1
|
Wan X, Shen P, Shi K, Li J, Wu F, Zhou C. A Neural Circuit Controlling Virgin Female Aggression Induced by Mating-related Cues in Drosophila. Neurosci Bull 2023; 39:1396-1410. [PMID: 36941515 PMCID: PMC10465459 DOI: 10.1007/s12264-023-01050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 03/23/2023] Open
Abstract
Females increase aggression for mating opportunities and for acquiring reproductive resources. Although the close relationship between female aggression and mating status is widely appreciated, whether and how female aggression is regulated by mating-related cues remains poorly understood. Here we report an interesting observation that Drosophila virgin females initiate high-frequency attacks toward mated females. We identify 11-cis-vaccenyl acetate (cVA), a male-derived pheromone transferred to females during mating, which promotes virgin female aggression. We subsequently reveal a cVA-responsive neural circuit consisting of four orders of neurons, including Or67d, DA1, aSP-g, and pC1 neurons, that mediate cVA-induced virgin female aggression. We also determine that aSP-g neurons release acetylcholine (ACh) to excite pC1 neurons via the nicotinic ACh receptor nAChRα7. Together, beyond revealing cVA as a mating-related inducer of virgin female aggression, our results identify a neural circuit linking the chemosensory perception of mating-related cues to aggressive behavior in Drosophila females.
Collapse
Affiliation(s)
- Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
2
|
Pilon A, Goven D, Raymond V. Pharmacological and molecular characterization of the A-type muscarinic acetylcholine receptor from Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2022; 31:497-507. [PMID: 35357052 DOI: 10.1111/imb.12775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Muscarinic acetylcholine receptors (mAChRs) which are G protein-coupled receptors play key roles in insect physiology. Whereas vertebrate mAChRs are important targets for pharmaceutical drugs, insect mAChRs are under-exploited by the agro-chemical industry. Moreover, insect mAChRs have been less well studied than their vertebrate counterparts. Their critical functions mean that a better knowledge of the insect mAChRs is crucial for the effort to develop a new molecular-level strategy for insect pest management. Almost all insects possess three mAChRs named A, B and C which differ according to their coupling effector systems and their pharmacological profile. The aim of this study was to characterize the A-type mAChR (mAChR-A) from Anopheles gambiae which is the major vector of malaria in order to develop new strategies in pest management. In this paper, we reported that mAChR-A is more expressed in adult mosquitoes than in larvae. Furthermore, using calcium imaging recordings, we found that the An. gambiae mAChR-A expressed in Sf9 cells is activated by specific muscarinic agonists acetylcholine, muscarine and oxotremorine M and blocked by several mAChR antagonists. Moreover, using inhibitors of phosphoinositide pathway such as Gαq/11 protein blocker, we have shown that an increased intracellular calcium concentration elicited by the acetylcholine application was mediated by PLC/IP3R pathway. As a rise in intracellular calcium concentration could lead to an increase in the insecticide target sensitivity, these results suggest that An. gambiae mAChR-A should not be only considered as a potential target for new molecules but also as a key element to optimize the efficacy of insecticide in vector control.
Collapse
Affiliation(s)
- Alexandre Pilon
- Univ Angers, INRAE, SiFCIR Laboratory, SFR QUASAV, F-49000 Angers, France
| | - Delphine Goven
- Univ Angers, INRAE, SiFCIR Laboratory, SFR QUASAV, F-49000 Angers, France
| | - Valerie Raymond
- Univ Angers, INRAE, SiFCIR Laboratory, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
3
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
4
|
Muscarinic Modulation of Antennal Lobe GABAergic Local Neurons Shapes Odor Coding and Behavior. Cell Rep 2020; 29:3253-3265.e4. [PMID: 31801087 PMCID: PMC6900217 DOI: 10.1016/j.celrep.2019.10.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
In the antennal lobe (AL), the first olfactory relay of Drosophila, excitatory neurons are predominantly cholinergic. Ionotropic nicotinic receptors play a vital role in the effects of acetylcholine in the AL. However, the AL also has a high expression level of metabotropic muscarinic acetylcholine receptors type A (mAChRs-A). Nevertheless, the neurons expressing them and their role in the AL are unknown. Elucidating their function may reveal principles in olfactory modulation. Here, we show that mAChRs-A shape AL output and affect behavior. We localized mAChRs-A effects to a sub-population of GABAergic local neurons (iLNs), where they play a dual role: direct excitation of iLNs and stabilization of the synapse between receptor neurons and iLNs, which undergoes strong short-term depression. Our results reveal modulatory functions of the AL main excitatory neurotransmitter. Striking similarities to the mammalian olfactory system predict that mammalian glutamatergic metabotropic receptors could be associated with similar modulations.
Collapse
|
5
|
Lü S, Jiang M, Tian X, Hong S, Zhang J, Zhang Y. Characterization of an A-Type Muscarinic Acetylcholine Receptor and Its Possible Non-neuronal Role in the Oriental Armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae). Front Physiol 2020; 11:400. [PMID: 32425811 PMCID: PMC7203735 DOI: 10.3389/fphys.2020.00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Muscarinic acetylcholine receptor (mAChR) regulates many neurophysiological functions in insects. In this report, a full-length cDNA encoding an A-type mAChR was cloned from the oriental armyworm, Mythimna separata. Pharmacological properties studies revealed that nanomolar to micromolar concentrations of carbachol or muscarine induced an increase of intracellular Ca2+ concentration ([Ca2+] i ), with the EC50 values of 124.6 and 388.1 nM, respectively. The increases of [Ca2+] i can be greatly blocked by the antagonist atropine, with an IC50 value of 0.09 nM. The receptor mRNA is expressed in all developmental stages, with great differential expression between male and female adults. The tissue expression analysis identified novel target tissues for this receptor, including ovaries and Malpighian tubules. The distribution of Ms A-type mAChR protein in the male brain may suggest the neurophysiological roles that are mediated by this receptor. However, the receptor protein was found to be distributed on the membranes of oocytes that are not innervated by neurons at all. These results indicate that Ms A-type mAChR selectively mediates intracellular Ca2+ mobilization. And the high level of receptor protein in the membrane of oocytes may indicate a possible non-neuronal role of A-type mAChR in the reproductive system of M. separata.
Collapse
Affiliation(s)
- Shumin Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xing Tian
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Shanwang Hong
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Junwei Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
6
|
Xia RY, Li MQ, Wu YS, Qi YX, Ye GY, Huang J. A new family of insect muscarinic acetylcholine receptors. INSECT MOLECULAR BIOLOGY 2016; 25:362-369. [PMID: 27003873 DOI: 10.1111/imb.12229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Most currently used insecticides are neurotoxic chemicals that target a limited number of sites and insect cholinergic neurotransmission is the major target. A potential target for insecticide development is the muscarinic acetylcholine receptor (mAChR), which is a metabotropic G-protein-coupled receptor. Insects have A- and B-type mAChRs and the five mammalian mAChRs are close to the A-type. We isolated a cDNA (CG12796) from the fruit fly, Drosophila melanogaster. After heterologous expression in Chinese hamster ovary K1 cells, CG12796 could be activated by acetylcholine [EC50 (half maximal effective concentration), 73 nM] and the mAChR agonist oxotremorine M (EC50 , 48.2 nM) to increase intracellular Ca(2+) levels. Thus, the new mAChR is coupled to Gq/11 but not Gs and Gi/o . The classical mAChR antagonists atropine and scopolamine N-butylbromide at 100 μM completely blocked the acetylcholine-induced responses. The orthologues of CG12796 can also be found in the genomes of other insects, but not in the genomes of the honeybee or parasitoid wasps. Knockdown of CG12796 in the central nervous system had no effect on male courtship behaviours. We suggest that CG12796 represents the first recognized member of a novel mAChR class.
