1
|
Scholtysek L, Poetsch A, Hofmann E, Hemschemeier A. The activation of Chlamydomonas reinhardtii alpha amylase 2 by glutamine requires its N-terminal aspartate kinase-chorismate mutase-tyrA (ACT) domain. PLANT DIRECT 2024; 8:e609. [PMID: 38911017 PMCID: PMC11190351 DOI: 10.1002/pld3.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The coordination of assimilation pathways for all the elements that make up cellular components is a vital task for every organism. Integrating the assimilation and use of carbon (C) and nitrogen (N) is of particular importance because of the high cellular abundance of these elements. Starch is one of the most important storage polymers of photosynthetic organisms, and a complex regulatory network ensures that biosynthesis and degradation of starch are coordinated with photosynthetic activity and growth. Here, we analyzed three starch metabolism enzymes of Chlamydomonas reinhardtii that we captured by a cyclic guanosine monophosphate (cGMP) affinity chromatography approach, namely, soluble starch synthase STA3, starch-branching enzyme SBE1, and α-amylase AMA2. While none of the recombinant enzymes was directly affected by the presence of cGMP or other nucleotides, suggesting an indirect binding to cGMP, AMA2 activity was stimulated in the presence of L-glutamine (Gln). This activating effect required the enzyme's N-terminal aspartate kinase-chorismate mutase-tyrA domain. Gln is the first N assimilation product and not only a central compound for the biosynthesis of N-containing molecules but also a recognized signaling molecule for the N status. Our observation suggests that AMA2 might be a means to coordinate N and C metabolism at the enzymatic level, increasing the liberation of C skeletons from starch when high Gln levels signal an abundance of assimilated N.
Collapse
Affiliation(s)
- Lisa Scholtysek
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Ansgar Poetsch
- Faculty of Biology and Biotechnology, Department for Plant BiochemistryRuhr University BochumBochumGermany
- School of Basic Medical SciencesNanchang UniversityNanchangChina
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein CrystallographyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
2
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
3
|
Caspari OD. Transit Peptides Often Require Downstream Unstructured Sequence for Efficient Chloroplast Import in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2022; 13:825797. [PMID: 35646025 PMCID: PMC9133816 DOI: 10.3389/fpls.2022.825797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The N-terminal sequence stretch that defines subcellular targeting for most nuclear encoded chloroplast proteins is usually considered identical to the sequence that is cleaved upon import. Yet here this study shows that for eight out of ten tested Chlamydomonas chloroplast transit peptides, significant additional sequence stretches past the cleavage site are required to enable efficient chloroplast import of heterologous cargo proteins. Analysis of Chlamydomonas cTPs with known cleavage sites and replacements of native post-cleavage residues with alternative sequences points to a role for unstructured sequence at mature protein N-termini.
Collapse
|
4
|
Berndt AJ, Smalley TN, Ren B, Simkovsky R, Badary A, Sproles AE, Fields FJ, Torres-Tiji Y, Heredia V, Mayfield SP. Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS One 2021; 16:e0257089. [PMID: 34793485 PMCID: PMC8601568 DOI: 10.1371/journal.pone.0257089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023] Open
Abstract
Recombinant production of viral proteins can be used to produce vaccine antigens or reagents to identify antibodies in patient serum. Minimally, these proteins must be correctly folded and have appropriate post-translation modifications. Here we report the production of the SARS-CoV-2 spike protein Receptor Binding Domain (RBD) in the green algae Chlamydomonas. RBD fused to a fluorescent reporter protein accumulates as an intact protein when targeted for ER-Golgi retention or secreted from the cell, while a chloroplast localized version is truncated. The ER-retained RBD fusion protein was able to bind the human ACE2 receptor, the host target of SARS-CoV-2, and was specifically out-competed by mammalian cell-produced recombinant RBD, suggesting that the algae produced proteins are sufficiently post-translationally modified to act as authentic SARS-CoV-2 antigens. Because algae can be grown at large scale very inexpensively, this recombinant protein may be a low cost alternative to other expression platforms.
