1
|
Booy EP, Gussakovsky D, Brown M, Shwaluk R, Nachtigal MW, McKenna SA. lncRNA BC200 is processed into a stable Alu monomer. RNA (NEW YORK, N.Y.) 2024; 30:1477-1494. [PMID: 39179355 PMCID: PMC11482611 DOI: 10.1261/rna.080152.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
The noncoding RNA BC200 is elevated in human cancers and is implicated in translation regulation as well as cell survival and proliferation. Upon BC200 overexpression, we observed correlated expression of a second, smaller RNA species. This RNA is expressed endogenously and exhibits cell-type-dependent variability relative to BC200. Aptamer-tagged expression constructs confirmed that the RNA is a truncated form of BC200, and sequencing revealed a modal length of 120 nt; thus, we refer to the RNA fragment as BC120. We present a methodology for accurate and specific detection of BC120 and establish that BC120 is expressed in several normal human tissues and is also elevated in ovarian cancer. BC120 exhibits remarkable stability relative to BC200 and is resistant to knockdown strategies that target the 3' unique sequence of BC200. Combined knockdown of BC200 and BC120 exhibits greater phenotypic impacts than knockdown of BC200 alone, and overexpression of BC120 negatively impacts translation of a GFP reporter, providing insight into a potential translational regulatory role for this RNA. The presence of a novel, truncated, and stable form of BC200 adds complexity to the investigation of this noncoding RNA that must be considered in future studies of BC200 and other related Alu RNAs.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mira Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Rowan Shwaluk
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
2
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Kim SJ, Kiser PK, Asfaha S, DeKoter RP, Dick FA. EZH2 inhibition stimulates repetitive element expression and viral mimicry in resting splenic B cells. EMBO J 2023; 42:e114462. [PMID: 37934086 PMCID: PMC10711652 DOI: 10.15252/embj.2023114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of BiochemistryWestern UniversityLondonONCanada
| | - Patti K Kiser
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Samuel Asfaha
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Department of MedicineWestern UniversityLondonONCanada
| | - Rodney P DeKoter
- Department of Microbiology & ImmunologyWestern UniversityLondonONCanada
| | - Frederick A Dick
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
4
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
5
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
6
|
Horton I, Kelly CJ, Dziulko A, Simpson DM, Chuong EB. Mouse B2 SINE elements function as IFN-inducible enhancers. eLife 2023; 12:e82617. [PMID: 37158599 PMCID: PMC10229128 DOI: 10.7554/elife.82617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Regulatory networks underlying innate immunity continually face selective pressures to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene expression as a source of inducible regulatory elements, but the significance of these elements in facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-specific B2 SINE family is highly abundant in the mouse genome and elements have been previously characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exemplifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune regulatory networks.
Collapse
Affiliation(s)
- Isabella Horton
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Adam Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - David M Simpson
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
7
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
8
|
Doratt BM, Vance E, Malherbe DC, Ebbert MT, Messaoudi I. Transcriptional response to VZV infection is modulated by RNA polymerase III in lung epithelial cell lines. Front Cell Infect Microbiol 2022; 12:943587. [PMID: 35959363 PMCID: PMC9359802 DOI: 10.3389/fcimb.2022.943587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ancestral RNA polymerase III (Pol III) is a multi-subunit polymerase responsible for transcription of short non-coding RNA, such as double-stranded short interspersed nuclear elements (SINEs). Although SINE ncRNAs are generally transcriptionally repressed, they can be induced in response to viral infections and can stimulate immune signaling pathways. Indeed, mutations in RNA Pol III have been associated with poor antiviral interferon response following infection with varicella zoster virus (VZV). In this study, we probed the role of Pol III transcripts in the detection and initial immune response to VZV by characterizing the transcriptional response following VZV infection of wild type A549 lung epithelial cells as well as A549 cells lacking specific RNA sensors MAVS and TLR3, or interferon-stimulated genes RNase L and PKR in presence or absence of functional RNA Pol III. Multiple components of the antiviral sensing and interferon signaling pathways were involved in restricting VZV replication in lung epithelial cells thus suggesting an innate defense system with built-in redundancy. In addition, RNA Pol III silencing altered the antiviral transcriptional program indicating that it plays an essential role in the sensing of VZV infection.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Vance
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine, Division of Biomedical Informatics, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Delphine C. Malherbe
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Mark T.W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine, Division of Biomedical Informatics, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
- *Correspondence: Ilhem Messaoudi,
| |
Collapse
|
9
|
Emblem Å, Knutsen E, Jørgensen TE, Fure H, Johansen SD, Brekke OL, Mollnes TE, Karlsen BO. Blood Transcriptome Analysis of Septic Patients Reveals a Long Non-Coding Alu-RNA in the Complement C5a Receptor 1 Gene. Noncoding RNA 2022; 8:ncrna8020024. [PMID: 35447887 PMCID: PMC9027897 DOI: 10.3390/ncrna8020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Many severe inflammation conditions are complement-dependent with the complement component C5a-C5aR1 axis as an important driver. At the RNA level, the blood transcriptome undergoes programmed expression of coding and long non-coding RNAs to combat invading microorganisms. Understanding the expression of long non-coding RNAs containing Alu elements in inflammation is important for reconstructing cell fate trajectories leading to severe disease. We have assembled a pipeline for computation mining of new Alu-containing long non-coding RNAs by intersecting immune genes with known Alu coordinates in the human genome. By applying the pipeline to patient bulk RNA-seq data with sepsis, we found immune genes containing 48 Alu insertion as robust candidates for further study. Interestingly, 1 of the 48 candidates was located within the complement system receptor gene C5aR1 and holds promise as a target for RNA therapeutics.
