581. [PMID: 28532149 DOI: 10.1021/acs.jafc.7b00998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pigeonpea is one of the major sources of dietary protein for more than a billion people living in South Asia. This hardy legume is often grown in low-input and risk-prone marginal environments. Considerable research effort has been devoted by a global research consortium to develop genomic resources for the improvement of this legume crop. These efforts have resulted in the elucidation of the complete genome sequence of pigeonpea. Despite these developments, little is known about the seed proteome of this important crop. Here, we report the proteome of pigeonpea seed. To enable the isolation of maximum number of seed proteins, including those that are present in very low amounts, three different protein fractions were obtained by employing different extraction media. High-resolution two-dimensional (2-D) electrophoresis followed by MALDI-TOF-TOF-MS/MS analysis of these protein fractions resulted in the identification of 373 pigeonpea seed proteins. Consistent with the reported high degree of synteny between the pigeonpea and soybean genomes, a large number of pigeonpea seed proteins exhibited significant amino acid homology with soybean seed proteins. Our proteomic analysis identified a large number of stress-related proteins, presumably due to its adaptation to drought-prone environments. The availability of a pigeonpea seed proteome reference map should shed light on the roles of these identified proteins in various biological processes and facilitate the improvement of seed composition.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Nathan W Oehrle
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University , Towson, Maryland 21252, United States
| |
Collapse
|
7
|
Scarafoni A, Consonni A, Pessina S, Balzaretti S, Capraro J, Galanti E, Duranti M. Structural basis of the lack of endo-glucanase inhibitory activity of Lupinus albus γ-conglutin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:79-85. [PMID: 26741537 DOI: 10.1016/j.plaphy.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Lupin γ-conglutin and soybean BG7S are two legume seed proteins strongly similar to plant endo-β-glucanases inhibitors acting against fungal GH11 and GH12 glycoside hydrolase. However these proteins lack inhibitory activity. Here we describe the conversion of lupin γ-conglutin to an active inhibitor of endo-β-glucanases belonging to GH11 family. A set of γ-conglutin mutants was designed and expressed in Pichia pastoris, along with the wild-type protein. Unexpectedly, this latter was able to inhibit a GH11 enzyme, but not GH12, whereas the mutants were able to modulate the inhibition capacity. In lupin, γ-conglutin is naturally cleaved in two subunits, whereas in P. pastoris it is not. The lack of proteolytic cleavage is one of the reasons at the basis of the inhibitory activity of recombinant γ-conglutin. The results provide new insights about structural features at the basis of the lack of inhibitory activity of wild-type γ-conglutin and its legume homologues.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Alessandro Consonni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Stefano Pessina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Elisabetta Galanti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Marcello Duranti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Singh A, Meena M, Kumar D, Dubey AK, Hassan MI. Structural and functional analysis of various globulin proteins from soy seed. Crit Rev Food Sci Nutr 2015; 55:1491-502. [PMID: 24915310 DOI: 10.1080/10408398.2012.700340] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Storage proteins of soybean mostly consist of globulins, which are classified according to their sedimentation coefficient. Among 4 major types: 2S, 7S, 11S, and 15S of globulins, 7S and 11S constitute major fraction. The 11S fraction consists only of glycinin and 7S fraction majorly consists of β-conglycinin, small amounts of γ-conglycinin and basic 7S globulin (Bg7S). Glycinin exist as a hexamer while β-conglycinin as a trimer and Bg7S as a tetramer. Glycinin subunits are coded by 5 genes of a family, whereas about 15 genes are present for β-conglycinin subunits. Bg7S gene is present in four copies in soybean genome. Synthesis of all proteins takes place as a single polypeptide chain, which is cleaved after folding to yield different chains or subunits. Glycinin and β-Conglycinin are made for storage purpose. However, Bg7S has potential xylanase inhibition activity and protein kinase activity. Primary structure of Bg7S reveals 12 conserved cysteine residues involved in forming 6 disulfide bonds, which provides appreciable stability to protein. Secondary structure is predominately rich in β-sheets with few alpha helices. Bg7S shares structural similarity with various aspartic-proteases. In this review, our aim is to discuss sequence, structure, and function of various globulins present in Glycine max.