Collapse
Affiliation(s)
- Anthony J. Berndt
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tressa N. Smalley
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Bijie Ren
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Amr Badary
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ashley E. Sproles
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Francis J. Fields
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yasin Torres-Tiji
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Vanessa Heredia
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Stephen P. Mayfield
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
6
|
Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5271-5285. [PMID: 31504763 PMCID: PMC6793452 DOI: 10.1093/jxb/erz275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - David J Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence:
| |
Collapse
|
7
|
A novel galactolipase from a green microalga Chlorella kessleri: purification, characterization, molecular cloning, and heterologous expression. Appl Microbiol Biotechnol 2018; 102:1711-1723. [PMID: 29299622 PMCID: PMC5794828 DOI: 10.1007/s00253-017-8713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022]
Abstract
We have identified an enzyme, galactolipase (ckGL), which hydrolyzes the acyl ester bond of galactolipids such as digalactosyldiacylglycerol (DGDG), in the microalga Chlorella kessleri. Following purification of the enzyme to electrophoretic homogeneity from cell-free extract, the maximum activity toward DGDG was observed at pH 6.5 and 37 °C. ckGL was Ca2+-dependent enzyme and displayed an apparent molecular mass of approx. 53 kDa on SDS-PAGE. The substrate specificity was in the order: DGDG (100%) > monogalactosyldiacylglycerol ≈ phosphatidylglycerol (~ 40%) > sulfoquinovosyldiacylglycerol (~ 20%); the enzyme exhibited almost no activity toward glycerides and other phospholipids. Gas chromatography analysis demonstrated that ckGL preferably hydrolyzed the sn-1 acyl ester bond in the substrates. The genomic DNA sequence (5.6 kb) containing the ckGL gene (designated glp1) was determined and the cDNA was cloned. glp1 was composed of 10 introns and 11 exons, and the 1608-bp full-length cDNA encoded a mature ckGL containing 475 amino acids (aa), with a presequence (60 aa) containing a potential chloroplast transit peptide. Recombinant functional ckGL was produced in Escherichia coli. Although the deduced aa sequence of ckGL contained the typical GXSXG motif of serine hydrolases together with conserved histidine and aspartate residues which would form part of the catalytic triad of α/β-hydrolases, ckGL showed no significant overall similarity with known lipases including GLs from Chlamydomonas reinhardtii and Aspergillus japonicus, indicating that ckGL is a novel GL. ckGL, with high specificity for DGDG, could be applicable to food processing as an enzyme capable of improving material textures.
Collapse
|
8
|
Wollman FA. An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 2016; 17:1322-1328. [DOI: 10.1111/tra.12446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
|
9
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
10
|
The mitochondrial translocator protein and arrhythmogenesis in ischemic heart disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:234104. [PMID: 25918579 PMCID: PMC4397036 DOI: 10.1155/2015/234104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is a hallmark of multiple cardiovascular disorders, including ischemic heart disease. Although mitochondria are well recognized for their role in energy production and cell death, mechanisms by which they control excitation-contraction coupling, excitability, and arrhythmias are less clear. The translocator protein (TSPO) is an outer mitochondrial membrane protein that is expressed in multiple organ systems. The abundant expression of TSPO in macrophages has been leveraged to image the immune response of the heart to inflammatory processes. More recently, the recognition of TSPO as a regulator of energy-dissipating mitochondrial pathways has extended its utility from a diagnostic marker of inflammation to a therapeutic target influencing diverse pathophysiological processes. Here, we provide an overview of the emerging role of TSPO in ischemic heart disease. We highlight the importance of TSPO in the regenerative process of reactive oxygen species (ROS) induced ROS release through its effects on the inner membrane anion channel (IMAC) and the permeability transition pore (PTP). We discuss evidence implicating TSPO in arrhythmogenesis in the settings of acute ischemia-reperfusion injury and myocardial infarction.
