1
|
Tzeng MC. Interaction of Presynaptically Toxic Phospholipases A2with Membrane Receptors and Other Binding Sites. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309084185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Abstract
Dendrotoxins are small proteins that were isolated 20 years ago from mamba (Dendroaspis) snake venoms (Harvey, A.L., Karlsson, E., 1980. Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps: a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Naunyn-Schmiedebergs Arch. Pharmacol. 312, 1-6.). Subsequently, a family of related proteins was found in mamba venoms and shown to be homologous to Kunitz-type serine protease inhibitors, such as aprotinin. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges. The dendrotoxins have little or no anti-protease activity, but they were demonstrated to block particular subtypes of voltage-dependent potassium channels in neurons. Studies with cloned K(+) channels indicate that alpha-dendrotoxin from green mamba Dendroaspis angusticeps blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas toxin K from the black mamba Dendroaspis polylepis preferentially blocks Kv1.1 channels. Structural analogues of dendrotoxins have helped to define the molecular recognition properties of different types of K(+) channels, and radiolabelled dendrotoxins have also been useful in helping to discover toxins from other sources that bind to K(+) channels. Because dendrotoxins are useful markers of subtypes of K(+) channels in vivo, dendrotoxins have become widely used as probes for studying the function of K(+) channels in physiology and pathophysiology.
Collapse
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G4 ONR, UK
| |
Collapse
|
3
|
Shamotienko O, Akhtar S, Sidera C, Meunier FA, Ink B, Weir M, Dolly JO. Recreation of neuronal Kv1 channel oligomers by expression in mammalian cells using Semliki Forest virus. Biochemistry 1999; 38:16766-76. [PMID: 10606508 DOI: 10.1021/bi991039n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multiple roles of voltage-sensitive K(+) channels (Kv1 subfamily) in brain are served by subtypes containing pore-forming alpha (1.1-1.6) and auxiliary beta subunits, usually in an (alpha)(4)(beta)(4) stoichiometry. To facilitate structure/activity analysis, combinations that are prevalent in neurones and susceptible to alpha-dendrotoxin (alphaDTX) were reproduced in mammalian cells, using Semliki Forest virus. Infected Chinese hamster ovary cells expressed N-glycosylated Kv1.1 and 1.2 alpha subunits (M(r) approximately 60 and 62 K) that assembled and bound [(125)I]-alphaDTX with high affinity; an appreciable proportion appeared on the cell surface, with Kv1.2 showing a 5-fold enrichment in a plasma membrane fraction. To obtain 'native-like' alpha/beta complexes, beta1.1 or 2.1 (M(r) approximately 42 and 39 K, respectively) was co-expressed with Kv1.1 or 1.2. This slightly enhanced N-glycosylation and toxin binding, most notable with beta2. 1 and Kv1.2. Solubilization of membranes from cells infected with Kv. 1.2 and beta2.1, followed by Ni(2+) chromatography, gave a purified alpha1.2/beta2.1 complex with a size of approximately 405 K and S(20, W) = 15.8 S. Importantly, these values indicate that four alpha and beta subunits co-assembled as in neurones, a conclusion supported by the size ( approximately 260 K) of the homo-tetramer formed by Kv1.2 alone. Thus, an authentic K(+) channel octomer has been reconstructed; oligomeric species were also found in plasma membranes. To create 'authentic-like' hetero-oligomeric channels, Kv1.1 and 1.2 were co-expressed and shown to have assembled by the precipitation of both with IgGs specific for either. Consistently, confocal microscopy of cells labeled with these antibodies showed that the relatively low surface content of Kv1.1 was increased by Kv1.2. [(125)I]-alphaDTX binding to these complexes was antagonized by DTX(k), a probe selective for Kv1.1, in a manner that mimicks the pattern observed for the Kv1.1/1.2-containing channels in neuronal membranes.