Collapse
Affiliation(s)
- Amandeep Singh
- a Division of Biotechnology, Netaji Subhas Institute of Technology , Azad Hind Fauz Marg, Sector-3, Dwarka, New Delhi , India
| | | | | | | | | |
Collapse
|
9
|
Nwafor CC, Gribaudo I, Schneider A, Wehrens R, Grando MS, Costantini L. Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant. BMC Genomics 2014; 15:1030. [PMID: 25431125 PMCID: PMC4301461 DOI: 10.1186/1471-2164-15-1030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seedless grapes are greatly appreciated for fresh and dry fruit consumption. Parthenocarpy and stenospermocarpy have been described as the main phenomena responsible for seedlessness in Vitis vinifera. However, the key genes underpinning molecular and cellular processes that play a significant role in seed development are not well characterized. To identify important regulators and mechanisms that may be altered in the seedless phenotype, we performed a comprehensive transcriptional analysis to compare the transcriptomes of a popular seeded wine cultivar (wild-type) and its seedless somatic variant (mutant) at three key developmental stages. RESULTS The transcriptomes revealed by Illumina mRNA-Seq technology had approximately 98% of grapevine annotated transcripts and about 80% of them were commonly expressed in the two lines. Differential gene expression analysis revealed a total of 1075 differentially expressed genes (DE) in the pairwise comparison of developmental stages, which included DE genes specific to the wild-type background, DE genes specific to the mutant background and DE genes commonly shared in both backgrounds. The analysis of differential expression patterns and functional category enrichment of wild-type and mutant DE genes highlighted significant coordination and enrichment of pollen and ovule developmental pathways. The expression of some selected DE genes was further confirmed by real-time RT-PCR analysis. CONCLUSIONS This study represents the most comprehensive attempt to characterize the genetic bases of seed formation in grapevine. With a high throughput method, we have shown that a seeded wine grape and its seedless somatic variant are similar in several biological processes. Nevertheless, we could identify an inventory of genes with altered expression in the mutant compared to the wild-type, which may be responsible for the seedless phenotype. The genes located within known genomic regions regulating seed content may be used for the development of molecular tools to assist table grape breeding. Therefore the data reported here have provided a rich genomic resource for practical use and functional characterization of the genes that potentially underpin seedlessness in grapevine.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Costantini
- Fondazione Edmund Mach, Research and Innovation Centre, Via E, Mach 1-38010 San Michele all'Adige, Trento, Italy.
| |
Collapse
|
10
|
Gazzola D, Vincenzi S, Gastaldon L, Tolin S, Pasini G, Curioni A. The proteins of the grape (Vitis vinifera L.) seed endosperm: Fractionation and identification of the major components. Food Chem 2014; 155:132-9. [DOI: 10.1016/j.foodchem.2014.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/09/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
11
|
Stanojevic SP, Barac MB, Pesic MB, Vucelic-Radovic BV. Composition of proteins in okara as a byproduct in hydrothermal processing of soy milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9221-8. [PMID: 22906059 DOI: 10.1021/jf3004459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein quality, based on its subunit composition, in okara obtained as a byproduct during hydrothermal cooking of soy milk was assessed. The composition of 7S and 11S protein fractions was correlated with the physicochemical properties of protein in okara produced from six soybean varieties. The basic 7S globulin (Bg7S) and 11S protein were two main proteins in okara. Investigated soybean genotypes produced okara with mainly acidic A(5) and basic B(1,2,4) polypeptides of 11S proteins. Soybean 11S content was not an indicator of okara protein recovery or extractability. Of all tested relationships, extractable soluble protein content of okara was influenced only by soybean Bg7S (r = 0.86; p < 0.05) and its light subunit contents (r = 0.93; p < 0.05). Okara protein recovery depended on Bg7S heavy subunit content in soybeans (r = 0.81; p < 0.05). The high quantity of vegetable protein in okara (around 35%) and very high protein extractability (around 85%) qualify this byproduct for potential application in food preparation as a functional ingredient.