Collapse
|
11
|
Köhler D, Dobritzsch D, Hoehenwarter W, Helm S, Steiner JM, Baginsky S. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. FRONTIERS IN PLANT SCIENCE 2015; 6:559. [PMID: 26257763 PMCID: PMC4510345 DOI: 10.3389/fpls.2015.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/06/2023]
Abstract
Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.
Collapse
Affiliation(s)
- Daniel Köhler
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Jürgen M. Steiner
- Plant Physiology, Institute of Biology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes. J Mol Evol 2014; 80:65-80. [PMID: 25504421 DOI: 10.1007/s00239-014-9659-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/22/2014] [Indexed: 01/11/2023]
Abstract
Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
Collapse
|
13
|
Fuss J, Liegmann O, Krause K, Rensing SA. Green targeting predictor and ambiguous targeting predictor 2: the pitfalls of plant protein targeting prediction and of transient protein expression in heterologous systems. THE NEW PHYTOLOGIST 2013; 200:1022-33. [PMID: 23915300 DOI: 10.1111/nph.12433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/01/2013] [Indexed: 05/08/2023]
Abstract
The challenges of plant protein targeting prediction are the existence of dual subcellular targets and the bias of experimentally confirmed data towards few and mostly nonplant model species. To assess whether training with proteins from evolutionarily distant species has a negative impact on prediction accuracy, we developed the Green Targeting Predictor tool, which was trained with a species-specific data set for Physcomitrella patens. Its performance was compared with that of the same tool trained with a mixed data set. In addition, we updated the Ambiguous Targeting Predictor. We found that predictions deviated from in vivo observations predominantly for proteins diverging within the green lineage, as well as for dual targeted proteins. To evaluate the usefulness of heterologous expression systems, selected proteins were subjected to localization studies in P. patens, Arabidopsis thaliana and Nicotiana tabacum. Four out of six proteins that show dual targeting in the original plant system were located only in a single compartment in one or both heterologous systems. We conclude that targeting signals of divergent plant species exhibit differences, calling for custom in silico and in vivo approaches when aiming to unravel the actual distribution patterns of proteins within a plant cell.
Collapse
Affiliation(s)
- Janina Fuss
- Department of Arctic and Marine Biology, University of Tromsø, Dramsvegen 201, N-9037, Tromsø, Norway
| | | | | | | |
Collapse
|
14
|
Jacobs J, Marx C, Kock V, Reifschneider O, Fränzel B, Krisp C, Wolters D, Kück U. Identification of a chloroplast ribonucleoprotein complex containing trans-splicing factors, intron RNA, and novel components. Mol Cell Proteomics 2013; 12:1912-25. [PMID: 23559604 PMCID: PMC3708175 DOI: 10.1074/mcp.m112.026583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Indexed: 11/06/2022] Open
Abstract
Maturation of chloroplast psaA pre-mRNA from the green alga Chlamydomonas reinhardtii requires the trans-splicing of two split group II introns. Several nuclear-encoded trans-splicing factors are required for the correct processing of psaA mRNA. Among these is the recently identified Raa4 protein, which is involved in splicing of the tripartite intron 1 of the psaA precursor mRNA. Part of this tripartite group II intron is the chloroplast encoded tscA RNA, which is specifically bound by Raa4. Using Raa4 as bait in a combined tandem affinity purification and mass spectrometry approach, we identified core components of a multisubunit ribonucleoprotein complex, including three previously identified trans-splicing factors (Raa1, Raa3, and Rat2). We further detected tscA RNA in the purified protein complex, which seems to be specific for splicing of the tripartite group II intron. A yeast-two hybrid screen and co-immunoprecipitation identified chloroplast-localized Raa4-binding protein 1 (Rab1), which specifically binds tscA RNA from the tripartite psaA group II intron. The yeast-two hybrid system provides evidence in support of direct interactions between Rab1 and four trans-splicing factors. Our findings contribute to our knowledge of chloroplast multisubunit ribonucleoprotein complexes and are discussed in support of the generally accepted view that group II introns are the ancestors of the eukaryotic spliceosomal introns.