Collapse
Affiliation(s)
- Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
| | - Erik Knutsen
- Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Tor Erik Jørgensen
- Genomics Division—FBA, Nord University, 8026 Bodø, Norway; (T.E.J.); (S.D.J.)
| | - Hilde Fure
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
| | | | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, 0372 Oslo, Norway
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Correspondence:
| |
Collapse
|
10
|
Manipulation of RNA polymerase III by Herpes Simplex Virus-1. Nat Commun 2022; 13:623. [PMID: 35110532 PMCID: PMC8810925 DOI: 10.1038/s41467-022-28144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and is commonly targeted during cancer and viral infection. We find that Herpes Simplex Virus-1 (HSV-1) stimulates tRNA expression 10-fold. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts. tRNA with a specific codon bias were not targeted—rather increased transcription was observed from euchromatic, actively transcribed loci. tRNA upregulation is linked to unique crosstalk between the Pol II and III transcriptional machinery. While viral infection results in depletion of Pol II on host mRNA promoters, we find that Pol II binding to tRNA loci increases. Finally, we report Pol III and associated factors bind the viral genome, which suggests a previously unrecognized role in HSV-1 gene expression. These findings provide insight into mechanisms by which HSV-1 alters the host nuclear environment, shifting key processes in favor of the pathogen. RNA Polymerase III (Pol III) transcribes non-coding RNA, including tRNAs. Applying different RNA-Seq techniques, Dremel et al. provide the Pol III transcriptional landscape of Herpes simplex virus 1 (HSV-1) infected cells. Infection leads to an increase in tRNA expression from host euchromatin and Pol II re-localization to tRNA loci. They also find that Pol III – associated factors bind to the viral genome.
Collapse
|
11
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
13
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
14
|
Abstract
Viral infection can dramatically change the gene expression landscape of the host cell, yet little is known regarding changes in noncoding gene transcription by RNA polymerase III (RNAPIII). Among these are transfer RNAs (tRNAs), which are fundamental in protein translation, yet whose gene regulatory features remain largely undefined in mammalian cells. Transfer RNAs (tRNAs) are transcribed by RNA polymerase III (RNAPIII) and play a central role in decoding our genome, yet their expression and noncanonical function remain understudied. Many DNA tumor viruses enhance the activity of RNAPIII, yet whether infection alters tRNA expression is largely unknown. Here, we present the first genome-wide analysis of how viral infection alters the tRNAome. Using a tRNA-specific sequencing method (DM-tRNA-seq), we find that the murine gammaherpesvirus MHV68 induces global changes in premature tRNA (pre-tRNA) expression, with 14% of tRNA genes upregulated more than 3-fold, indicating that differential tRNA gene induction is a characteristic of DNA virus infection. Elevated pre-tRNA expression corresponds to increased RNAPIII occupancy for the subset of tRNA genes tested; additionally, posttranscriptional mechanisms contribute to the accumulation of pre-tRNA species. We find increased abundance of tRNA fragments derived from pre-tRNAs upregulated by viral infection, suggesting that noncanonical tRNA cleavage is also affected. Furthermore, pre-tRNA accumulation, but not RNAPIII recruitment, requires gammaherpesvirus-induced degradation of host mRNAs by the virally encoded mRNA endonuclease muSOX. We hypothesize that depletion of pre-tRNA maturation or turnover machinery contributes to robust accumulation of full-length pre-tRNAs in infected cells. Collectively, these findings reveal pervasive changes to tRNA expression during DNA virus infection and highlight the potential of using viruses to explore tRNA biology.