Collapse
Affiliation(s)
- R-Y Xia
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - M-Q Li
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-S Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-X Qi
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - G-Y Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - J Huang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 2016; 36:1445-55. [PMID: 26843629 DOI: 10.1523/jneurosci.0256-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small animal models are valuable screening tools for therapeutic compound identification in complex human diseases and that existing drugs can be a valuable resource for drug discovery given their known pharmacological and safety profiles.
Collapse
|
8
|
Hasebe M, Yoshino M. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells. J Neurophysiol 2016; 115:3174-85. [PMID: 26984419 DOI: 10.1152/jn.00036.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na(+)-activated K(+) (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
9
|
Collin C, Hauser F, de Valdivia EG, Li S, Reisenberger J, Carlsen EMM, Khan Z, Hansen NØ, Puhm F, Søndergaard L, Niemiec J, Heninger M, Ren GR, Grimmelikhuijzen CJP. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cell Mol Life Sci 2013; 70:3231-42. [PMID: 23604020 PMCID: PMC11113683 DOI: 10.1007/s00018-013-1334-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Abstract
Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.
Collapse
Affiliation(s)
- Caitlin Collin
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Ernesto Gonzalez de Valdivia
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shizhong Li
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Julia Reisenberger
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Eva M. M. Carlsen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Zaid Khan
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Niels Ø. Hansen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Florian Puhm
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leif Søndergaard
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Justyna Niemiec
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Magdalena Heninger
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Guilin R. Ren
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Lü SM, Zhao Z, Li K, Zhang YL, Xi GS. Cloning and expression analysis of a muscarinic cholinergic receptor from the brain of ant, Polyrhachis vicina. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 78:46-60. [PMID: 21678488 DOI: 10.1002/arch.20438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Muscarinic acetylcholine receptors (mAchRs) are the predominant cholinergic receptors in the central and peripheral nervous systems of animals. They also have been found in various insect nervous systems. In this article, a full-length cDNA of a pupative mAchR (PmAchR) was obtained from the brains of ant Polyrhachis vicina by homology cloning in combination with rapid amplification of cDNA ends. PmAchR encodes a 599-amino acid protein that exhibits a high degree of homology with other mAchRs. Real-time quantitative RT-PCR analysis showed that PmAchR is differentially expressed in the brains of workers, males, and females. By in situ hybridization, it is revealed that PmAchR is widely expressed in different soma clusters of the brain, including the mushroom bodies, the antennal lobes, as well as the optic lobes (OL), and the most intensely staining is found in Kenyon cells. Nonetheless, there are more positive nerve fibers in the OL of males' brains than in females' and workers' brains.
Collapse
Affiliation(s)
- Shu-Min Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry Education, Northwest A&F Universtiy, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Oliveira EE, Pippow A, Salgado VL, Büschges A, Schmidt J, Kloppenburg P. Cholinergic Currents in Leg Motoneurons of Carausius morosus. J Neurophysiol 2010; 103:2770-82. [DOI: 10.1152/jn.00963.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used patch-clamp recordings and fast optical Ca2+ imaging to characterize an acetylcholine-induced current ( IACh) in leg motoneurons of the stick insect Carausius morosus. Our long-term goal is to better understand the synaptic and integrative properties of the leg sensory-motor system, which has served extremely successfully as a model to study basic principles of walking and locomotion on the network level. The experiments were performed under biophysically controlled conditions on freshly dissociated leg motoneurons to avoid secondary effects from the network. To allow for unequivocal identification, the leg motoneurons were backfilled with a fluorescent label through the main leg nerve prior to cell dissociation. In 87% of the motoneurons, IACh consisted of a fast-desensitizing ( IACh1) and a slow-desensitizing component ( IACh2), both of which were concentration dependent, with EC50 values of 3.7 × 10−5 and 2.0 × 10−5 M, respectively. Ca2+ imaging revealed that a considerable portion of IACh (∼18%) is carried by Ca2+, suggesting that IACh, besides mediating fast synaptic transmission, could also induce Ca2+-dependent processes. Using specific nicotinic and muscarinic acetylcholine receptor ligands, we showed that IACh was exclusively mediated by nicotinic acetylcholine receptors. Distinct concentration–response relations of IACh1 and IACh2 for these ligands indicated that they are mediated by different types of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Eugênio E. Oliveira
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| | - Andreas Pippow
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| | - Vincent L. Salgado
- BASF Agricultural Products, BASF Corporation, Research Triangle Park, North Carolina
| | | | | | - Peter Kloppenburg
- Institute for Zoology, Biocenter, and
- Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| |
Collapse
|
12
|
Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 2008; 29:142-65. [PMID: 18054377 DOI: 10.1016/j.yfrne.2007.10.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Insect neurohormones (biogenic amines, neuropeptides, and protein hormones) and their G protein-coupled receptors (GPCRs) play a central role in the control of behavior, reproduction, development, feeding and many other physiological processes. The recent completion of several insect genome projects has enabled us to obtain a complete inventory of neurohormone GPCRs in these insects and, by a comparative genomics approach, to analyze the evolution of these proteins. The red flour beetle Tribolium castaneum is the latest addition to the list of insects with a sequenced genome and the first coleopteran (beetle) to be sequenced. Coleoptera is the largest insect order and about 30% of all animal species living on earth are coleopterans. Some coleopterans are severe agricultural pests, which is also true for T. castaneum, a global pest for stored grain and other dried commodities for human consumption. In addition, T. castaneum is a model for insect development. Here, we have investigated the presence of neurohormone GPCRs in Tribolium and compared them with those from the fruit fly Drosophila melanogaster (Diptera) and the honey bee Apis mellifera (Hymenoptera). We found 20 biogenic amine GPCRs in Tribolium (21 in Drosophila; 19 in the honey bee), 48 neuropeptide GPCRs (45 in Drosophila; 35 in the honey bee), and 4 protein hormone GPCRs (4 in Drosophila; 2 in the honey bee). Furthermore, we identified the likely ligands for 45 of these 72 Tribolium GPCRs. A highly interesting finding in Tribolium was the occurrence of a vasopressin GPCR and a vasopressin peptide. So far, the vasopressin/GPCR couple has not been detected in any other insect with a sequenced genome (D. melanogaster and six other Drosophila species, Anopheles gambiae, Aedes aegypti, Bombyx mori, and A. mellifera). Tribolium lives in very dry environments. Vasopressin in mammals is the major neurohormone steering water reabsorption in the kidneys. Its presence in Tribolium, therefore, might be related to the animal's need to effectively control water reabsorption. Other striking differences between Tribolium and the other two insects are the absence of the allatostatin-A, kinin, and corazonin neuropeptide/receptor couples and the duplications of other hormonal systems. Our survey of 340 million years of insect neurohormone GPCR evolution shows that neuropeptide/receptor couples can easily duplicate or disappear during insect evolution. It also shows that Drosophila is not a good representative of all insects, because several of the hormonal systems that we now find in Tribolium do not exist in Drosophila.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics; and Department of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schaerlinger B, Launay JM, Vonesch JL, Maroteaux L. Gain of affinity point mutation in the serotonin receptor gene 5-HT2Dro accelerates germband extension movements during Drosophila gastrulation. Dev Dyn 2007; 236:991-9. [PMID: 17366631 DOI: 10.1002/dvdy.21110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) not only works as a neurotransmitter in the nervous system, but also as a morphogenetic factor during early embryogenesis. In Drosophila, a previous report showed that embryos that lack the 5-HT(2Dro) receptor locus, display abnormal gastrulation movements. In this work, we screened for point mutations in the 5-HT(2Dro) receptor gene. We identified one point mutation that generates a gain of serotonin affinity for the receptor and affects germband extension: 5-HT(2Dro) (C1644). Embryos homozygous for this point mutation display a fourfold increase in the maximal speed of ectodermal cell movements during the rapid phase of germband extension. Homozygous 5-HT(2Dro) (C1644) embryos present a cuticular phenotype, including a total lack of denticle belt. Identification of this gain of function mutation shows the participation of serotonin in the regulation of the cell speed movements during the germband extension and suggests a role of serotonin in the regulation of cuticular formation during early embryogenesis.