Collapse
Affiliation(s)
- Jessica Jacobs
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christina Marx
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Vera Kock
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Olga Reifschneider
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Benjamin Fränzel
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Krisp
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Dirk Wolters
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Ulrich Kück
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
15
|
Schulze T, Schreiber S, Iliev D, Boesger J, Trippens J, Kreimer G, Mittag M. The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot. MOLECULAR PLANT 2013; 6:931-944. [PMID: 23180671 DOI: 10.1093/mp/sss137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The flagellated green alga Chlamydomonas reinhardtii has a primitive visual system, the eyespot. It is situated at the cells equator and allows the cell to phototax. In a previous proteomic analysis of the eyespot, the SOUL3 protein was identified among 202 proteins. Here, we investigate the properties and functions of SOUL3. Heterologously expressed SOUL3 is able to bind specifically to hemin. In C. reinhardtii, SOUL3 is expressed at a constant level over the diurnal cycle, but forms protein complexes that differ in size during day and night phases. SOUL3 is primarily localized in the eyespot and it is situated in the pigment globule layer thereof. This is in contrast to the channelrhodopsin photoreceptors, which are localized in the plasma membrane region of the eyespot. Knockdown lines with a significantly reduced SOUL3 level are characterized by mislocalized eyespots, a decreased eyespot size, and alterations in phototactic behavior. Mislocalizations were either anterior or posterior and did not affect association with acetylated microtubules of the daughter four-membered rootlet. Our data suggest that SOUL3 is involved in the organization and placement of the eyespot within the cell.
Collapse
Affiliation(s)
- Thomas Schulze
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Misra N, Panda PK. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:173-86. [PMID: 23496307 DOI: 10.1089/omi.2012.0094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India
| | | |
Collapse
|
17
|
Ramanan R, Kim BH, Cho DH, Ko SR, Oh HM, Kim HS. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett 2013; 587:370-7. [PMID: 23313852 DOI: 10.1016/j.febslet.2012.12.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
Abstract
Phenotypic and genotypic changes in Chlamydomonas reinhardtii BafJ5, a starchless mutant, with respect to lipid metabolism was studied in different trophic states under nitrogen (N) sufficient and limited conditions. Interestingly, cellular lipid content increased linearly with input acetate concentration with highest lipid content (∼42%) under nitrogen limitation and mixotrophic state. RT-qPCR studies indicate that key fatty acid biosynthesis genes are down-regulated under N limitation but not under mixotrophic state, whereas, ACS2, encoding Acetyl-CoA synthetase, and DGTT4, encoding Diacylglycerol O-acyltransferase, are up-regulated under all conditions. These results collectively indicate that acetate is the limiting factor and central molecule in lipid droplet synthesis. The study also provides further evidence of the presence of a chloroplast pathway for triacylglycerol synthesis in microalgae.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Noth J, Krawietz D, Hemschemeier A, Happe T. Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 2012; 288:4368-77. [PMID: 23258532 DOI: 10.1074/jbc.m112.429985] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In anaerobiosis, the green alga Chlamydomonas reinhardtii evolves molecular hydrogen (H(2)) as one of several fermentation products. H(2) is generated mostly by the [Fe-Fe]-hydrogenase HYDA1, which uses plant type ferredoxin PETF/FDX1 (PETF) as an electron donor. Dark fermentation of the alga is mainly of the mixed acid type, because formate, ethanol, and acetate are generated by a pyruvate:formate lyase pathway similar to Escherichia coli. However, C. reinhardtii also possesses the pyruvate:ferredoxin oxidoreductase PFR1, which, like pyruvate:formate lyase and HYDA1, is localized in the chloroplast. PFR1 has long been suggested to be responsible for the low but significant H(2) accumulation in the dark because the catalytic mechanism of pyruvate:ferredoxin oxidoreductase involves the reduction of ferredoxin. With the aim of proving the biochemical feasibility of the postulated reaction, we have heterologously expressed the PFR1 gene in E. coli. Purified recombinant PFR1 is able to transfer electrons from pyruvate to HYDA1, using the ferredoxins PETF and FDX2 as electron carriers. The high reactivity of PFR1 toward oxaloacetate indicates that in vivo, fermentation might also be coupled to an anaerobically active glyoxylate cycle. Our results suggest that C. reinhardtii employs a clostridial type H(2) production pathway in the dark, especially because C. reinhardtii PFR1 was also able to allow H(2) evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-Fe]-hydrogenase HYDA.