Collapse
Affiliation(s)
- Sladjana P Stanojevic
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, P.O. Box 14, 11081 Belgrade-Zemun, Serbia.
| | | | | | | |
Collapse
|
12
|
Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr 2011; 107:67-73. [DOI: 10.1017/s0007114511002601] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to evaluate the effect of a chronic oral γ-conglutin treatment in male Sprague–Dawley rats in which hyperglycaemia had been induced by supplying 10 %d-glucose in drinking-water. A γ-conglutin dosage of 28 mg/kg body weight was daily administered to animals for 21 d. Plasma glucose, insulin and glucose overloading were monitored. Chronic administration of glucose resulted in a statistically significant (P < 0·05) increase in fasting blood glucose (2·5-fold) and insulin (2·7-fold)v.the values recorded in control rats. Simultaneous treatment with γ-conglutin attenuated the rise in plasma glucose (1·9-fold) and insulin (1·8-fold) levels in the glucose-fed rats (P < 0·05). Fasting insulin and homeostasis model of insulin resistance were decreased by 34 and 48 % (P < 0·05), respectively, in the γ-conglutin-treated ratsv.the values found in pair-fed animals. To confirm these results with a different approach, HepG2 cells, grown for 24 and 48 h in Dulbecco's minimum essential medium containing different glucose concentrations (5·5, 11·1 and 16·5 mmol/l), were exposed to 10 μmol/l γ-conglutin with or without 10 mmol/l metformin or 100 nmol/l insulin. γ-Conglutin increased glucose consumption (from 1·5- to 2·5-fold) in HepG2 cells, under all experimental conditions; this effect was more evident after 48 h incubation. Moreover, in thisin vitromodel, the addition of γ-conglutin potentiated the activity of insulin and metformin in cell glucose consumption. These findings extend the previous ones and suggest the potential use of lupin γ-conglutin in the control of glycaemia.
Collapse
|
13
|
Chiou TY, Lin YH, Su NW, Lee MH. Beta-glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8872-8. [PMID: 20681675 DOI: 10.1021/jf101848x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel beta-glucosidase was isolated from soybean okara in this study. Along with the beta-glucosidase, a considerable basic 7S globulin of soybean was obtained in the initial extraction products. The protein samples pretreated with 130 mM dithiothreitol before the step of CM-Sepharose chromatography could greatly enhance the separation of the targeted beta-glucosidase from the impurities. The purified beta-glucosidase was found to be a monomer estimated to be 75 kDa by SDS-PAGE. The optimal temperature and pH for this beta-glucosidase were 45 degrees C and 4.5, respectively. The activity of this purified beta-glucosidase was completely inhibited by 1 mM Hg(2+) or 10 mM Al(3+) ion, and glucose and mannose also affected the activity. This beta-glucosidase possessed strict specificity toward glucosyl isoflavones but not malonylglucosidic conjugates of isoflavones of soybean. The N-terminal amino acid sequence of the beta-glucosidase was EYLKYKDPKA-, which highly matched that of glycosidases in maize (Zea mays) and wheat (Triticum asetivum).
Collapse
Affiliation(s)
- Tai-Ying Chiou
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
14
|
Scarafoni A, Ronchi A, Duranti M. gamma-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. PHYTOCHEMISTRY 2010; 71:142-148. [PMID: 19962718 DOI: 10.1016/j.phytochem.2009.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 05/27/2023]
Abstract
gamma-Conglutin, a glycoprotein from Lupinus albus seed, has been characterized at molecular level but its physiological function is still unknown. gamma-Conglutin shares a high structural similarity with xyloglucan-specific endo-beta-1,4-glucanase inhibitor proteins (XEGIPs) and Triticum aestivum xylanase inhibitor (TAXI-I), which act specifically against fungal glycosyl hydrolase belonging to families 12 and 11, respectively. To assess the possible involvement of gamma-conglutin in plant defense, germinating lupin seeds were incubated with chitosan. The relative quantification of gamma-conglutin mRNA extracted from cotyledons was then carried out by RT-qPCR and indicated that chitosan strongly elicited the expression of gamma-conglutin. Moreover, biochemical trials aimed to test the inhibitory capacity of the protein have been also carried out. gamma-Conglutin failed to inhibit representative fungal endo-glucanases and other cell wall-degrading enzymes. To explain the lack of inhibitory capacity we investigated the possible structural differences between gamma-conglutin and XEGIPs and TAXI-I, including the construction of a predictive 3D model of the protein. Bioinformatic analysis suggests that the lack of inhibitory activity of gamma-conglutin can be attributed to sequence differences in the inhibitor interaction domains, and in particular to a sequence deletion in one of the functional loops.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy.