Collapse
Affiliation(s)
- B Schaerlinger
- Univ Nancy, Faculté des sciences et techniques, Vandoeuvre-les-Nancy, France
| | | | | | | |
Collapse
|
14
|
Honda H, Tomizawa M, Casida JE. Insect muscarinic acetylcholine receptor: pharmacological and toxicological profiles of antagonists and agonists. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2276-81. [PMID: 17319687 DOI: 10.1021/jf0631934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The insect muscarinic acetylcholine receptor (mAChR) is evaluated as a potential target for insecticide action. The mammalian M2/M4-selective antagonist radioligand [3H]AF-DX 384 (a pirenzepine analogue) binds to Drosophila mAChR at a single high-affinity site identical to that for the nonselective antagonist [3H]quinuclidinyl benzilate (QNB) and with a pharmacological profile distinct from that of all mammalian mAChR subtypes. Three nonselective antagonists (QNB, scopolamine, and atropine) show the highest affinity (Ki=0.5-2.4 nM) at the Drosophila target, and AF-DX 384 and M3-selective 4-DAMP (dimethyl-4-(diphenylacetoxy)piperidinium iodide) rank next in potency (Ki=5-18 nM). Eleven muscarinic antagonists generally exhibit higher affinity than eight agonists. On injection into houseflies, the antagonists 4-DAMP and (S)-(+)-dimethindene produce suppressed movement, the agonist (methyloxadiazolyl)quinuclidine causes knockdown and tremors, and all of them inhibit [3H]QNB binding ex vivo, indicating possible mAChR-mediated intoxication. The insect mAChR warrants continuing study in lead generation to discover novel insecticides.
Collapse
Affiliation(s)
- Hideo Honda
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | | | |
Collapse
|
15
|
Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 2007; 80:1-19. [PMID: 17070981 DOI: 10.1016/j.pneurobio.2006.07.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/17/2006] [Accepted: 07/17/2006] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Ismail N, Robinson GE, Fahrbach SE. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc Natl Acad Sci U S A 2006; 103:207-11. [PMID: 16373504 PMCID: PMC1324993 DOI: 10.1073/pnas.0508318102] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Honey bees begin life working in the hive. At approximately 3 weeks of age, they shift to visiting flowers to forage for pollen and nectar. Foraging is a complex task associated with enlargement of the mushroom bodies, a brain region important in insects for certain forms of learning and memory. We report here that foraging bees had a larger volume of mushroom body neuropil than did age-matched bees confined to the hive. This result indicates that direct experience of the world outside the hive causes mushroom body neuropil growth in bees. We also show that oral treatment of caged bees with pilocarpine, a muscarinic agonist, induced an increase in the volume of the neuropil similar to that seen after a week of foraging experience. Effects of pilocarpine were blocked by scopolamine, a muscarinic antagonist. Our results suggest that signaling in cholinergic pathways couples experience to structural brain plasticity.
Collapse
Affiliation(s)
- Nyla Ismail
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
17
|
Widmer A, Panek I, Höger U, Meisner S, French AS, Torkkeli PH. Acetylcholine receptors in spider peripheral mechanosensilla. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:85-95. [PMID: 16184378 DOI: 10.1007/s00359-005-0054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 08/04/2005] [Accepted: 08/11/2005] [Indexed: 12/23/2022]
Abstract
Peripherally located parts of spider mechanosensory neurons are modulated by several neurotransmitters released from apposed efferent fibers. Activities of acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) and ACh degrading enzyme acetylcholine esterase (AChE) were previously found in some efferent fibers. ChAT activity was also present in all the mechanosensory neurons, while AChE activity was only found in some. We show that spider mechanosensory neurons and probably some efferent neurons are immunoreactive to a monoclonal antibody against muscarinic ACh receptors (mAChRs). However, application of muscarinic agonists did not change the physiological responses or membrane potentials of neurons in the lyriform organ VS-3. Similarly, the sensitivities of the neurons of trichobothria (filiform hairs) remained unchanged after application of these agonists. Therefore, activation of mAChRs may only modulate the function of spider mechanosensory neurons indirectly, for example, by affecting the release of other transmitter(s). However, a subgroup of VS-3 neurons was inhibited by ACh, which also depolarized the membrane similar to these neurons' responses to GABA, suggesting that ACh activates anion channels in these neurons. Interestingly, all of the neurons responding to ACh were the rapidly adapting Type A neurons that were previously shown to express AChE activity.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Action Potentials/physiology
- Animals
- Blotting, Western
- Female
- Immunohistochemistry
- Male
- Mechanoreceptors/chemistry
- Mechanoreceptors/drug effects
- Mechanoreceptors/physiology
- Mechanotransduction, Cellular/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Microscopy, Confocal
- Muscarinic Agonists/pharmacology
- Neurons, Afferent/chemistry
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Efferent/chemistry
- Neurons, Efferent/drug effects
- Neurons, Efferent/physiology
- Neurotransmitter Agents/physiology
- Oxotremorine/analogs & derivatives
- Oxotremorine/pharmacology
- Receptors, Cholinergic/physiology
- Spiders/physiology
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Alexandre Widmer
- Department of Physiology and Biophysics, Dalhousie University, B3H 1X5 Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Torkkeli PH, Widmer A, Meisner S. Expression of muscarinic acetylcholine receptors and choline acetyltransferase enzyme in cultured antennal sensory neurons and non-neural cells of the developing moth Manduca sexta. ACTA ACUST UNITED AC 2005; 62:316-29. [PMID: 15514997 DOI: 10.1002/neu.20097] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antennal sensory neurons of Manduca sexta emerge from epidermal cells that also give rise to sheath cells surrounding the peripheral parts of the neurons and to glial cells that enwrap the sensory axons in the antennal nerve. Reciprocal interactions between sensory neurons and glial cells are believed to aid in axon growth and guidance, but the exact nature of these interactions is not known. We investigated the possibility of cholinergic interactions in this process by locating muscarinic acetylcholine receptors (mAChRs) and choline acetyltransferase (ChAT) enzyme in cultured antennal sensory neurons and non-neural cells. ChAT and mAChRs were present in the sensory neurons from the first day in culture. Therefore, the sensory neurons are probably cholinergic, as previously suggested, but they may also be controlled by ACh. In 7-day-old cultures a subgroup of small non-neural cells with processes expressed ChAT activity, and in 14-day-old cultures non-neural cells that formed lamellipodia and scaffoldlike structures on the culture substrate were labeled with ChAT antibody. mAChR activity was detected in similar non-neural cells but only in areas surrounding the nuclei. In addition, mAChRs were found in flat lamellipodia and filopodia forming cells that were present in 1-day-old cultures and grew in size during the 2 week investigation period. These findings suggest muscarinic cholinergic interactions between the neural and non-neural cells during the development of Manduca antenna.