Collapse
Affiliation(s)
- Jens Noth
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, AG Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
19
|
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 2012; 29:3625-39. [PMID: 22826458 DOI: 10.1093/molbev/mss178] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.
Collapse
|
20
|
Luo L, Herrin DL. A novel rhodanese is required to maintain chloroplast translation in Chlamydomonas. PLANT MOLECULAR BIOLOGY 2012; 79:495-508. [PMID: 22644440 DOI: 10.1007/s11103-012-9926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Rhodanese-domain proteins (RDPs) are widespread in plants and other organisms, but their biological roles are mostly unknown. Here we report on a novel RDP from Chlamydomonas that has a single rhodanese domain, and a predicted chloroplast transit peptide. The protein was produced in Escherichia coli with a His-tag, but lacking most of the N-terminal transit peptide, and after purification was found to have rhodanese activity in vitro. It was also used to elicit antibodies for western blot analysis, which showed that the native Chlamydomonas protein migrated slower on SDS gels (apparent M(r) =34 kDa) than its predicted size (27 kDa), and co-fractionated with chloroplasts. To assess function in vivo, the tandem-RNAi approach was used to generate Chlamydomonas strains that had reductions of 30-70% for the mRNA and ~20-40% for the 34-kDa protein. These strains showed reduced growth under all trophic conditions, and were sensitive to even moderate light; properties reminiscent of chloroplast translation mutants. Pulse-labeling in the presence of cycloheximide indicated that chloroplast protein synthesis was broadly reduced in the RNAi strains, and transcript analysis (by RT-PCR and northern blotting) indicated the effect was mainly translational. These results identify a novel rhodanese-like protein that we have named CRLT, because it is required to maintain chloroplast translation.
Collapse
Affiliation(s)
- Liming Luo
- Section of Molecular Cell and Developmental Biology, School of Biological Sciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
21
|
Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. ALGAL RES 2012. [DOI: 10.1016/j.algal.2012.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
23
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
24
|
Bienvenut WV, Espagne C, Martinez A, Majeran W, Valot B, Zivy M, Vallon O, Adam Z, Meinnel T, Giglione C. Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics 2011; 11:1734-50. [PMID: 21462344 DOI: 10.1002/pmic.201000634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/10/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023]
Abstract
The proteome of any system is a dynamic entity dependent on the intracellular concentration of the entire set of expressed proteins. In turn, this whole protein concentration will be reliant on the stability/turnover of each protein as dictated by their relative rates of synthesis and degradation. In this study, we have investigated the dynamics of the stromal proteome in the model organism Chlamydomonas reinhardtii by characterizing the half-life of the whole set of proteins. 2-DE stromal proteins profiling was set up and coupled with MS analyses. These identifications featuring an average of 26% sequence coverage and eight non-redundant peptides per protein have been obtained for 600 independent samples related to 253 distinct spots. An interactive map of the global stromal proteome, of 274 distinct protein variants is now available on-line at http://www.isv.cnrs-gif.fr/gel2dv2/. N-α-terminal-Acetylation (NTA) was noticed to be the most frequently detectable post-translational modification, and new experimental data related to the chloroplastic transit peptide cleavage site was obtained. Using this data set supplemented with series of pulse-chase experiments, elements directing the relationship between half-life and N-termini were analyzed. Positive correlation between NTA and protein half-life suggests that NTA could contribute to protein stabilization in the stroma.