Collapse
|
15
|
Booy EP, Gussakovsky D, Choi T, McKenna SA. The noncoding RNA BC200 associates with polysomes to positively regulate mRNA translation in tumor cells. J Biol Chem 2020; 296:100036. [PMID: 33410401 PMCID: PMC7949042 DOI: 10.1074/jbc.ra120.015775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BC200 is a noncoding RNA elevated in a broad spectrum of tumor cells that is critical for cell viability, invasion, and migration. Overexpression studies have implicated BC200 and the rodent analog BC1 as negative regulators of translation in both cell-based and in vitro translation assays. Although these studies are consistent, they have not been confirmed in knockdown studies and direct evidence for this function is lacking. Herein, we have demonstrated that BC200 knockdown is correlated with a decrease in global translation rates. As this conflicts with the hypothesis that BC200 is a translational suppressor, we overexpressed BC200 by transfection of in vitro transcribed RNA and transient expression from transfected plasmids. In this context BC200 suppressed translation; however, an innate immune response confounded the data. To overcome this, breast cancer cells stably overexpressing BC200 and various control RNAs were developed by selection for genomic incorporation of a plasmid coexpressing BC200 and the neomycin resistance gene. Stable overexpression of BC200 was associated with elevated translation levels in pooled stable cell lines and isolated single-cell clones. Cross-linking sucrose density gradient centrifugation demonstrated an association of BC200 and its reported binding partners SRP9/14, CSDE1, DHX36, and PABPC1 with both ribosomal subunits and polysomal RNA, an association not previously observed owing to the labile nature of the interactions. In summary, these data present a novel understanding of BC200 function as well as optimized methodology that has far reaching implications in the study of noncoding RNAs, particularly within the context of translational regulatory mechanisms.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Linker SB, Randolph-Moore L, Kottilil K, Qiu F, Jaeger BN, Barron J, Gage FH. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res 2020; 30:1643-1654. [PMID: 33122305 PMCID: PMC7605253 DOI: 10.1101/gr.262196.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Jerika Barron
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California 94143, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Conserved Herpesvirus Kinase ORF36 Activates B2 Retrotransposons during Murine Gammaherpesvirus Infection. J Virol 2020; 94:JVI.00262-20. [PMID: 32404524 DOI: 10.1128/jvi.00262-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are RNA polymerase III (RNAPIII)-transcribed, retrotransposable noncoding RNA (ncRNA) elements ubiquitously spread throughout mammalian genomes. While normally silenced in healthy somatic tissue, SINEs can be induced during infection with DNA viruses, including the model murine gammaherpesvirus 68 (MHV68). Here, we explored the mechanisms underlying MHV68 activation of SINE ncRNAs. We demonstrate that lytic MHV68 infection of B cells, macrophages, and fibroblasts leads to robust activation of the B2 family of SINEs in a cell-autonomous manner. B2 ncRNA induction requires neither host innate immune signaling factors nor involvement of the RNAPIII master regulator Maf1. However, we identified MHV68 ORF36, the conserved herpesviral kinase, as playing a key role in B2 induction during lytic infection. SINE activation is linked to ORF36 kinase activity and can also be induced by inhibition of histone deacetylases 1 and 2 (HCAC 1/2), which is one of the known ORF36 functions. Collectively, our data suggest that ORF36-mediated changes in chromatin modification contribute to B2 activation during MHV68 infection and that this activity is conserved in other herpesviral protein kinase homologs.IMPORTANCE Viral infection dramatically changes the levels of many types of RNA in a cell. In particular, certain oncogenic viruses activate expression of repetitive genes called retrotransposons, which are normally silenced due to their ability to copy and spread throughout the genome. Here, we established that infection with the gammaherpesvirus MHV68 leads to a dramatic induction of a class of noncoding retrotransposons called B2 SINEs in multiple cell types. We then explored how MHV68 activates B2 SINEs, revealing a role for the conserved herpesviral protein kinase ORF36. Both ORF36 kinase-dependent and kinase-independent functions contribute to B2 induction, perhaps through ORF36 targeting of proteins involved in controlling the accessibility of chromatin surrounding SINE loci. Understanding the features underlying induction of these elements following MHV68 infection should provide insight into core elements of SINE regulation, as well as disregulation of SINE elements associated with disease.
Collapse
|
18
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
19
|
Ahmad S, Mu X, Yang F, Greenwald E, Park JW, Jacob E, Zhang CZ, Hur S. Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell 2018; 172:797-810.e13. [PMID: 29395326 DOI: 10.1016/j.cell.2017.12.016] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 12/08/2017] [Indexed: 01/23/2023]
Abstract
Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Yang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emily Greenwald
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Biology Department in Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Etai Jacob
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cheng-Zhong Zhang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, MA 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Abstract
Our genomes are dominated by repetitive elements. The majority of these elements derive from retrotransposons, which expand throughout the genome through a process of reverse transcription and integration. Short interspersed nuclear elements, or SINEs, are an abundant class of retrotransposons that are transcribed by RNA polymerase III, thus generating exclusively noncoding RNA (ncRNA) that must hijack the machinery required for their transposition. SINE loci are generally transcriptionally repressed in somatic cells but can be robustly induced upon infection with multiple DNA viruses. Recent research has focused on the gene expression and signaling events that are modulated by SINE ncRNAs, particularly during gammaherpesvirus infection. Here, we review the biology of these SINE ncRNAs, explore how DNA virus infection may lead to their induction, and describe how novel gene regulatory and immune-related functions of these ncRNAs may impact the viral life cycle.
Collapse
|
21
|
Karijolich J, Zhao Y, Alla R, Glaunsinger B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 2017; 45:6194-6208. [PMID: 28334904 PMCID: PMC5449642 DOI: 10.1093/nar/gkx180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation.
Collapse
Affiliation(s)
- John Karijolich
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Ravi Alla
- California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| | - Britt Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| |
Collapse
|
22
|
Wang W, Wang WH, Azadzoi KM, Su N, Dai P, Sun J, Wang Q, Liang P, Zhang W, Lei X, Yan Z, Yang JH. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep 2016; 6:22550. [PMID: 26935990 PMCID: PMC4776105 DOI: 10.1038/srep22550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy.