Collapse
Affiliation(s)
- Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | |
Collapse
|
19
|
Dewael Y, Mallefet J. Luminescence in ophiuroids (Echinodermata) does not share a common nervous control in all species. J Exp Biol 2002; 205:799-806. [PMID: 11914388 DOI: 10.1242/jeb.205.6.799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYStudy of the control mechanisms of light emission in invertebrates shows the involvement of several neurotransmitters. In ophiuroids, only one species (Amphipholis squamata) has so far been characterized for luminescence control, which seems to be cholinergic, with an influence of several excitatory and inhibitory neuromodulators (amino acids, catecholamines, neuropeptides S1 and S2, purines). The aim of this work is to investigate the nature of control mechanisms of light emission in three luminous ophiuroid species, A. filiformis, O. aranea and O. californica, in order to see whether or not they share common mechanisms. Luminescence induced by general depolarisation of tissues using KCl (200 mmol l–1) shows different patterns, according to species. Only A. filiformis emits light in response to acetylcholine. In this species, the involvement of both muscarinic and nicotinic receptors is proposed, since atropine and tubocurarine (at 10–3 mol l–1) inhibited 99 % and 71 %, respectively, of the light emitted. Study of the subtypes of cholinergic receptors involved in photogenesis revealed that several subtypes of muscarinic receptors might be involved. It was also clearly shown that ophiuroids did not share a common mechanism of nervous control of luminescence in all species.
Collapse
Affiliation(s)
- Y Dewael
- Laboratory of Animal Physiology, Catholic University of Louvain, Bâtiment Carnoy, 5 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
20
|
Wenzel B, Elsner N, Heinrich R. mAChRs in the grasshopper brain mediate excitation by activation of the AC/PKA and the PLC second-messenger pathways. J Neurophysiol 2002; 87:876-88. [PMID: 11826053 DOI: 10.1152/jn.00312.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The species-specific sound production of acoustically communicating grasshoppers can be stimulated by pressure injection of both nicotinic and muscarinic agonists into the central body complex and a small neuropil situated posterior and dorsal to it. To determine the role of muscarinic acetylcholine receptors (mAChRs) in the control of acoustic communication behavior and to identify the second-messenger pathways affected by mAChR-activation, muscarinic agonists and membrane-permeable drugs known to interfere with specific mechanisms of intracellular signaling pathways were pressure injected to identical sites in male grasshopper brains. Repeated injections of small volumes of muscarine elicited stridulation of increasing duration associated with decreased latencies. This suggested an accumulation of excitation over time that is consistent with the suggested role of mAChRs in controlling courtship behavior: to provide increasing arousal leading to higher intensity of stridulation and finally initiating a mating attempt. At sites in the brain where muscarine stimulation was effective, stridulation could be evoked by forskolin, an activator of adenylate cyclase (AC); 8-Br-cAMP-activating protein kinase A (PKA); and 3-isobuty-1-methylxanthine, leading to the accumulation of endogenously generated cAMP through inhibition of phosphodiesterases. This suggested that mAChRs mediate excitation by stimulating the AC/cAMP/PKA pathway. In addition, muscarine-stimulated stridulation was inhibited by 2'-5'-dideoxyadenonsine and SQ 22536, two inhibitors of AC; H-89 and Rp-cAMPS, two inhibitors of PKA; and by U-73122 and neomycin, two agents that inhibit phospholipase C (PLC) by independent mechanisms. Because the inhibition of AC, PKA, or PLC by various individually applied substances entirely suppressed muscarine-evoked stridulation in a number of experiments, activation of both pathways, AC/cAMP/PKA and PLC/IP(3)/diacylglycerine, appeared to be necessary to mediate the excitatory effects of mAChRs. With these studies on an intact "behaving" grasshopper preparation, we present physiological relevance for mAChR-evoked excitation mediated by sequential activation of the AC- and PLC-initiated signaling pathways that has been reported in earlier in vitro studies.
Collapse
Affiliation(s)
- B Wenzel
- Department of Neurobiology, Institute of Zoology and Anthropology, Georg-August-University, Berliner Strasse 28, 37073 Goettingen, Germany
| | | | | |
Collapse
|
21
|
Heinrich R, Wenzel B, Elsner N. A role for muscarinic excitation: control of specific singing behavior by activation of the adenylate cyclase pathway in the brain of grasshoppers. Proc Natl Acad Sci U S A 2001; 98:9919-23. [PMID: 11438697 PMCID: PMC55553 DOI: 10.1073/pnas.151131998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscarinic acetylcholine receptors exert slow and prolonged synaptic effects in both vertebrate and invertebrate nervous systems. Through activation of G proteins, they typically decrease intracellular cAMP levels by inhibition of adenylate cyclase or stimulate phospholipase C and the turnover of inositol phosphates. In insects, muscarinic receptors have been credited with two main functions: inhibition of transmitter release from sensory neuron terminals and regulation of the excitability of motoneurons and interneurons. Our pharmacological studies with intact and behaving grasshoppers revealed a functional role for muscarinic acetylcholine receptors as being the basis for specific arousal in defined areas of the brain, underlying the selection and control of acoustic communication behavior. Periodic injections of acetylcholine into distinct areas of the brain elicited songs of progressively increasing duration. Coinjections of the muscarinic receptor antagonist scopolamine and periodic stimulations with muscarine identified muscarinic receptor activation as being the basis for the underlying accumulation of excitation. In contrast to reports from other studies on functional circuits, muscarinic excitation was apparently mediated by activation of the adenylate cyclase pathway. Stimulation of adenylate cyclase with forskolin and of protein kinase A with 8-Br-cAMP mimicked the stimulatory effects of muscarine whereas inhibition of adenylate cyclase with SQ22536 and of protein kinase A with H-89 and Rp-cAMPs suppressed muscarine-stimulated singing behavior. Activation of adenylate cyclase by muscarinic receptors has previously been reported from studies on membrane preparations and heterologous expression systems, but a physiological significance of this pathway remained to be demonstrated in an in vivo preparation.