Collapse
Affiliation(s)
- O Shamotienko
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, U.K
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
1. Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snake venoms. They block some subtypes of voltage-dependent potassium channels in neurons. 2. Dendrotoxins contain 57-60 amino acid residues crosslinked by three disulfide bridges. They are homologous to Kunitz-type serine protease inhibitors, such as aprotinin, although they have little or no antiprotease activity. 3. Dendrotoxins act mainly on neuronal K+ channels. Studies with cloned K+ channels indicate that alpha-dendrotoxin from green mamba Dendroaspis angusticeps blocks Kv1.1 and Kv1.2 channels in the nanomolar range. In native cells, dendrotoxin appears preferentially to block inactivating forms of K+ current. 4. Dendrotoxins can induce repetitive firing in neurons and facilitate transmitter release. On direct injection to the CNS, dendrotoxins can induce epileptiform activity. 5. Radiolabeled dendrotoxins are useful markers of subtypes of K+ channels in vivo, and structural analogs help to define the molecular recognition properties of different types of K+ channels.
Collapse
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Levin G, Chikvashvili D, Singer-Lahat D, Peretz T, Thornhill WB, Lotan I. Phosphorylation of a K+ channel alpha subunit modulates the inactivation conferred by a beta subunit. Involvement of cytoskeleton. J Biol Chem 1996; 271:29321-8. [PMID: 8910593 DOI: 10.1074/jbc.271.46.29321] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Voltage-gated K+ channels isolated from mammalian brain are composed of alpha and beta subunits. Interaction between coexpressed Kv1.1 (alpha) and Kvbeta1.1 (beta) subunits confers rapid inactivation on the delayed rectifier-type current that is observed when alpha subunits are expressed alone. Integrating electrophysiological and biochemical analyses, we show that the inactivation of the alphabeta current is not complete even when alpha is saturated with beta, and the alphabeta current has an inherent sustained component, indistinguishable from a pure alpha current. We further show that basal and protein kinase A-induced phosphorylations at Ser-446 of the alpha protein increase the extent, but not the rate, of inactivation of the alphabeta channel, without affecting the association between alpha and beta. In addition, the extent of inactivation is increased by agents that lead to microfilament depolymerization. The effects of phosphorylation and of microfilament depolymerization are not additive. Taken together, we suggest that phosphorylation, via a mechanism that involves the interaction of the alphabeta channel with microfilaments, enhances the extent of inactivation of the channel. Furthermore, phosphorylation at Ser-446 also increases current amplitudes of the alphabeta channel as was shown before for the alpha channel. Thus, phosphorylation enhances in concert inactivation and current amplitudes, thereby leading to a substantial increase in A-type activity.
Collapse
Affiliation(s)
- G Levin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, 69978 Ramat Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
6
|
Thornhill WB, Wu MB, Jiang X, Wu X, Morgan PT, Margiotta JF. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem 1996; 271:19093-8. [PMID: 8702582 DOI: 10.1074/jbc.271.32.19093] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kv1.1 potassium (K+) channels contain significant amounts of negatively charged sialic acids. To examine the role of sialidation in K+ channel function, Chinese hamster ovary cell lines deficient in glycosylation (Lec mutants) were transfected with rat brain Kv1.1 cDNA. The K+ channel was functionally expressed in all cell lines, but the voltage dependence of activation (V1/2) was shifted to more positive voltages and the activation kinetics were slower in the mutant cell lines compared with control. A similar positive shift in V1/2 was recorded in control cells expressing Kv1.1 following treatment with sialidase or by raising extracellular Ca2+. In contrast, these treatments had little or no effect on the Lec mutants, which indicates that channel sialic acids appear to be the negative surface charges sensitive to Ca2+. The data suggest that sialic acid addition modifies Kv1.1 channel function, possibly by influencing the local electric field detected by its voltage sensor, but that these carbohydrates are not required for cell surface expression.