Collapse
|
25
|
Multiple ferredoxin isoforms in Chlamydomonas reinhardtii – Their role under stress conditions and biotechnological implications. Eur J Cell Biol 2010; 89:998-1004. [DOI: 10.1016/j.ejcb.2010.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Ghoshroy S, Binder M, Tartar A, Robertson DL. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 2010; 10:198. [PMID: 20579371 PMCID: PMC2978018 DOI: 10.1186/1471-2148-10-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from gamma-Proteobacteria (Eubacteria) to the Chloroplastida. RESULTS GSII sequences were isolated from four species of green algae (Trebouxiophyceae), and additional green algal (Chlorophyceae and Prasinophytae) and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta) sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB) and eukaryotic (GSIIE) GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the gamma-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT). Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida). However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting a cytosolic function. GSIIB sequences were absent in vascular plants where the duplication of GSIIE replaced the function of GSIIB. CONCLUSIONS Phylogenetic evidence suggests GSIIB in Chloroplastida evolved by HGT, possibly after the divergence of the primary endosymbiotic lineages. Thus while multiple GS isoenzymes are common among members of the Chloroplastida, the isoenzymes may have evolved via different evolutionary processes. The acquisition of essential enzymes by HGT may provide rapid changes in biochemical capacity and therefore be favored by natural selection.
Collapse
Affiliation(s)
- Sohini Ghoshroy
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Manfred Binder
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Aurélien Tartar
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Deborah L Robertson
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| |
Collapse
|
27
|
Chigri F, Sippel C, Kolb M, Vothknecht UC. Arabidopsis OBG-like GTPase (AtOBGL) is localized in chloroplasts and has an essential function in embryo development. MOLECULAR PLANT 2009; 2:1373-83. [PMID: 19995735 DOI: 10.1093/mp/ssp073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBG-like GTPases, a subfamily of P-loop GTPases, have divers and important functions in bacteria, including initiation of sporulation, DNA replication, and protein translation. Homologs of the Bacillus subtilis spo0B GTP-binding protein (OBG) can be found in plants and algae but their specific function in these organisms has not yet been elucidated. Here, it is shown that AT5G18570 encodes an Arabidopsis thaliana OBG-like protein (AtOBGL) that is localized in chloroplasts. In contrast to the bacterial members of this protein family, AtOBGL and other OBG-like proteins from green algae and plants possess an additional N-terminal domain, indicating functional adaptation. Disruption of the gene locus of ATOBGL by TDNA insertion resulted in an embryo-lethal phenotype and light microscopy using Normarski optics revealed that embryo maturation in the atobgl mutant is arrested at the late globular stage before development of a green embryo. Expression of 35S::ATOBGL within the atobgl mutant background could rescue the mutant phenotype, confirming that embryo-lethality is caused by the loss of AtOBGL. Together, the data show that the bacterial-derived OBG-like GTPases have retained an essential role in chloroplasts of plants and algae. They furthermore corroborate the significance of chloroplast functions for embryo development - an important stage within the Arabidopsis lifecycle.
Collapse
Affiliation(s)
- Fatima Chigri
- Center for Integrated Protein Science (Munich), Department of Biology, LMU Munich, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
28
|
Jacobs J, Pudollek S, Hemschemeier A, Happe T. A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii. FEBS Lett 2008; 583:325-9. [PMID: 19101555 DOI: 10.1016/j.febslet.2008.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
We have found the transcript of one of at least six ferredoxin encoding genes of the green alga Chlamydomonas reinhardtii, FDX5, strongly accumulating in anaerobiosis, indicating a vital role of the encoded protein in the anaerobic metabolism of the cells. According to absorption and electron paramagnetic resonance spectroscopy, Fdx5 is a plant-type [2Fe2S]-ferredoxin with a redox potential similar to that of the ferredoxin PetF. However, although Fdx5 seems to be located in the chloroplast, it is not able to photoreduce nicotinamide adenine dinucleotide phosphate (NADP(+)) via ferredoxin-NADP-reductase, nor to be an electron donor to the plastidic [FeFe]-hydrogenase HydA1. Thus, Fdx5 seems to have a special role in a yet to be identified anaerobic pathway.