Collapse
Affiliation(s)
- R Heinrich
- Department of Neurobiology, Institute for Zoology and Anthropology, Göttingen, Germany.
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Thomas Brody
- Neurogenetics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
23
|
Parmentier ML, Galvez T, Acher F, Peyre B, Pellicciari R, Grau Y, Bockaert J, Pin JP. Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology 2000; 39:1119-31. [PMID: 10760355 DOI: 10.1016/s0028-3908(99)00204-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammalian metabotropic glutamate receptors (mGluRs) are classified into 3 groups based on their sequence similarity and ligand recognition selectivity. Recently, we identified a Drosophila mGluR (DmGlu(A)R) which is about equidistant, phylogenetically, from the 3 mGluR groups. However, both the G-protein coupling selectivity and the pharmacological profile of DmGlu(A)R, as analysed with mutated G-proteins and a few compounds, look similar to those of mammalian group-II mGluRs. In the present study we carefully examined the pharmacological profile of DmGlu(A)R, and compared it to those of the rat mGlu(1a), mGlu(2) and mGlu(4a) receptors, representative of group-I, II and III respectively. The pharmacological profile of DmGlu(A)R was found to be similar to that of mGlu(2)R, and only very small differences could be identified at the level of their pharmacophore models. These data strongly suggest that the binding sites of these two receptors are similar. To further document this idea, a 3D model of the mGlu(2) binding domain was constructed based on the low sequence similarity with periplasmic amino acid binding proteins, and was used to identify the residues that possibly constitute the ligand recognition pocket. Interestingly, this putative binding pocket was found to be very well conserved between DmGlu(A)R and the mammalian group-II receptors. These data indicate that there has been a strong selective pressure during evolution to maintain the ligand recognition selectivity of mGluRs.
Collapse
Affiliation(s)
- M L Parmentier
- Centre INSERM-CNRS de Pharmacologie-Endocrinologie, UPR 9023-CNRS, rue de la Cardonille, 34094, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Devlin CL, Schlosser W, Belz DT, Kodiak K, Nash RF, Zitomer N. Pharmacological identification of acetylcholine receptor subtypes in echinoderm smooth muscle (Sclerodactyla briareus). Comp Biochem Physiol C Toxicol Pharmacol 2000; 125:53-64. [PMID: 11790330 DOI: 10.1016/s0742-8413(99)00091-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by D-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.
Collapse
Affiliation(s)
- C L Devlin
- Department of Biology, Penn State University, Abington College, Abington, PA 19001, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Stankiewicz M, Hamon A, Benkhalifa R, Kadziela W, Hue B, Lucas S, Mebs D, Pelhate M. Effects of a centipede venom fraction on insect nervous system, a native Xenopus oocyte receptor and on an expressed Drosophila muscarinic receptor. Toxicon 1999; 37:1431-45. [PMID: 10414867 DOI: 10.1016/s0041-0101(99)00089-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Centipede venoms are complex protein mixtures; very few is known about their pharmacological actions. Application of a Scolopendra sp. venom fraction (SC1) on the cockroach giant axon induced an increase in the leak current correlated with a decrease in the membrane resistance, suggesting the presence in SC1 of components opening non-specific pores in the axonal membrane. On a cockroach central cholinergic synapse, microinjection of SC1 induced a small transient depolarization of the postsynaptic membrane, followed by a slow stable depolarization and a drastic decrease in the evoked subthreshold excitatory postsynaptic potential amplitude. A pretreatment of the ganglion with atropine or scopolamine reduced the amplitude of the SC1-induced depolarizing wave, suggesting a possible cholinergic muscarinic target. On control Xenopus oocytes, SC1 induced an inward oscillatory Ca2(+)-dependent Cl- current mediated through the activation of native lysophosphatidic acid receptors (LPAr). Indeed, pretreatment of oocytes with 1 microM N-palmitoyl-tyrosine phosphoric acid, a selective competitive antagonist of LPAr, decreased responses to SC1 by 70%. Application of SC1 to oocytes expressing a cloned Drosophila muscarinic receptor (Dml) induced a biphasic response comprising: (1) a large fast Cl- current that was abolished by pretreatment with atropine and scopolamine and (2) a slow and small oscillating Cl- current corresponding to the response observed in control oocytes. These observations confirm the presence of muscarinic agonists in SCI and reveal their direct action on an insect muscarinic receptor subtype homologous to mammalian M1-M3 receptors.
Collapse
Affiliation(s)
- M Stankiewicz
- Laboratory of Biophysics, Institute of General and Molecular Biology, N. Copernicus University, Torun, Poland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gebauer M, Versen B, Schipp R. Inhibitory cholinergic effects on the autonomously contractile bulbus cordis branchialis of the cephalopod Sepia officinalis L. GENERAL PHARMACOLOGY 1999; 33:59-66. [PMID: 10428017 DOI: 10.1016/s0306-3623(98)00270-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In vitro experiments were performed on a standardized preparation of the autonomously contractile bulbus cordis branchialis of the branchial heart of Sepia officinalis to investigate its cholinergic neuroregulation. Apart from acetylcholine, nicotine and carbachol (nicotinic agonists), the muscarinic agonists muscarine, arecoline, pilocarpine, and oxotremorine also exerted concentration-dependent negative inotropic effects on the preparations. As both the muscarinic antagonist quinuclidinylbenzilate and the nicotinic antagonist alpha-bungarotoxin blocked the ACh action there might be a special, possibly mixed muscarinic/nicotinic ACh-receptor system in the myocytes of the bulbus cordis branchialis, which is different from the cholinergic receptor in the central part of the branchial heart.
Collapse
Affiliation(s)
- M Gebauer
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | |
Collapse
|
27
|
|
28
|
Qazi S, Trimmer BA. The role of inositol 1,4,5-trisphosphate 5-phosphatase in inositol signaling in the CNS of larval Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:161-175. [PMID: 10196739 DOI: 10.1016/s0965-1748(98)00120-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Production of inositol 1,4,5-trisphosphate (IP3) in cells results in the mobilization of intracellular calcium. Therefore, the dynamics of IP3 metabolism is important for calcium dependent processes in cells. This report investigates the coupling of mAChRs to the inositol lipid pathway in the CNS of the larval Manduca sexta. Stimulation of intact abdominal ganglia prelabeled with [3H]-inositol using a muscarinic agonist, oxotremorine-M (oxo-M), increased total inositol phosphate levels in a dose dependent manner (EC50 = 4.23 microM). These inositol phosphates consisted primarily of inositol 1,4-bisphosphate (IP2) and inositol monophosphate (IP1). Similarly, when nerve cord homogenates were provided with [3H]-phosphatidylinositol 4,5-bisphosphate ([3H]-PIP2) (10-13 microM) the predominant products were IP2 and IP1. In contrast, incubation of purified membranes with 1 mM oxo-M in the presence of 100 microM GTP gamma S and [3H]-PIP2 increased IP3 levels, suggesting that the direct activation of phospholipase C (PLC) by mAChRs occurs in a membrane delimited process. Together, these results suggest that in the intact nerve cord and in crude homogenates, a cytosolic 5-phosphatase quickly metabolizes IP3 to produce to IP2 and IP1. This enzyme was kinetically characterized using IP3 (Km = 43.7 microM, Vmax = 864 pmoles/min/mg) and IP4 (Km = 0.93 microM; Vmax = 300pmoles/min/mg) as substrates. The enzyme activity can be potently inhibited by two IP thiol compounds; IP3S3 (1,4,6) and IP3S3 (2,3,5), that show complex binding kinetics (Hill numbers < 1) and can distinguish different forms of the 5-phosphatase in purified membranes. These two inhibitors could be very useful tools to determine the role of the inositol lipid pathway in neuroexcitability.