| | | | | |
Collapse
|
15
|
Foss N, Duranti M, Magni C, Frøkiaer H. Assessment of Lupin Allergenicity in the Cholera Toxin Model: Induction of IgE Response Depends on the Intrinsic Properties of the Conglutins and Matrix Effects. Int Arch Allergy Immunol 2006; 141:141-50. [PMID: 16864993 DOI: 10.1159/000094716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/30/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The well-established murine model of IgE-mediated food allergy, based on oral administration of antigen and cholera toxin (CT), has within the previous years been used to evaluate various food proteins. Nonetheless, little knowledge on the factors that determine the allergenicity of food proteins is available so far. The use of proteins from the legume seed Lupinus albus as food ingredients calls for an evaluation of their allergenic potential, and therefore, we applied the cited model to investigate the putative allergenicity of three lupin protein preparations representing different matrices in which the four types of conglutins are present in varying concentrations. METHODS Weekly, BALB/c A mice were orally immunized with the three lupin protein products together with CT. Total specific antibodies and IgE were determined by ELISA and Western blotting. RESULTS A dose-dependent Ig response against the analyzed proteins was observed for all three lupin products, while IgE responses against conglutins beta, gamma and delta, but not against conglutin alpha, were primarily detected after oral administration of lupin flakes. Whereas no differences among the samples for total specific Ig responses were seen, orally administered lupin flake extracts were much more efficient in inducing a conglutin-specific IgE response compared with fractionated lupin protein products. CONCLUSIONS Although the lupin-specific Ig response induced by coadministration of CT and lupin proteins appears to be dose dependent, the IgE response appears to depend merely on some intrinsic properties of the proteins as well as some factors of the protein matrix.
Collapse
Affiliation(s)
- Nicolai Foss
- Biochemistry and Nutrition Group, BioCentrum-DTU, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | | | | |
Collapse
|
16
|
Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B, Fogher C. Recombinant human acid beta-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. PLANT MOLECULAR BIOLOGY 2005; 57:101-13. [PMID: 15821871 DOI: 10.1007/s11103-004-6832-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 11/26/2004] [Indexed: 05/24/2023]
Abstract
Gaucher disease, the most common genetic lysosomal disorder, is caused by the lack of functional acid beta-glucosidase (GCase) and is currently treated at a very high cost by enzyme replacement therapy. In an attempt to provide a safe and cost-effective production system, human placental GCase was produced and purified from transgenic tobacco seeds. Plant-derived recombinant GCase was found to be enzymatically active, uptaken by human fibroblasts and free of immunogenic xylose and fucose residues. This report demonstrates the potential of plant bioreactors in the large-scale production of injectable proteins required for lifelong therapy.
Collapse
Affiliation(s)
- Serena Reggi
- Plantechno srl, Via Staffolo 60, Vicomoscano, 26040 Cremona, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Mooney BP, Krishnan HB, Thelen JJ. High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. PHYTOCHEMISTRY 2004; 65:1733-44. [PMID: 15276434 DOI: 10.1016/j.phytochem.2004.04.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 04/01/2004] [Indexed: 05/24/2023]
Abstract
Identification of anonymous proteins from two-dimensional (2-D) gels by peptide mass fingerprinting is one area of proteomics that can greatly benefit from a simple, automated workflow to minimize sample contamination and facilitate high-throughput sample processing. In this investigation we outline a workflow employing robotic automation at each step subsequent to 2-D gel electrophoresis. As proof-of-concept, 96 protein spots from a 2-D gel were analyzed using this approach. Whole protein (1 mg) from mature, dry soybean (Glycine max [L.] Merr.) cv. Jefferson seed was resolved by high resolution 2-D gel electrophoresis. Approximately 150 proteins were observed after staining with Coomassie Blue. The rather low number of detected proteins was due to the fact that the dynamic range of protein expression was greater than 100-fold. The most abundant proteins were seed storage proteins which in total represented over 60% of soybean seed protein. Using peptide mass fingerprinting 44 protein spots were identified. Identification of soybean proteins was greatly aided by the use of annotated, contiguous Expressed Sequence Tag (EST) databases which are available for public access (UniGene, ftp.ncbi.nih.gov/repository/UniGene/). Searches were orders of magnitude faster when compared to searches of unannotated EST databases and resulted in a higher frequency of valid, high-scoring matches. Some abundant, non seed storage proteins identified in this investigation include an isoelectric series of sucrose binding proteins, alcohol dehydrogenase and seed maturation proteins. This survey of anonymous seed proteins will serve as the basis for future comparative analysis of seed-filling in soybean as well as comparisons with other soybean varieties.