Collapse
Affiliation(s)
- Jessica Jacobs
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, ND2/169, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
29
|
Yoshihara C, Inoue K, Schichnes D, Ruzin S, Inwood W, Kustu S. An Rh1-GFP fusion protein is in the cytoplasmic membrane of a white mutant strain of Chlamydomonas reinhardtii. MOLECULAR PLANT 2008; 1:1007-20. [PMID: 19825599 PMCID: PMC2902906 DOI: 10.1093/mp/ssn074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/14/2008] [Indexed: 05/21/2023]
Abstract
The major Rhesus (Rh) protein of the green alga Chlamydomonas reinhardtii, Rh1, is homologous to Rh proteins of humans. It is an integral membrane protein involved in transport of carbon dioxide. To localize a fusion of intact Rh1 to the green fluorescent protein (GFP), we used as host a white (lts1) mutant strain of C. reinhardtii, which is blocked at the first step of carotenoid biosynthesis. The lts1 mutant strain accumulated normal amounts of Rh1 heterotrophically in the dark and Rh1-GFP was at the periphery of the cell co-localized with the cytoplasmic membrane dye FM4-64. Although Rh1 carries a potential chloroplast targeting sequence at its N-terminus, Rh1-GFP was clearly not associated with the chloroplast envelope membrane. Moreover, the N-terminal half of the protein was not imported into chloroplasts in vitro and N-terminal regions of Rh1 did not direct import of the small subunit of ribulose bisphosphate carboxylase (SSU). Despite caveats to this interpretation, which we discuss, current evidence indicates that Rh1 is a cytoplasmic membrane protein and that Rh1-GFP is among the first cytoplasmic membrane protein fusions to be obtained in C. reinhardtii. Although lts1 (white) mutant strains cannot be used to localize proteins within sub-compartments of the chloroplast because they lack thylakoid membranes, they should nonetheless be valuable for localizing many GFP fusions in Chlamydomonas.
Collapse
Affiliation(s)
- Corinne Yoshihara
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - Kentaro Inoue
- Department of Plant Sciences, 131 Asmundson Hall, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Denise Schichnes
- CNR Biological Imaging Facility, 381 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - Steven Ruzin
- CNR Biological Imaging Facility, 381 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - William Inwood
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - Sydney Kustu
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
- To whom correspondence should be addressed. E-mail , fax (510) 642-4995, tel. (510) 643-9308
| |
Collapse
|
30
|
The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 2008; 179:95-112. [PMID: 18493043 DOI: 10.1534/genetics.107.085704] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently completed genome of Chlamydomonas reinhardtii was surveyed for components of the chloroplast protein translocation complexes. Putative components were identified using reciprocal BlastP searches with the protein sequences of Arabidopsis thaliana as queries. As a comparison, we also surveyed the new genomes of the bryophyte Physcomitrella patens, two prasinophyte green algae (Ostreococcus lucimarinus and Ostreococcus tauri), the red alga Cyanidioschizon merolae, and several cyanobacteria. Overall, we found that the components of the import pathway are remarkably well conserved, particularly among the Viridiplantae lineages. Specifically, C. reinhardtii contained almost all the components found in A. thaliana, with two exceptions. Missing from C. reinhardtii are the C-terminal ferredoxin-NADPH-reductase (FNR) binding domain of Tic62 and a full-length, TPR-bearing Toc64. Further, the N-terminal domain of C. reinhardtii Toc34 is highly acidic, whereas the analogous region in C. reinhardtii Toc159 is not. This reversal of the vascular plant model may explain the similarity of C. reinhardtii chloroplast transit peptides to mitochondrial-targeting peptides. Other findings from our genome survey include the absence of Tic22 in both Ostreococcus genomes; the presence of only one Toc75 homolog in C. merolae; and, finally, a distinctive propensity for gene duplication in P. patens.