Collapse
Affiliation(s)
- Wei Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei-Hua Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA
| | - Ning Su
- Departments of Neurosurgery and Oncology, Xijing and Tangdu Hospital, Xi'an, China.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| | - Peng Dai
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jianbin Sun
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qin Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Liang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wentao Zhang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Lei
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Yan
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Hua Yang
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| |
Collapse
|
23
|
Karijolich J, Abernathy E, Glaunsinger BA. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway. PLoS Pathog 2015; 11:e1005260. [PMID: 26584434 PMCID: PMC4652899 DOI: 10.1371/journal.ppat.1005260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit. Short interspersed nuclear elements (SINEs) are noncoding mobile genetic elements that are present at ~106 copies per mammalian genome, roughly comprising 10% of mammalian genomic real estate. SINEs are typically transcriptionally silenced, though in some cases viral infection can promote their expression, yet to an unknown functional outcome. Thus, SINE elements represent the largest class of infection-inducible noncoding RNAs that are functionally uncharacterized. Here, we reveal that SINE RNAs play a critical role in the host-pathogen interaction in that they are required for efficient murine gammaherpesvirus 68 (MHV68) replication and gene expression. We demonstrate that SINE RNAs, both exogenously expressed and infection-induced, are robust activators of the IKKβ kinase, a key signaling molecule in the innate immune response. Activation of the IKKβ kinase by SINE RNA is mediated through both MAVS-dependent and independent mechanisms. Moreover, we demonstrate the activation of the IKKβ via SINE RNA is required to drive the phosphorylation of MHV68 RTA, the main viral transcriptional activator, which enhances its transcriptional activating property. Collectively, we reveal the first example of a role for SINE RNAs in the host-pathogen interaction and identify them as a key immune signaling molecule early during infection. Though SINE RNAs activate the innate immune response, MHV68 has co-opted SINE-mediate innate immune activation to enhance the viral lifecycle.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Emma Abernathy
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 2014; 42:11203-17. [PMID: 25200073 PMCID: PMC4176187 DOI: 10.1093/nar/gku822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) are formed in response to stress, contain mRNAs, 40S ribosomal subunits, initiation factors, RNA-binding and signaling proteins, and promote cell survival. Our study describes a novel function of the protein heterodimer SRP9/14 and Alu RNA in SG formation and disassembly. In human cells, SRP9/14 exists assembled into SRP, bound to Alu RNA and as a free protein. SRP9/14, but not SRP, localizes to SGs following arsenite or hippuristanol treatment. Depletion of the protein decreases SG size and the number of SG-positive cells. Localization and function of SRP9/14 in SGs depend primarily on its ability to bind directly to the 40S subunit. Binding of SRP9/14 to 40S and Alu RNA is mutually exclusive indicating that the protein alone is bound to 40S in SGs and that Alu RNA might competitively regulate 40S binding. Indeed, by changing the effective Alu RNA concentration in the cell or by expressing an Alu RNA binding-defective protein we were able to influence SG formation and disassembly. Our findings suggest a model in which SRP9/14 binding to 40S promotes SG formation whereas the increase in cytoplasmic Alu RNA following stress promotes disassembly of SGs by disengaging SRP9/14 from 40S.
Collapse
Affiliation(s)
- A Berger
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - E Ivanova
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - C Gareau
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - A Scherrer
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - R Mazroui
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - K Strub
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
25
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
26
|
Pai DA, Engelke DR. Spatial organization of genes as a component of regulated expression. Chromosoma 2009; 119:13-25. [PMID: 19727792 DOI: 10.1007/s00412-009-0236-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.
Collapse
Affiliation(s)
- Dave A Pai
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0606, USA
| | | |
Collapse
|
27
|
Hagan CR, Rudin CM. DNA cleavage and Trp53 differentially affect SINE transcription. Genes Chromosomes Cancer 2007; 46:248-60. [PMID: 17171681 PMCID: PMC3715058 DOI: 10.1002/gcc.20406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among the cellular responses observed following treatment with DNA-damaging agents is the activation of Short Interspersed Elements (SINEs; retrotransposable genetic elements that comprise over 10% of the human genome). By placing a human SINE (the Alu element) into murine cells, we have previously shown that DNA-damaging agents such as etoposide can induce both upregulation of SINE transcript levels and SINE retrotransposition. A similarly cytotoxic (but not genotoxic) exposure to vincristine was not associated with SINE activation. Here we demonstrate that multiple other genotoxic exposures are associated with upregulation of SINE transcript levels. By comparing the effects of similarly cytotoxic doses of the topoisomerase II inhibitors etoposide and merbarone, we confirm that DNA strand breakage is specifically associated with SINE induction. By evaluating transcription rate and RNA stability, we demonstrate that SINE induction by genotoxic exposure is associated with transcriptional induction and not with transcript stabilization. Finally we demonstrate that SINE induction by genotoxic stress is mediated by a Trp53-independent pathway, and in fact that Trp53 plays an inhibitory role in attenuating the transcriptional induction of SINE elements following exposure to a genotoxic agent. Together these data support a model in which initial DNA damage can trigger genomic instability due to SINE activation, a response which may be amplified in cancer cells lacking functional TP53.