Collapse
Affiliation(s)
- Brian P Mooney
- Department of Biochemistry and Proteomics Center, University of Missouri-Columbia, 125 Chemistry, Columbia, MO 65211, USA
| | | | | |
Collapse
|
18
|
Shang C, Shibahara T, Hanada K, Iwafune Y, Hirano H. Mass Spectrometric Analysis of Posttranslational Modifications of a Carrot Extracellular Glycoprotein. Biochemistry 2004; 43:6281-92. [PMID: 15147212 DOI: 10.1021/bi036160f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of extracellular dermal glycoprotein (EDGP) is induced by biotic or abiotic stress. The amino acid sequence alignment showed that EDGP shared significant homology with proteins from legumes, tomato, Arabidopsis, wheat, and cotton. These proteins are involved in signal transduction or stress response systems. Most of the Cys residues in these proteins are conserved, suggesting that they share similar tertiary structures. Surface plasmon resonance (SPR) analysis shows that EDGP binds a soybean 4-kDa hormone-like peptide (4-kDa peptide) in vitro and reduction of EDGP decreased significantly the binding activity, implying that posttranslational modifications are important for its function. Therefore, we investigated the posttranslational modifications in EDGP using mass spectrometry. As the result, six disulfide bonds in EDGP were identified: Cys(70)-Cys(158), Cys(84)-Cys(89), Cys(97)-Cys(113), Cys(100)-Cys(108), Cys(201)-Cys(426), and Cys(332)-Cys(378). In addition, the N-terminal glutamine was cyclized into pyroglutamic acid. All four putative glycosylation sites were occupied by N-linked glycans, which have similar masses of m/z 1171. Finally, measuring the mass of the native protein showed that the posttranslational modifications of EDGP (pI 9.5) involved only disulfide bonds, N-terminal modification, and glycosylation.
Collapse
Affiliation(s)
- Chengwei Shang
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
19
|
Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Rabijns A, Raedschelders G, Robben J, Sansen S, Sørensen JF, Van Campenhout S, Delcour JA. Properties of TAXI-type endoxylanase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:213-21. [PMID: 14871662 DOI: 10.1016/j.bbapap.2003.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/07/2003] [Indexed: 12/20/2022]
Abstract
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.
Collapse
Affiliation(s)
- Kurt Gebruers
- KU Leuven, Laboratory of Food Chemistry, Kasteelpark Arenberg 20, B-3001 Louvain, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qin Q, Bergmann CW, Rose JKC, Saladie M, Kolli VSK, Albersheim P, Darvill AG, York WS. Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:327-338. [PMID: 12713539 DOI: 10.1046/j.1365-313x.2003.01726.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A basic, 51 kDa protein was purified from suspension-cultured tomato and shown to inhibit the hydrolytic activity of a xyloglucan-specific endoglucanase (XEG) from the fungus Aspergillus aculeatus. The tomato (Lycopersicon esculentum) protein, termed XEG inhibitor protein (XEGIP), inhibits XEG activity by forming a 1 : 1 protein:protein complex with a Ki approximately 0.5 nm. To our knowledge, XEGIP is the first reported proteinaceous inhibitor of any endo-beta-1,4-glucanase, including the cellulases. The cDNA encoding XEGIP was cloned and sequenced. Database analysis revealed homology with carrot extracellular dermal glycoprotein (EDGP), which has a putative role in plant defense. XEGIP also has sequence similarity to ESTs from a broad range of plant species, suggesting that XEGIP-like genes are widely distributed in the plant kingdom. Although Southern analysis detected only a single XEGIP gene in tomato, at least five other XEGIP-like tomato sequences have been identified. Similar small families of XEGIP-like sequences are present in other plants, including Arabidopsis. XEGIP also has some sequence similarity to two previously characterized proteins, basic globulin 7S protein from soybean and conglutin gamma from lupin. Several amino acids in the XEGIP sequence, notably 8 of the 12 cysteines, are generally conserved in all the XEGIP-like proteins we have encountered, suggesting a fundamental structural similarity. Northern analysis revealed that XEGIP is widely expressed in tomato vegetative tissues and is present in expanding and maturing fruit, but is downregulated during ripening.