Collapse
Affiliation(s)
- W B Thornhill
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hall A, Stow J, Sorensen R, Dolly JO, Owen D. Blockade by dendrotoxin homologues of voltage-dependent K+ currents in cultured sensory neurones from neonatal rats. Br J Pharmacol 1994; 113:959-67. [PMID: 7858892 PMCID: PMC1510426 DOI: 10.1111/j.1476-5381.1994.tb17086.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Homologues of dendrotoxin (Dtx) were isolated from the crude venom of Green and Black Mamba snakes and examined for K+ channel blocking activity in neonatal rat dorsal root ganglion cells (DRGs) by whole-cell patch clamp recording. 2. Outward potassium current activated by depolarization was composed of two major components: a slowly inactivating current (SIC, tau decay approximately 50 ms, 200 ms and 2s), and a non-inactivating current (NIC, tau decay > 2 min). Tail current analysis revealed two time constants of deactivation of total outward current, 3-12 ms and 50-150 ms (at -80 mV) which corresponded to SIC and NIC, respectively. 3. All the homologues (alpha-, beta-, gamma- and delta-Dtx and toxins I and K) blocked outward current activated by depolarization in a dose-dependent manner. The most potent in blocking total outward current was delta-Dtx (EC50 of 0.5 +/- 0.2 nM), although there were no statistically significant differences in potency between any of the homologues. 4. Qualitative differences in the nature of the block were noted between homologues. In particular, the block by delta-Dtx was time-dependent, whereas that by alpha-Dtx was not. 5. alpha-Dtx was a much better blocker of SIC (EC50 = 1.0 +/- 0.4 nM) than was delta-Dtx (EC50 = 17.6 +/- 5.8 nM). Furthermore, delta-Dtx was selective for NIC (EC50 +/- 0.24 +/- 0.03 nM) over SIC and reduced the slow component of tail currents (NIC), preferentially. On the other hand, a-Dtx did not significantly distinguish between SIC and NIC although tail current analysis showed that a-Dtxpreferentially reduced the fast component of tail currents (SIC).6. The results confirm, using direct electrophysiological methods, that homologues of dendrotoxins from Mamba snake venom block K+ channels in rat sensory neurones. Furthermore, a-Dtx and 6-Dtx distinguish between sub-types of K+ channels in these cells and may thus be useful pharmacological tools in other neuronal K+ channel studies.
Collapse
Affiliation(s)
- A Hall
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London
| | | | | | | | | |
Collapse
|
8
|
Abstract
Recent discoveries indicate that potassium channel beta subunits can have profound functional roles, particularly in determining the channel inactivation properties.
Collapse
Affiliation(s)
- R W Aldrich
- Howard Hughes Medical Institute, Stanford University, CA 94305
| |
Collapse
|
9
|
Cai Y, Douglass J. In vivo and in vitro phosphorylation of the T lymphocyte type n (Kv1.3) potassium channel. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49520-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Takimoto K, Fomina AF, Gealy R, Trimmer JS, Levitan ES. Dexamethasone rapidly induces Kv1.5 K+ channel gene transcription and expression in clonal pituitary cells. Neuron 1993; 11:359-69. [PMID: 8352944 DOI: 10.1016/0896-6273(93)90191-s] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glucocorticoids specifically increase Kv1.5 K+ channel mRNA in normal and clonal (GH3) rat pituitary cells. Here, we demonstrate that dexamethasone, a glucocorticoid agonist, rapidly induces Kv1.5 gene transcription, but does not affect Kv1.5 mRNA turnover (t1/2 approximately 0.5 hr) in GH3 cells. Immunoblots indicate that the steroid also increases the expression of the 76 kd Kv1.5 protein approximately 3-fold within 12 hr without altering its half-life (t1/2 approximately 4 hr). In contrast, Kv1.4 protein expression is unaffected. Finally, we find that the induction of Kv1.5 protein is associated with an increase in a noninactivating component of the voltage-gated K+ current. Our results indicate that hormones and neurotransmitters may act within hours to regulate excitability by controlling K+ channel gene expression.