Collapse
Affiliation(s)
- S Qazi
- Department of Biology, Dana Laboratory, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
29
|
Abstract
Neural messengers affect Drosophila heart rate. Serotonin increases larval, pupal, and adult heart rate. Octopamine and dopamine are inactive in larva, decrease pupal rate, and increase adult heart rate. Acetylcholine and nicotine decrease larval and pupal heart rate, while acetylcholine decreases and nicotine increases adult heart rate. Muscarine decreases pupal heart rate, but is inactive in larva and adult. GABA is inactive in larva and adult, but decreases pupal heart rate. Glutamate is inactive in larva and pupa, but decreases adult heart rate. Proctolin decreases heart rate in all three stages. Caffeine acts only to decrease adult heart rate.
Collapse
Affiliation(s)
- E Zornik
- Biological Chemistry Department, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
30
|
Vanden Broeck J, Poels J, Simonet G, Dickens L, De Loof A. Identification of G protein-coupled receptors in insect cells. Ann N Y Acad Sci 1998; 839:123-8. [PMID: 9629137 DOI: 10.1111/j.1749-6632.1998.tb10743.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Vanden Broeck
- Zoological Institute, Department of Biology K.U. Leuven, Belgium
| | | | | | | | | |
Collapse
|
31
|
Fresquet N, Fournier D, Gauthier M. A new attempt to assess the effect of learning processes on the cholinergic system: studies on fruitflies and honeybees. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:349-53. [PMID: 9629668 DOI: 10.1016/s0305-0491(97)00360-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of training on the functioning of the cholinergic system was investigated in fruitflies and in honeybees. Drosophila were submitted to a passive avoidance conditioning of the proboscis extension response (PER). Flies had to learn to suppress the sugar-induced PER to avoid an aversive quinine reinforcement. In a yoked control group, the punishment was administered with no relation to the response displayed. Honeybees underwent a five-trial olfactory conditioning of the PER elicited by an antennal gustatory stimulation. In the control group, olfactory and gustatory stimulations were unpaired to prevent a learning process from developing. Immediately at the end of the learning session, acetylcholinesterase (AChE) activity was individually measured on the whole animal for Drosophila and on the head for the honeybee in experimental and in control groups. In fruitflies and honeybees, the AChE rate did not differ between the experimental group and its respective control group. Moreover, no significant correlation could be found individually between the learning performance and the AChE rate in either Drosophila or in honeybees. This experiment did not reveal any modulatory effect of the learning acquisition level on the AChE activity in insects as was previously reported in honeybees.
Collapse
Affiliation(s)
- N Fresquet
- Laboratoire d'Ethologie et Psychologie Animale, U.M.R., C.N.R.S. n(o)5550, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
32
|
Aizono Y, Endo Y, Sattelle DB, Shirai Y. Prothoracicotropic hormone-producing neurosecretory cells in the silkworm, Bombyx mori, express a muscarinic acetylcholine receptor. Brain Res 1997; 763:131-6. [PMID: 9272838 DOI: 10.1016/s0006-8993(97)00496-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using an anti-muscarinic acetylcholine receptor (mAChR) antibody and an anti-prothoracicotropic hormone (PTTH) antibody, double immunofluorescence staining was performed on brain sections of the silkworm, Bombyx mori. Four pairs of dorsolateral neurosecretory cells, along with some intercerebral neurosecretory cells, were immunoreactive to anti-mAChR antibody. Among these immunoreactive cells, two pairs of dorsolateral neurosecretory cells were identified to be PTTH-producing neurosecretory cells. Nerve fibers in the median and paramedian protocerebral areas, and nerve terminals in the corpus allatum also showed immunoreactivity to the anti-mAChR antibody. Some of these nerve terminals expressing mAChRs were overlapped by immunostaining with the anti-PTTH antibody. These results indicated that PTTH-producing neurosecretory cells of Bombyx mori expressed an mAChR, and that muscarinic, cholinergic transmission might directly regulate PTTH release from neurosecretory cells.
Collapse
Affiliation(s)
- Y Aizono
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan.
| | | | | | | |
Collapse
|
33
|
Abstract
Mutations in the seizure (sei) locus cause temperature-induced hyperactivity, followed by paralysis. Gene cloning studies have established that the seizure gene product is the Drosophila homolog of HERG, a member of the eag family of K+ channels implicated in one form of hereditary long QT syndrome in humans. A series of five null alleles with premature stop codons are all recessive, but viable. A missense mutation in the sei gene, which changes the charge at a conserved glutamate residue near the outer mouth of the pore, has a semidominant phenotype, suggesting that the mutant seizure protein acts as a poison in a multimeric complex. Transformation rescue of a null allele with a cDNA under the control of an inducible promoter demonstrates that induced expression of seizure potassium channels in adults rescues the paralytic phenotype. This rescue decays with a t1/2 of approximately 1-1.5 d after gene induction is discontinued, providing the first estimate of ion channel stability in an intact, multicellular animal.
Collapse
|
34
|
Abstract
A cDNA clone is described that encodes a novel G-protein-coupled dopamine receptor (DopR99B) expressed in Drosophila heads. The DopR99B receptor maps to 99B3-5, close to the position of the octopamine/tyramine receptor gene at 99A10-B1, suggesting that the two may be related through a gene duplication. Agonist stimulation of DopR99B receptors expressed in Xenopus oocytes increased intracellular Ca2+ levels monitored as changes in an endogenous inward Ca2+-dependent chloride current. In addition to initiating this intracellular Ca2+ signal, stimulation of DopR99B increased cAMP levels. The rank order of potency of agonists in stimulating the chloride current is: dopamine > norepinephrine > epinephrine > tyramine. Octopamine and 5-hydroxytryptamine are not active (< 100 microM). This pharmacological profile plus the second-messenger coupling pattern suggest that the DopR99B receptor is a D1-like dopamine receptor. However, the hydrophobic core region of the DopR99B receptor shows almost equal amino acid sequence identity (40-48%) with vertebrate serotonergic, alpha 1- and beta-adrenergic, and D1-like and D2-like dopaminergic receptors. Thus, this Drosophila receptor defines a novel structural class of dopamine receptors. Because DopR99B is the second dopamine receptor cloned from Drosophila, this work establishes dopamine receptor diversity in a system amenable to genetic dissection.