Collapse
Affiliation(s)
- Qiang Qin
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, 220 Riverbend Road, University of Georgia, Athens 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamazaki T, Takaoka M, Katoh E, Hanada K, Sakita M, Sakata K, Nishiuchi Y, Hirano H. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1269-76. [PMID: 12631285 DOI: 10.1046/j.1432-1033.2003.03489.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we isolated a 4-kDa peptide capable of binding to a 43-kDa receptor-like protein and stimulating protein kinase activity of the 43-kDa protein in soybean. Both of them were found to localize in the plasma membranes and cell walls. Here, we report the physiological effects of 4-kDa peptide expressed transiently in the cultured carrot and bird's-foot trefoil cells transfected with pBI 121 plasmid containing the 4-kDa peptide gene. At early developmental stage, the transgenic callus grew rapidly compared to the wild callus in both species. Cell proliferation of in vitro cultured nonembryogenic carrot callus was apparently affected with the 4-kDa peptide in the medium. Complementary DNAs encoding the 4-kDa peptide from mung bean and azuki bean were cloned by PCR and sequenced. The amino-acid sequences deduced from the nucleotide sequences are homologous among legume species, particularly, the sites of cysteine residues are highly conserved. This conserved sequence reflects the importance of intradisulfide bonds required for the 4-kDa peptide to perform its function. Three dimensional structure of the 4-kDa peptide determined by NMR spectroscopy suggests that this peptide is a T-knot scaffold containing three beta-strands, and the specific binding activity to the 43-kDa protein and stimulatory effect on the protein phosphorylation could be attributed to the spatial arrangements of hydrophobic residues at the solvent-exposed surface of two-stranded beta-sheet of 4-kDa peptide. The importance of these residues for the 4-kDa peptide to bind to the 43-kDa protein was indicated by site-directed mutagenesis. These results suggest that the 4-kDa peptide is a hormone-like peptide and the 43-kDa protein is involved in cellular signal transduction of the peptide.
Collapse
|
22
|
Abstract
Dry beans are an important source of proteins, carbohydrates, dietary fiber, and certain minerals and vitamins in the human food supply. Among dry beans, Phaseolus beans are cultivated and consumed in the greatest quantity on a worldwide basis. Typically, most dry beans contain 15 to 25% protein on a dry weight basis (dwb). Water-soluble albumins and salt-soluble globulins, respectively, account for up to 10 to 30% and 45 to 70% of the total proteins (dwb). Dry bean albumins are typically composed of several different proteins, including lectins and enzyme inhibitors. A single 7S globulin dominates dry bean salt soluble fraction (globulins) and may account for up to 50 to 55% of the total proteins in the dry beans (dwb). Most dry bean proteins are deficient in sulfur amino acids, methionine, and cysteine, and therefore are of lower nutritional quality when compared with the animal proteins. Despite this limitation, dry beans make a significant contribution to the human dietary protein intake. In bean-based foods, dry bean proteins also serve additional functions that may include surface activity, hydration, and hydration-related properties, structure, and certain organoleptic properties. This article is intended to provide an overview of dry bean protein functionality with emphases on nutritional quality and hydration-related properties.