Collapse
Affiliation(s)
- Christy R. Hagan
- Committee on Cancer Biology and Department of Medicine, University of Chicago, Chicago, IL
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Charles M. Rudin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Correspondence to: Charles M. Rudin, M.D., Ph.D., Associate Professor of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Cancer Research Building II, Rm. 544, 1550 Orleans Street, Baltimore, MD 21231-1000.
| |
Collapse
|
28
|
Williams WP, Tamburic L, Astell CR. Increased levels of B1 and B2 SINE transcripts in mouse fibroblast cells due to minute virus of mice infection. Virology 2004; 327:233-41. [PMID: 15351211 DOI: 10.1016/j.virol.2004.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 02/12/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
Minute virus of mice (MVM), an autonomous parvovirus, has served as a model for understanding parvovirus infection including host cell response to infection. In this paper, we report the effect of MVM infection on host cell gene expression in mouse fibroblast cells (LA9 cells), analyzed by differential display. Somewhat surprisingly, our data reveal that few cellular protein-coding genes appear to be up- or downregulated and identify the murine B1 and B2 short interspersed element (SINE) transcripts as being increased upon MVM infection. Primer extension assays confirm the effect of MVM infection on SINE expression and demonstrate that both SINEs are upregulated in a roughly linear fashion throughout MVM infection. They also demonstrate that the SINE response was due to RNA polymerase III transcription and not contaminating DNA or RNA polymerase II transcription. Furthermore, expression of MVM NS1, the major nonstructural protein, by transient transfection also leads to an increase in both murine SINEs. We believe this is the first time that the B1 and B2 SINEs have been shown to be altered by viral infection and the first time parvovirus infection has been shown to increase SINE expression. The increase in SINE transcripts caused by MVM infection does not appear to be due to an increase in either of the basal transcription factors TFIIIC110 or 220, in contrast to that which has been shown for other viruses.
Collapse
Affiliation(s)
- Warren P Williams
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
29
|
Allen TA, Von Kaenel S, Goodrich JA, Kugel JF. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 2004; 11:816-21. [PMID: 15300240 DOI: 10.1038/nsmb813] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 06/24/2004] [Indexed: 11/09/2022]
Abstract
Cells respond to changes in environmental conditions via orchestrated modifications in gene expression. For example, in response to heat shock, cells execute a program of gene-specific transcriptional activation and repression. Although the activation of genes upon heat shock has been widely studied, the mechanism of mRNA transcriptional repression upon heat shock is unexplained. Here we show that during the heat shock response in mouse cells, a small noncoding RNA polymerase III transcript, B2 RNA, associates with RNA polymerase II and represses transcription of specific mRNA genes. These studies define a unique transcriptional regulatory mechanism involving an RNA regulator and reveal how mRNA transcription is repressed upon heat shock. Moreover, we identify a function for B2 RNA, which is transcribed from short interspersed elements that are abundant in the mouse genome and historically considered to be 'junk DNA.'
Collapse
Affiliation(s)
- Tiffany A Allen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
30
|
Wick N, Luedemann S, Vietor I, Cotten M, Wildpaner M, Schneider G, Eisenhaber F, Huber LA. Induction of short interspersed nuclear repeat-containing transcripts in epithelial cells upon infection with a chicken adenovirus. J Mol Biol 2003; 328:779-90. [PMID: 12729754 DOI: 10.1016/s0022-2836(03)00363-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chicken embryo lethal orphan adenovirus (CELO) is used as a vector for expression of exogenous genes in mammalian cells. Here, we analyzed transcriptional alterations in mouse epithelial host cells following infection with CELO using cDNA microarray analysis. Sequence data characterization revealed that a major portion of CELO-induced genes contained short interspersed nuclear elements of the B2 subclass (B2 SINEs). In fact, we could identify SINEs and other repetitive sequences as contributing significantly to the cDNAs used for microarray construction. Moreover, we found that the CELO protein Gam1 was able to mediate transcriptional activation of these B2 SINE-containing RNAs. We hypothesize that upregulation of B2-SINE-containing RNAs could be a novel contribution of Gam1 to CELO host cell infection.
Collapse
Affiliation(s)
- Nikolaus Wick
- Department of Histology and Molecular Cell Biology, Institute for Anatomy, Histology and Embryology, University of Innsbruck, Austria, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL. Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 2002; 86:93-100. [PMID: 12076833 DOI: 10.1016/s0168-1702(02)00058-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We found that LTR-directed transcription of the human endogenous retrovirus K can be induced by HSV-1 infection. The effect was mediated by the action of a HSV-1 immediate early protein, ICP0 and required the AP-1 binding site present on the HERV-K LTR. In addition, ICP0 could up-regulate AP-1 activity, suggesting that ICP0 increases transcription of HERV-K through AP-1 site. This effect might be important to understand both HERV-K- and HSV-1-mediated pathogenesis because HERV-K LTR represents an important class of retrotranspositional mutagens and also could provide a new regulatory element for the linked DNA sequences.