Collapse
Affiliation(s)
- K Takimoto
- Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
12
|
Bagetta G, Nisticó G, Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 1992; 139:34-40. [PMID: 1357602 DOI: 10.1016/0304-3940(92)90851-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
alpha-Dendrotoxin (Dtx), a snake polypeptide, increases neuronal excitability by blocking certain fast-activating, voltage-dependent K+ channels. Thus, the behavioural, electrocortical (ECoG) and neuropathological effects of Dtx, injected into rat brain areas, were studied. A unilateral injection of 35 pmol of Dtx into the CA1 hippocampal area or the dendate gyrus (DG; upper blade) immediately produced motor and ECoG seizures, followed at 24 h by multi-focal brain damage and significant neuronal loss. Whilst brain damage was seen bilaterally, significant neuronal loss occurred only in regions (CA1, CA3, CA4 and DG) ipsilateral to the site of injection. A lower dose (3.5 pmol) of toxin elicited motor and ECoG seizures but failed to produce brain damage. Seizures were observed 50 min after injecting Dtx (35 pmol) into the amygdala, though significant neuronal loss was not evident. 4-Aminopyridine (100 nmol), given into the CA1 area elicited a similar motor and ECoG pattern to that of Dtx except no brain damage could be seen at 24 h. Systemic pretreatment with antagonists of N-methyl-D-aspartate receptors (MK-801 or CGP 37849) did not protect against the effects typically evoked by injecting Dtx into the CA1 area.
Collapse
Affiliation(s)
- G Bagetta
- Department of Biology, University of Rome, Italy
| | | | | |
Collapse
|
13
|
Rehm H, Lazdunski M. Purification, affinity labeling, and reconstitution of voltage-sensitive potassium channels. Methods Enzymol 1992; 207:556-64. [PMID: 1528125 DOI: 10.1016/0076-6879(92)07039-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Rehm H. Molecular aspects of neuronal voltage-dependent K+ channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:701-13. [PMID: 1765087 DOI: 10.1111/j.1432-1033.1991.tb16425.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rehm
- Pharmakologisches Institut, Universität Zürich, Switzerland
| |
Collapse
|
15
|
Trimmer JS. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci U S A 1991; 88:10764-8. [PMID: 1961744 PMCID: PMC53011 DOI: 10.1073/pnas.88.23.10764] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibodies specific for the drk1 polypeptide were used to characterize the corresponding protein in rat brain. Recombinant and synthetic immunogens containing fragments of the drk1 polypeptide were produced. Antibodies raised to these immunogens display monospecific reactions with the same 130-kDa polypeptide on immunoblots of adult rat brain membranes. Immunoprecipitation of 125I-labeled brain membranes identifies a 38-kDa peptide in tight association with the drk1 polypeptide. Immunohistochemical staining of sections of adult rat cortex shows that drk1 protein is restricted to neurons, where staining is present on dendrites and cell bodies but not on axons. These studies point to the value of such immunological reagents to the further characterization of the components of this delayed rectifier K+ channel in the mammalian central nervous system.
Collapse
Affiliation(s)
- J S Trimmer
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| |
Collapse
|
16
|
Garcia ML, Galvez A, Garcia-Calvo M, King VF, Vazquez J, Kaczorowski GJ. Use of toxins to study potassium channels. J Bioenerg Biomembr 1991; 23:615-46. [PMID: 1917911 DOI: 10.1007/bf00785814] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potassium channels comprise groups of diverse proteins which can be distinguished according to each member's biophysical properties. Some types of K+ channels are blocked with high affinity by specific peptidyl toxins. Three toxins, charybdotoxin, iberiotoxin, and noxiustoxin, which display a high degree of homology in their primary amino acid sequences, have been purified to homogeneity from scorpion venom. While charybdotoxin and noxiustoxin are known to inhibit more than one class of channel (i.e., several Ca(2+)-activated and voltage-dependent K+ channels), iberiotoxin appears to be a selective blocker of the high-conductance, Ca(2+)-activated K+ channel that is present in muscle and neuroendocrine tissue. A distinct class of small-conductance Ca(2+)-activated K+ channel is blocked by two other toxins, apamin and leiurotoxin-1, that share no sequence homology with each other. A family of homologous toxins, the dendrotoxins, have been purified from venom of various related species of snakes. These toxins inhibit several inactivating voltage-dependent K+ channels. Although molecular biology approaches have been employed to identify and characterize several species of voltage-gated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest.