Collapse
Affiliation(s)
- S K Sathe
- Department of Nutrition, Food and Excercise Science, Florida State University, Tallahassee 32306-1493, USA
| |
Collapse
|
23
|
Poltronieri P, Cappello MS, Dohmae N, Conti A, Fortunato D, Pastorello EA, Ortolani C, Zacheo G. Identification and characterisation of the IgE-binding proteins 2S albumin and conglutin gamma in almond (Prunus dulcis) seeds. Int Arch Allergy Immunol 2002; 128:97-104. [PMID: 12065909 DOI: 10.1159/000059399] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Almond proteins can cause severe anaphylactic reactions in susceptible individuals. The aim of this study was the identification of IgE-binding proteins in almonds and the characterisation of these proteins by N-terminal sequencing. METHODS Five sera were selected from individuals with a positive reaction to food challenge. Sodium dodecylsulphate-polyacrylamide gel electrophoresis and immunoblotting were performed on almond seed proteins. Purified IgE-binding proteins were tested for immunoblot inhibition with sera pre-incubated with extracts of hazelnut and walnut. RESULTS N-terminal sequences of the 12-, 30- and 45-kD proteins were obtained. The 45- and 30-kD proteins shared the same N terminus, with 60% homology to the conglutin gamma heavy chain from lupine seed (Lupinus albus) and to basic 7S globulin from soybean (Glycine max). The sequences of the N-terminal 12-kD protein and of an internal peptide obtained by endoproteinase digestion showed good homology to 2S albumin from English walnut (Jug r 1). Immunoblot inhibition experiments were performed and IgE binding to almond 2S albumin and conglutin gamma was detected in the presence of cross-reacting walnut or hazelnut antigens. CONCLUSIONS Two IgE-binding almond proteins were N-terminally sequenced and identified as almond 2S albumin and conglutin gamma. Localisation and conservation of IgE binding in a 6-kD peptide obtained by endoproteinase digestion of 2S albumin was shown.
Collapse
Affiliation(s)
- P Poltronieri
- Istituto di Ricerca sulle Biotecnologie Agroalimentari, CNR, Lecce, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mendoza EM, Adachi M, Bernardo AE, Utsumi S. Mungbean [Vigna radiata (L.) Wilczek] globulins: purification and characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:1552-8. [PMID: 11312895 DOI: 10.1021/jf001041h] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vicilin type (8S) and basic 7S globulins and legumin type (11S) globulins were isolated from mungbean [Vigna radiata (L.) Wilczek]. The native molecular weights of the different globulin types were 360000 for legumin, 200000 for vicilin, and 135000 for basic 7S. Some of the 8S globulin apparently complexed and coeluted with the 11S on gel filtration. On SDS-PAGE, 11S was composed of two bands of 40000 and 24000, 8S was composed of 60000, 48000, 32000, and 26000 bands, and basic 7S was composed of 28000 and 16000 bands. The percent composition of total globulins was estimated to be as follow: 8S, 89%; basic 7S, 3.4%; and 11S, 7.6%. The basic 7S and 11S but not the 8S globulins were found to have disulfide bonds. The presence of carbohydrates by conjugated peroxidase reaction was observed in all bands of 8S, the acidic polypeptide of basic 7S, and its complex but not in 11S. The 28000 basic 7S band and its 42000 complex and the first three major bands of 8S cross-reacted with antibodies to all types of soybean conglycinin subunits (alpha, alpha', and beta), whereas the fourth band cross-reacted only with the anti-beta subunit. None of the mungbean globulins cross-reacted with anti-soybean glycinin. Basic 7S was found to be easily extracted with 0.15 M NaCl, 11S was extracted with 0.35 M NaCl,and 8S was extracted over a wide range of NaCl concentrations. The N-terminal sequences of the different subunits/fragments of the globulins were determined and found to have strong homology with storage proteins of other legumes and crops.
Collapse
Affiliation(s)
- E M Mendoza
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
25
|
Duranti M, Scarafoni A, Gius C, Negri A, Faoro F. Heat-induced synthesis and tunicamycin-sensitive secretion of the putative storage glycoprotein conglutin gamma from mature lupin seeds. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:387-93. [PMID: 8020476 DOI: 10.1111/j.1432-1033.1994.tb18877.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SDS/PAGE, immune blotting with specific antibodies and amino acid sequence analyses revealed that 90% of the protein released from Lupinus albus seeds incubated in water at 60 degrees C for about 3 h was conglutin gamma, a putative storage glycoprotein already present in the protein bodies of mature seeds. Incorporation of [14C]leucine into the protein demonstrated that conglutin gamma was newly synthesized during the treatment and the use of protein synthesis inhibitors ruled out the secretion of constitutive conglutin gamma. Synthesis and secretion took place only over a narrow temperature range, 57.5-62.5 degrees C, and in a short time interval, 135-180 min, of incubation of the seed. The amount of secreted conglutin gamma, i.e. 1 mg/seed, was about three times that present inside the treated or untreated seed. Secreted conglutin gamma contained covalently linked carbohydrate as well as the constitutive protein. Inhibition of the glycosylation by tunicamycin did not affect conglutin gamma synthesis, but prevented its secretion from the seed, as indicated by quantifying conglutin gamma remaining in the seed. An accumulation of the protein outside the protein bodies and at the cotyledonary cell periphery was shown in these samples by immunocytochemistry. Peptide mapping of the fragments obtained by incubation of constitutive and secreted conglutin gamma with trypsin and pepsin revealed no difference between the two proteins. Lupin seeds were still viable after the treatment. However no similarities between conglutin gamma and heat-shock proteins were observed either in the amino acid sequence or other molecular features.