Collapse
Affiliation(s)
- Hyun Jin Kwun
- Department of Microbiology, College of Natural Sciences, Pusan National University, Pusan, South Korea
| | | | | | | | | |
Collapse
|
32
|
Cristillo AD, Mortimer JR, Barrette IH, Lillicrap TP, Forsdyke DR. Double-stranded RNA as a not-self alarm signal: to evade, most viruses purine-load their RNAs, but some (HTLV-1, Epstein-Barr) pyrimidine-load. J Theor Biol 2001; 208:475-91. [PMID: 11222051 DOI: 10.1006/jtbi.2000.2233] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For double-stranded RNA (dsRNA) to signal the presence of foreign (non-self) nucleic acid, self-RNA-self-RNA interactions should be minimized. Indeed, self-RNAs appear to have been fine-tuned over evolutionary time by the introduction of purines in clusters in the loop regions of stem-loop structures. This adaptation should militate against the "kissing" interactions which initiate formation of dsRNA. Our analyses of virus base compositions suggest that, to avoid triggering the host cell's dsRNA surveillance mechanism, most viruses purine-load their RNAs to resemble host RNAs ("stealth" strategy). However, some GC-rich latent viruses (HTLV-1, EBV) pyrimidine-load their RNAs. It is suggested that when virus production begins, these RNAs suddenly increase in concentration and impair host mRNA function by virtue of an excess of complementary "kissing" interactions ("surprise" strategy). Remarkably, the only mRNA expressed in the most fundamental form of EBV latency (the "EBNA-1 program") is purine-loaded. This apparent stealth strategy is reinforced by a simple sequence repeat which prefers purine-rich codons. During latent infection the EBNA-1 protein may evade recognition by cytotoxic T-cells, not by virtue of containing a simple sequence amino acid repeat as has been proposed, but by virtue of the encoding mRNA being purine-loaded to prevent interactions with host RNAs of either genic or non-genic origin.
Collapse
Affiliation(s)
- A D Cristillo
- Department of Biochemistry, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | | | | | | | | |
Collapse
|
33
|
Kendall A, Hull MW, Bertrand E, Good PD, Singer RH, Engelke DR. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing. Proc Natl Acad Sci U S A 2000; 97:13108-13. [PMID: 11069303 PMCID: PMC27186 DOI: 10.1073/pnas.240454997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Accepted: 09/22/2000] [Indexed: 11/18/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, actively transcribed tRNA genes can negatively regulate adjacent RNA polymerase II (pol II)-transcribed promoters. This tRNA gene-mediated silencing is independent of the orientation of the tRNA gene and does not require direct, steric interference with the binding of either upstream pol II factors or the pol II holoenzyme. A mutant was isolated in which this form of silencing is suppressed. The responsible point mutation affects expression of the Cbf5 protein, a small nucleolar ribonucleoprotein protein required for correct processing of rRNA. Because some early steps in the S. cerevisiae pre-tRNA biosynthetic pathway are nucleolar, we examined whether the CBF5 mutation might affect this localization. Nucleoli were slightly fragmented, and the pre-tRNAs went from their normal, mostly nucleolar location to being dispersed in the nucleoplasm. A possible mechanism for tRNA gene-mediated silencing is suggested in which subnuclear localization of tRNA genes antagonizes transcription of nearby genes by pol II.
Collapse
Affiliation(s)
- A Kendall
- Department of Biological Chemistry and Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
34
|
Scofield MA, Xiong W, Haas MJ, Zeng Y, Cox GS. Sequence analysis of the human glycoprotein hormone alpha-subunit gene 5'-flanking DNA and identification of a potential regulatory element as an alu repetitive sequence. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:302-18. [PMID: 11018255 DOI: 10.1016/s0167-4781(00)00192-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nucleotide sequence of the human glycoprotein hormone alpha-subunit (GPHalpha) gene 5'-flanking DNA was determined from -1637 to +49 relative to the cap site (+1). Comparison of the upstream sequence of the human gene with those of rhesus and mouse demonstrates regions with variable identity. When the 1.7 kb fragment was used to drive the expression of chloramphenicol acetyltransferase (CAT) in transiently transfected HeLa cells, it was found that CAT activity was elevated about 3-fold when the fragment was truncated from -1637 to -846, suggesting the presence of a negative regulatory element in the distal 5'-flanking DNA. This overlaps an Alu repetitive sequence (ARS) located between nucleotides -1330 and -1007. Gel mobility shift and DNase protection analyses identified a protein binding site centered around -1100 in the ARS second monomer. The GPHalpha upstream ARS was cloned in both orientations in positions upstream and downstream from the bacterial CAT gene under control of the herpes simplex virus thymidine kinase (tk) promoter. DNA-mediated transient transfection of these plasmids revealed a marked inhibition (79-82%) of CAT production by the ARS when it was cloned upstream from the tk promoter and in the same orientation as that found in the GPHalpha 5'-flanking DNA. Smaller decreases (29-57%) were produced by the ARS cloned upstream from the tk promoter in the reverse orientation. In marked contrast, the Alu repetitive element had little or no effect when cloned in either orientation downstream from the tk-CAT gene. Introduction of a second ARS downstream from the CAT reporter gene in vectors already containing an ARS upstream from the tk promoter significantly reduced the strong negative effect elicited by the upstream repetitive element. When compared to the Blur 8 Alu element, the GPHalpha upstream ARS differs markedly with respect to its effect on tk-CAT expression in transient assays and as a substrate for DNA binding proteins present in HeLa nuclear extracts. Together, the transient expression results demonstrate that ARS elements can influence expression of nearby class II promoters. The extent of this effect depends on element position and orientation, cell type, the particular ARS (e.g., GPHalpha or Blur 8), and whether copies were present both upstream and downstream from the transcription unit.