Collapse
|
35
|
Hannan F, Hall LM. Temporal and spatial expression patterns of two G-protein coupled receptors in Drosophila melanogaster. INVERTEBRATE NEUROSCIENCE : IN 1996; 2:71-83. [PMID: 9372157 DOI: 10.1007/bf02336662] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temporal and spatial expression patterns of a muscarinic acetylcholine receptor (Acr60C) and an octopamine/tyramine receptor (Octyr) were determined in Drosophila melanogaster using quantitative Northern analysis and in situ hybridization to tissue sections. Expression of mRNA encoding both of these G-protein coupled receptors peaks initially in 18 to 21 hour embryos following the formation of the mature larval nervous system. Levels of mRNA then decline during larval stages, rising to a second peak in 3 to 4-day-old pupae after a period of major nervous system reorganization. The muscarinic acetylcholine receptor mRNA is expressed throughout the cortical regions of the central nervous system in adults and embryos. Particularly high levels of expression of Acr60C are observed in cell bodies adjacent to the antennal lobes, suggesting a major role for this muscarinic receptor in the processing of olfactory information. In contrast, the octopamine/tyramine receptor mRNA is distributed diffusely throughout the adult brain, with patches of signal concentrated in the cortex of the dorsal protocerebrum near the mushroom bodies. These patches may represent individual cells expressing Octyr receptors.
Collapse
Affiliation(s)
- F Hannan
- Department of Biochemical Pharmacology, State University of New York at Buffalo 14260-1200, USA
| | | |
Collapse
|
36
|
Walker RJ, Brooks HL, Holden-Dye L. Evolution and overview of classical transmitter molecules and their receptors. Parasitology 1996; 113 Suppl:S3-33. [PMID: 9051927 DOI: 10.1017/s0031182000077878] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All the classical transmitter ligand molecules evolved at least 1000 million years ago. With the possible exception of the Porifera and coelenterates (Cnidaria), they occur in all the remaining phyla. All transmitters have evolved the ability to activate a range of ion channels, resulting in excitation, inhibition and biphasic or multiphasic responses. All transmitters can be synthesised in all three basic types of neurones, i.e. sensory, interneurone and motoneurone. However their relative importance as sensory, interneurone or motor transmitters varies widely between the phyla. It is likely that all neurones contain more than one type of releasable molecule, often a combination of a classical transmitter and a neuroactive peptide. Second messengers, i.e. G proteins and phospholipase C systems, appeared early in evolution and occur in all phyla that have been investigated. Although the evidence is incomplete, it is likely that all the classical transmitter receptor subtypes identified in mammals, also occur throughout the phyla. The invertebrate receptors so far cloned show some interesting homologies both between those from different invertebrate phyla and with mammalian receptors. This indicates that many of the basic receptor subtypes, including benzodiazepine subunits, evolved at an early period, probably at least 800 million years ago. Overall, the evidence stresses the similarity between the major phyla rather than their differences, supporting a common origin from primitive helminth stock.
Collapse
Affiliation(s)
- R J Walker
- Department of Physiology and Pharmacology, Biomedical Sciences, Bassett Crescent East, University of Southampton, UK
| | | | | |
Collapse
|
37
|
Abstract
The main classes of transmembrane signaling receptor proteins are well conserved during evolution and are encountered in vertebrates as well as in invertebrates. All members of the G-protein-coupled receptor superfamily share a number of basic structural and functional characteristics. In both insects and mammals, this receptor class is involved in the perception and transduction of many important extracellular signals, including a great deal of paracrine, endocrine, and neuronal messengers and visual, olfactory and gustatory stimuli. Therefore, most of the receptor subclasses appear to have originated several hundred million years ago, before the divergence of the major animal Phyla took place. Nevertheless, many insect-specific molecular interactions are encountered and these could become interesting tools for future applications, e.g., in insect pest control. Insect cell lines are well suited for large-scale expression and characterization of cloned receptor genes. Furthermore, novel methods for the production of stably transformed insect cells may form a major breakthrough for insect signal transduction research.
Collapse
|
38
|
Talluri S, Bhatt A, Smith DP. Identification of a Drosophila G protein alpha subunit (dGq alpha-3) expressed in chemosensory cells and central neurons. Proc Natl Acad Sci U S A 1995; 92:11475-9. [PMID: 8524786 PMCID: PMC40424 DOI: 10.1073/pnas.92.25.11475] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.
Collapse
Affiliation(s)
- S Talluri
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
39
|
Leitch B, Pitman RM. Modulation of transmitter release from the terminals of the locust wing stretch receptor neuron by muscarinic antagonists. JOURNAL OF NEUROBIOLOGY 1995; 28:455-64. [PMID: 8592106 DOI: 10.1002/neu.480280406] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The forewing stretch receptor (SR) neuron makes monosynaptic connections with wing depressor motoneurons; in this article the pharmacology of its output onto the first basalar motoneuron (BA1) has been investigated. The SR, like other insect afferents that have been studied so far, appears to be cholinergic; transmission was suppressed reversibly by the nicotinic antagonist gallamine (10(-4) M) and irreversibly by alpha-bungarotoxin (10(-6) M). The choline reuptake blocker hemicholinium-3 (10(-4) M) also caused a reversible reduction in the amplitude of SR excitatory postsynaptic potentials (EPSPs) recorded in BA1. The receptor subtype nonselective muscarinic antagonists atropine (10(-4) M), scopolamine (10(-4) M), and quinuclidinyl benzilate (10(-5) M), unlike nicotinic antagonists, caused an augmentation in EPSP amplitude. This effect does not appear to be caused by an increase in sensitivity of the motoneuron to acetylcholine (ACh), since atropine produced a marked reduction rather than an increase in the amplitude of responses to ACh pressure applied to the soma of BA1. Scopolamine only caused a modest reduction in the amplitude of ACh somatic responses. The simplest explanation for these observations is that muscarinic antagonists bring about an increase in EPSP amplitude by blockade of presynaptic autoreceptors that normally down-regulate the release of ACh from SR terminals. The effects of muscarinic receptor subtype-selective antagonists indicate that presynaptic receptors in this preparation may have a pharmacological profile more similar to that of vertebrate M2 receptors than to that of M1 or M3 subtypes. The functional significance of autoreceptors in this preparation are discussed.