Collapse
Affiliation(s)
- M Duranti
- Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Kolivas S, Gayler KR. Structure of the cDNA coding for conglutin gamma, a sulphur-rich protein from Lupinus angustifolius. PLANT MOLECULAR BIOLOGY 1993; 21:397-401. [PMID: 8425065 DOI: 10.1007/bf00019956] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The sequence of cDNA coding for a sulphur-rich storage protein from Lupinus angustifolius L., conglutin gamma, was determined. The coding region contained an N-terminal leader peptide of 28 amino acids which directly preceded subunits of M(r) 28,239 and 16,517. Extensive sequence homology between the protein encoded by conglutin gamma cDNA and basic 7S globulin from soybean was observed. Sequence homology to proteins from other classes of storage proteins, 11S, 7S and 2S, was limited to short and highly fragmented sequences. The amino acid sequence, Asn-Gly-Leu-Glu-Glu-Thr, characteristic of the primary site for post-translational cleavage of the precursors of 11S proteins, was absent from the sequence predicted for prepro-conglutin gamma. It is concluded that conglutin gamma is a representative of a fourth type of storage protein in legumes, distinct from the 11S, 7S and 2S storage protein families.
Collapse
Affiliation(s)
- S Kolivas
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Vic, Australia
| | | |
Collapse
|
28
|
Affiliation(s)
- S Utsumi
- Research Institute for Food Science, Kyoto University, Japan
| |
Collapse
|
29
|
Komatsu S, Hirano H. Plant basic 7 S globulin-like proteins have insulin and insulin-like growth factor binding activity. FEBS Lett 1991; 294:210-2. [PMID: 1756862 DOI: 10.1016/0014-5793(91)80671-o] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Basic 7 S globulin (Bg) is a cysteine-rich glycoprotein present in soybean seeds. Mature Bg is composed of high- and low-kDa subunits linked by disulfide bonding. A ligand blotting experiment using [125I]insulin and [125I]insulin-like growth factor-I and -II showed that Bg subunits are able to bind not only to insulin but to insulin-like growth factors-I and -II. Bg-like proteins from other legume species cross-reacted with anti-Bg antibody also bind to insulin and insulin-like growth factors. Bg-like protein in carrot cells was found to have insulin binding activity. Bg-like proteins may be involved in an insulin-like regulatory mechanism in many plant species.
Collapse
Affiliation(s)
- S Komatsu
- Department of Molecular Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | |
Collapse
|
30
|
Hirano H. Microsequence analysis of winged bean seed proteins electroblotted from two-dimensional gel. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:115-30. [PMID: 2765119 DOI: 10.1007/bf01025083] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electroblotting method employing a semidry blotting apparatus for the subsequent protein microsequence analysis (Hirano, 1987) was improved. This method is convenient and allows rapid and efficient transfer of the proteins from a polyacrylamide gel (1 mm thick) onto the Polybrene-coated glass-fiber sheet or polyvinylidene difluoride membrane filter in only 20 min. The electroblotted proteins could be sequenced directly with the gas-phase protein sequencer at a 20-pmole level. This method was applied to the sequence analysis of winged bean seed proteins. A portion of the crude extracts from only one-twentieth of a seed of the winged bean was separated by two-dimensional polyacrylamide gel electrophoresis and electroblotted, and the N-terminal amino acid sequences of the blotted proteins were analyzed. The sequences of about 60% of the blotted major proteins, including nine Kunitz trypsin inhibitor-like proteins with heterogeneity in the N-terminal sequences, a protein that has a homologous sequence to the leghaemoglobin, nitrogen-fixing root nodule-specific protein, and a soybean basic 7S globulin-like protein could be easily identified.
Collapse
Affiliation(s)
- H Hirano
- Department of Molecular Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| |
Collapse
|