Collapse
Affiliation(s)
- M L Garcia
- Department of Membrane Biochemistry and Biophysics, Merck Institute for Therapeutic Research, Rahway, New Jersey 07065
| | | | | | | | | | | |
Collapse
|
17
|
Rudy B, Sen K, Vega-Saenz de Miera E, Lau D, Ried T, Ward DC. Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21. J Neurosci Res 1991; 29:401-12. [PMID: 1920536 DOI: 10.1002/jnr.490290316] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over ten different mammalian genes related to the Drosophila Shaker gene (the Sh gene family) have been identified recently. These genes encode subunits of voltage-dependent K+ channels. The family consists of four subfamilies: ShI genes are homologues of Shaker; ShII, ShIII, and ShIV are homologues of three other Shaker-like genes in Drosophila, Shab, Shaw, and Shal, respectively. We report here the cloning of a human K+ channel ShIII cDNA (HKShIIIC) obtained from a brain stem cDNA library. HKShIIIC transcripts express an atypical voltage-dependent transient (A-type) K+ current in Xenopus oocytes. This current is activated by large membrane depolarizations and is extremely sensitive to the K+ channel blocker TEA unlike most A-type currents. The gene encoding HKShIIIC maps to chromosome 1p21.
Collapse
Affiliation(s)
- B Rudy
- Department of Physiology and Biophysics, New York University Medical Center, NY 10016
| | | | | | | | | | | |
Collapse
|
18
|
Families of potassium channel genes in mammals: Toward an understanding of the molecular basis of potassium channel diversity. Mol Cell Neurosci 1991; 2:89-102. [DOI: 10.1016/1044-7431(91)90001-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1991] [Indexed: 11/22/2022] Open
|
19
|
Electrophysiological characterization of a new member of the RCK family of rat brain K+ channels. FEBS Lett 1991; 278:55-60. [PMID: 1993474 DOI: 10.1016/0014-5793(91)80082-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel member of the RCK family of rat brain K+ channels, called RCK2, has been sequenced and expressed in Xenopus oocytes. The K+ currents were voltage-dependent, activated within 20 ms (at 0 mV), did not inactivate in 5 s, and had a single channel conductance in frog Ringers of 8.2 pS. Compared to other members of the RCK family the pharmacological profile of RCK2 was unique in that the channel was resistant to block (IC50 = 3.3 microM) by charybdotoxin [(1988) Proc. Natl. Acad. Sci. USA 85, 3329-3333] but relatively sensitive to 4-aminopyridine (0.3 mM), tetraethylammonium (1.7 mM), alpha-dendrotoxin (25 nM), noxiustoxin (200 nM), and mast cell degranulating peptide (200 nM). Thus, RCK2 is a non-inactivating delayed rectifier K+ channel with interesting pharmacological properties.
Collapse
|
20
|
Abstract
Potassium channels are a diverse group of ion channels present in most eukaryotic cells that have been examined. Over 30 different potassium channels have been characterized biophysically. They show different sensitivities to voltage and/or intracellular messengers, and have different kinetic or pharmacological properties. The wide range of potassium channel properties reflects the broad spectrum of cellular functions that they serve, including control of synaptic efficacy, of heart beat, and of endocrine and exocrine secretion. How might this tremendous diversity of potassium channels be generated? Partial answers have begun to emerge as molecular studies of potassium channel genes have become possible over the past few years.
Collapse
Affiliation(s)
- L Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | |
Collapse
|
21
|
Homologues of a K+ channel blocker α-dendrotoxin: characterization of synaptosomal binding sites and their coupling to elevation of cytosolic free calcium concentration. Neurochem Int 1990; 16:105-12. [DOI: 10.1016/0197-0186(90)90130-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1989] [Accepted: 11/14/1989] [Indexed: 11/18/2022]
|
22
|
|