Collapse
Affiliation(s)
- B Leitch
- University of Cambridge, Department of Zoology, United Kingdom
| | | |
Collapse
|
40
|
Harrison JB, Chen HH, Blake AD, Huskisson NS, Barker P, Sattelle DB. Localization in the nervous system of Drosophila melanogaster of a C-terminus anti-peptide antibody to a cloned Drosophila muscarinic acetylcholine receptor. J Neuroendocrinol 1995; 7:347-52. [PMID: 7550280 DOI: 10.1111/j.1365-2826.1995.tb00768.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Localization in the nervous system of Drosophila melanogaster of a cloned Drosophila muscarinic acetylcholine receptor (mAChR) was investigated using a polyclonal antiserum raised against a peptide corresponding to the predicted receptor carboxyl terminal domain. Immunocytochemical studies on fly sections indicated that the product of the Dm1 mAChR gene was localized in the antennal lobes and in other regions of the brain and thoracic nervous system. Intense staining in the glomeruli of the antennal lobes, the region of the nervous system containing terminals of antennal olfactory sensory neurones and mechanosensory neurones, indicates possible roles for this mAChR gene product in the processing of olfactory and mechanosensory signals in the fly. The staining of a discrete group of neurosecretory cells in the pars intercerebralis of the brain indicates a possible new role for this mAChR in the regulation of neurosecretion. Very little staining is detected in the thoracic nervous system.
Collapse
Affiliation(s)
- J B Harrison
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Cell Surface Receptors and the G Protein-Coupled Receptor Superfamily. G PROTEIN-COUPLED RECEPTORS 1995. [DOI: 10.1007/978-3-662-21930-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Lammerding-K�ppel M, Spindler-Barth M, Drews U. 20-OH-Ecdysone-induced morphogenetic movements in a Chironomus cell line are accompanied by expression of an embryonic muscarinic system. ACTA ACUST UNITED AC 1994; 203:439-444. [DOI: 10.1007/bf00188693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1993] [Accepted: 02/04/1994] [Indexed: 10/26/2022]
|
44
|
Bai D, Sattelle DB. Muscarinic acetylcholine receptors on an identified motor neurone in the cockroach, Periplaneta americana. Neurosci Lett 1994; 175:161-5. [PMID: 7526292 DOI: 10.1016/0304-3940(94)91104-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Muscarinic acetylcholine receptors (mAChRs) on the cell body of the fast coxal depressor motor neurone (Df) in the metathoracic ganglion of the cockroach Periplaneta americana were investigated using electrophysiological methods. Muscarinic agonists, arecoline and oxotremorine, induced dose-dependent depolarizations on motor neurone Df. McN-A-343, a vertebrate mAChR M1 subtype-selective agonist, failed to induce any responses when tested on the same neurone at concentrations of up to 1.0 x 10(-4) M. The order of effectiveness of a series of muscarinic antagonists on the mAChRs of motor neurone Df is as follows: scopolamine > atropine > pirenzepine. 4-DAMP (1.0 x 10(-5) M) had only a weak blocking effect and AF-DX 116 (1.0 x 10(-5) M) was completely inactive. The pharmacological profile of muscarinic responses on motor neurone Df reveals a novel type of insect mAChR.
Collapse
Affiliation(s)
- D Bai
- AFRC Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | |
Collapse
|
45
|
Affiliation(s)
- T Kubo
- International Institute for Advanced Studies, Kyoto, Japan
| |
Collapse
|
46
|
Abstract
Octopamine receptors are widely distributed in the insect nervous system and carry out a range of functions equivalent to the adrenergic receptors of the vertebrate sympathetic nervous system. Molecular studies on insect octopamine receptors have concentrated upon molecular pharmacological approaches to identify the particular subtype of octopamine receptor mediating its effects in a particular tissue and on the modes of action of the receptors in a particular tissue. Molecular biological approaches are now being pursued to define the structure of the octopamine receptor. Recent findings in this area will be reviewed, along with promising approaches for future molecular studies on insect octopamine receptors.
Collapse
Affiliation(s)
- P D Evans
- Department of Zoology, University of Cambridge, England
| |
Collapse
|
47
|
Hannan F, Hall LM. Muscarinic acetylcholine receptors in invertebrates: comparisons with homologous receptors from vertebrates. EXS 1993; 63:98-145. [PMID: 8422542 DOI: 10.1007/978-3-0348-7265-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pharmacology, physiology and molecular biology of invertebrate muscarinic acetylcholine receptors are compared with current knowledge concerning vertebrate muscarinic acetylcholine receptors. Evidence for the existence of multiple receptor subtypes in invertebrates is examined, emphasizing what is presently known about the sensitivity of invertebrate preparations to subtype selective ligands previously defined in vertebrate studies. Other evidence for muscarinic receptor subtypes which is examined includes: heterogeneous responses to classical muscarinic ligands and evidence for coupling of invertebrate muscarinic receptors to several different classes of second messenger systems. Clues regarding possible functions for invertebrate muscarinic receptors are discussed, including evidence from both physiological studies and in situ localization studies which reveal patterns of receptor protein and mRNA expression. A detailed analysis of the structural similarities between a cloned Drosophila muscarinic receptor and vertebrate muscarinic receptors is also presented. Regions of the receptors that may be involved in ligand binding, effector coupling and receptor regulation are identified in this comparison. Future directions for invertebrate muscarinic receptor research are considered including: methods for cloning other receptor subtypes, methods for cloning homologous receptors from other species and genetic approaches for determining the physiological roles of muscarinic receptors.
Collapse
Affiliation(s)
- F Hannan
- State University of New York, School of Pharmacy, Department of Biochemical Pharmacology, Buffalo 14260
| | | |
Collapse
|
48
|
Gundelfinger ED, Hess N. Nicotinic acetylcholine receptors of the central nervous system of Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1137:299-308. [PMID: 1445931 DOI: 10.1016/0167-4889(92)90150-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- E D Gundelfinger
- ZMNH, Center for Molecular Neurobiology, University of Hamburg, Germany
| | | |
Collapse
|
49
|
Monnier D, Colas JF, Rosay P, Hen R, Borrelli E, Maroteaux L. NKD, a developmentally regulated tachykinin receptor in Drosophila. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48429-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Bai D, Erdbrugger H, Breer H, Sattelle DB. Acetylcholine receptors of thoracic dorsal midline neurones in the cockroach, Periplaneta Americana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1992; 21:289-301. [PMID: 21313780 DOI: 10.1002/arch.940210406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The actions of acetylcholine and cholinergic ligands have been studied using dorsal midline neurones from the rnetathoracic ganglion of the cockroach Periplaneta americana.Both nicotine and oxotremorine depolarized dorsal midline neuronal cell bodies.Dose-response curves for nicotine and oxotremorine saturated at different levels. Nicotine-induced depolarizations were completely or partially blocked by mecamylamine, d-tubocurarine, strychnine, and bicuculline, but were insensitive to alpha-bungarotoxin(100 nM), atropine (100 micronM),Scopolamine (10 micronM), and pirenzepine (50 micronM). Following pretreatment with collagenase, the dorsal midline neurones were sensitive to high doses of alpha-bungarotoxin (3 micronM). Oxotremorine-induced depolarizations were blocked by scopolamine (10 micronM) atropine (100 micronM), and pirenzepine (50 micronM) and were insensitive to mecamylamine (10 micronM) and d-tubocurarine (100 micronM). The results indicate the coexistence of at least two distinct acetylcholine receptors on dorsal midline neuronal cell bodies in the cockroach metathoracic ganglion.
Collapse
Affiliation(s)
- D Bai
- AFRC Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge,Cambridge, United Kingdom
| | | | | | | |
Collapse
|