Collapse
Affiliation(s)
- M A Scofield
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 984525 Nebraska Medical Center, Omaha, NE 68198-4525, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
BC200 RNA is a 200-nucleotide-long non-messenger RNA that is selectively expressed in the primate nervous system, where it has been identified in somatodendritic domains of a subset of neurons. BC200 RNA is not normally expressed in non-neuronal somatic cells; it has been shown, however, to be expressed in germ cells and in cultured immortal cell lines of various non-neural origins. In order to investigate whether the neuron-specific expression of BC200 RNA is also deregulated during tumourigenesis in non-neural human tissues, 80 different tumour specimens, representing 19 different tumour types, were screened for the presence of the RNA. BC200 RNA was expressed in carcinomas of the breast, cervix, oesophagus, lung, ovary, parotid, and tongue, but not in corresponding normal tissues. BC200 RNA was not detectable in bladder, colon, kidney, or liver carcinoma tissues examined in this study. These results demonstrate that BC200 expression is deregulated under certain neoplastic conditions. The expression of BC200 RNA in non-neural tumours may indicate a functional interrelationship with induction and/or progression of such tumours.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
36
|
Russanova VR, Driscoll CT, Howard BH. Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin. Mol Cell Biol 1995; 15:4282-90. [PMID: 7623822 PMCID: PMC230667 DOI: 10.1128/mcb.15.8.4282] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The number of Alu transcripts that accumulate in HeLa and other human cells is normally very low; however, infection with adenovirus type 5 increases the expression of Alu elements dramatically, indicating that the potential for polymerase III (pol III)-dependent Alu transcription in vivo is far greater than generally observed (B. Panning and J.R. Smiley, Mol. Cell. Biol. 13:3231-3244, 1993). In this study, we employed nuclear run-on in combination with a novel RNase H-based assay to investigate transcription from uninfected and adenovirus type 2-infected nuclei, as well as genomic DNAs from uninfected and infected cells. When performed in the presence of excess uninfected nuclear extract, such assays revealed that (i) the vast majority of transcriptionally competent Alu elements in nuclei are masked from the pol III transcriptional machinery and (ii) the induction of Alu expression upon adenovirus infection can be largely accounted for by an increased availability of these elements to the pol III transcription machinery. We also investigated the role of H1 histone for silencing of Alu genes and, in comparison, mouse B2 repetitive elements. Depletion of H1 led to an approximately 17-fold activation of B2 repetitive elements but did not change Alu transcription relative to that of constitutively expressed 5S rRNA genes. These results are consistent with the view that Alu repeats are efficiently sequestered by chromatin proteins, that such masking cannot be accounted for by nonspecific H1-dependent repression, and that adenovirus infection at least partially overrides the repressive mechanism(s).
Collapse
Affiliation(s)
- V R Russanova
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
37
|
Chu WM, Liu WM, Schmid CW. RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res 1995; 23:1750-7. [PMID: 7540287 PMCID: PMC306932 DOI: 10.1093/nar/23.10.1750] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Promoter elements derived from the 7SL RNA gene stimulate RNA polymerase III (Pol III) directed Alu transcription in vitro. These elements also stimulate expression of Alus transfected into 293 cells, but transcripts from these same constructs are undetectable in HeLa cells. A terminator resembling the terminator for the 7SL RNA gene has no effect on in vitro Alu template activity, but increases expression in vivo in a position independent manner. Alu transcripts generated from templates with and without this terminator have identical half-lives, indicating that this terminator stimulates expression by increasing template activity. Together, these results show that Alu expression may be regulated at multiple levels and can respond to cis-acting elements. This new found ability to express Alu transcripts by transient transfection provides an opportunity to monitor their post-transcriptional fate. Primary Alu transcripts are not extensively adenylated or deadenylated following transcription, but are short-lived compared to 118 nt scAlu RNA. In addition to Alu RNA, transfected templates encode scAlu RNA, but very high levels of Alu RNA expression does not increase the abundance of scAluRNA. ScAluRNA is not merely a transient RNA degradation product, but is instead tightly regulated by factors other than the abundance of primary transcripts.
Collapse
Affiliation(s)
- W M Chu
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
38
|
Liu WM, Chu WM, Choudary PV, Schmid CW. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 1995; 23:1758-65. [PMID: 7784180 PMCID: PMC306933 DOI: 10.1093/nar/23.10.1758] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The abundance of Alu RNA is transiently increased by heat shock in human cell lines. This effect is specific to Alu repeats among Pol III transcribed genes, since the abundance of 7SL, 7SK, 5S and U6 RNAs is essentially unaffected by heat shock. The rapid induction of Alu expression precedes the heat shock induction of mRNAs for the ubiquitin and HSP 70 heat shock genes. Heat shock mimetics also transiently induce Alu expression indicating that increased Alu expression is a general cell-stress response. Cycloheximide treatment rapidly and transiently increases the abundance of Alu RNA. Again, compared with other genes transcribed by Pol III, this increase is specific to Alu. However, as distinguished from the cell stress response, cycloheximide does not induce expression of HSP 70 and ubiquitin mRNAs. Puromycin also increases Alu expression, suggesting that this response is generally caused by translational inhibition. The response of mammalian SINEs to cell stress and translational inhibition is not limited to SINEs which are Alu homologues. Heat shock and cycloheximide each transiently induce Pol III directed expression of B1 and B2 RNAs in mouse cells and C-element RNA in rabbit cells. Together, these three species exemplify the known SINE composition of placental mammals, suggesting that mammalian SINEs are similarly regulated and may serve a common function.
Collapse
Affiliation(s)
- W M Liu
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
39
|
Liu WM, Maraia RJ, Rubin CM, Schmid CW. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 1994; 22:1087-95. [PMID: 7512262 PMCID: PMC307934 DOI: 10.1093/nar/22.6.1087] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Full length Alu transcripts in HeLa cells are detected by primer extension using reverse transcriptase and are also analyzed as cloned cDNA sequences. The 5' end of these transcripts corresponds to the transcriptional start site for RNA polymerase III indicating that these RNAs are transcribed from their internal polymerase III promoters. The Alu transcripts found in cytoplasmic poly A+ RNAs appear to be organized into RNPs as assayed by sucrose gradient sedimentation. Present at about one hundred to one thousand copies per cell, the Alu transcripts are rare as compared to 7SL RNA. In agreement with previous reports that methylation inhibits Pol III-directed transcription of Alu in vitro, treatment of HeLa cells with 5-azacytidine results in Alu DNA hypomethylation and an increase in the abundance of the Alu transcript. Sequence analysis shows that many different Alu repeats including members of all subfamilies are transcribed by Pol III in vivo. cDNA sequences of the Pol III-directed transcripts exactly match the A box of the Pol III promoter element whereas in other Alu transcripts this element is not faithfully conserved.
Collapse
Affiliation(s)
- W M Liu
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | | | | | |
Collapse
|
40
|
Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993. [PMID: 7684492 DOI: 10.1128/mcb.13.6.3231] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
|
41
|
Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993; 13:3231-44. [PMID: 7684492 PMCID: PMC359768 DOI: 10.1128/mcb.13.6.3231-3244.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
Affiliation(s)
- B Panning
- Pathology Department, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
42
|
Jang KL, Latchman DS. The herpes simplex virus immediate-early protein ICP27 stimulates the transcription of cellular Alu repeated sequences by increasing the activity of transcription factor TFIIIC. Biochem J 1992; 284 ( Pt 3):667-73. [PMID: 1320373 PMCID: PMC1132590 DOI: 10.1042/bj2840667] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infection with herpes simplex virus (HSV) results in an increase in the transcription of the endogenous Alu repeated sequence by RNA polymerase III. This effect is also observed in uninfected cells stably transformed with a plasmid expressing the HSV immediate-early protein ICP27 or in cells transfected with the gene encoding this protein. Both uninfected cells expressing ICP27 and cells infected with virus producing functional ICP27 display increased activity of the cellular transcription factor TFIIIC when compared with untreated cells. This increase is not observed, however, in cells infected with a mutant strain of virus which does not produce ICP27. Hence ICP27 induces elevated Alu transcription by activating transcription factor TFIIIC, which is the limiting factor for such transcription. This is the first report of increased activity of a cellular transcription factor during HSV infection, when most cellular gene activity is inhibited.
Collapse
Affiliation(s)
- K L Jang
- Department of Biochemistry, University College and Middlesex School of Medicine, London, U.K
| | | |
Collapse
|
43
|
Abstract
The existing classification of human Alu sequences is revised and expanded using a novel methodology and a larger set of sequence data. Our study confirms that there are two major Alu subfamilies, Alu-J and Alu-S. The Alu-S subfamily consists of at least five distinct subfamilies referred to as Alu-Sx, Alu-Sq, Alu-Sp, Alu-Sc, and Alu-Sb. The Alu-Sp and Alu-Sq subfamilies have been revealed by this study. Alu subfamilies differ from one another in a number of positions called diagnostic. In this paper the diagnostic positions are defined in quantitative terms and are used to evaluate statistical significance of the observed subfamilies. Each Alu subfamily most likely represents pseudogenes retroposed from evolving functional source Alu genes. Evidence presented in this paper indicates that Alu-Sp and Alu-Sc pseudogenes were retroposed from different source genes, during overlapping periods of time, and at different rates. Our analysis also indicates that the previously identified Alu-type transcript BC200 comes from an active Alu gene that might have existed even before the origin of dimeric Alu sequences. The source genes for Alu pseudogene families are reconstructed. It is assumed that diagnostic differences between reconstructed source genes reflect mutations that have occurred in true source Alu genes under natural selection. Some of these mutations are compensatory and are used to reconstruct a common secondary structure of Alu RNAs transcribed from the source genes. The biological function of Alu RNA is discussed in the context of its homology to the elongation-arresting domain of 7SL RNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Jurka
- Linus Pauling Institute of Science and Medicine, Palo Alto, CA 94306
| | | |
Collapse
|