Collapse
|
31
|
Willmund F, Hinnenberger M, Nick S, Schulz-Raffelt M, Mühlhaus T, Schroda M. Assistance for a Chaperone. J Biol Chem 2008; 283:16363-73. [DOI: 10.1074/jbc.m708431200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Patron NJ, Durnford DG, Kopriva S. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 2008; 8:39. [PMID: 18248682 PMCID: PMC2275785 DOI: 10.1186/1471-2148-8-39] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 02/04/2008] [Indexed: 12/17/2022] Open
Abstract
Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate reductase (APR) and sulfite reductase (SiR). Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR) are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.
Collapse
Affiliation(s)
- Nicola J Patron
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
33
|
Patron NJ, Waller RF. Transit peptide diversity and divergence: A global analysis of plastid targeting signals. Bioessays 2007; 29:1048-58. [PMID: 17876808 DOI: 10.1002/bies.20638] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteins are targeted to plastids by N-terminal transit peptides, which are recognized by protein import complexes in the organelle membranes. Historically, transit peptide properties have been defined from vascular plant sequences, but recent large-scale genome sequencing from the many plastid-containing lineages across the tree of life has provided a much broader representation of targeted proteins. This includes the three lineages containing primary plastids (plants and green algae, rhodophytes and glaucophytes) and also the seven major lineages that contain secondary plastids, "secondhand" plastids derived through eukaryotic endosymbiosis. Despite this extensive spread of plastids throughout Eukaryota, an N-terminal transit peptide has been maintained as an essential plastid-targeting motif. This article provides the first global comparison of transit peptide composition and summarizes conservation of some features, the loss of an ancestral motif from the green lineages including plants, and modifications to transit peptides that have occurred in secondary and even tertiary plastids.
Collapse
Affiliation(s)
- Nicola J Patron
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
34
|
Glanz S, Bunse A, Wimbert A, Balczun C, Kück U. A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii. Nucleic Acids Res 2006; 34:5337-51. [PMID: 17012281 PMCID: PMC1636423 DOI: 10.1093/nar/gkl611] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, the chloroplast-encoded tscA RNA is part of a tripartite group IIB intron, which is involved in trans-splicing of precursor mRNAs. We have used the yeast three-hybrid system to identify chloroplast group II intron RNA-binding proteins, capable of interacting with the tscA RNA. Of 14 candidate cDNAs, 13 encode identical polypeptides with significant homology to members of the nuclear nucleosome assembly protein (NAP) family. The RNA-binding property of the identified polypeptide was demonstrated by electrophoretic mobility shift assays using different domains of the tripartite group II intron as well as further chloroplast transcripts. Because of its binding to chloroplast RNA it was designated as NAP-like (cNAPL). In silico analysis revealed that the derived polypeptide carries a 46 amino acid chloroplast leader peptide, in contrast to nuclear NAPs. The chloroplast localization of cNAPL was demonstrated by laser scanning confocal fluorescence microscopy using different chimeric cGFP fusion proteins. Phylogenetic analysis shows that no homologues of cNAPL and its related nuclear counterparts are present in prokaryotic genomes. These data indicate that the chloroplast protein described here is a novel member of the NAP family and most probably has not been acquired from a prokaryotic endosymbiont.
Collapse
Affiliation(s)
| | | | | | | | - Ulrich Kück
- To whom correspondence should be addressed. Tel: +49 234 3226212; Fax: +49 234 3214184;
| |
Collapse
|
35
|
Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. EUKARYOTIC CELL 2006; 5:2079-91. [PMID: 16998072 PMCID: PMC1694827 DOI: 10.1128/ec.00222-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plastid of Euglena gracilis was acquired secondarily through an endosymbiotic event with a eukaryotic green alga, and as a result, it is surrounded by a third membrane. This membrane complexity raises the question of how the plastid proteins are targeted to and imported into the organelle. To further explore plastid protein targeting in Euglena, we screened a total of 9,461 expressed sequence tag (EST) clusters (derived from 19,013 individual ESTs) for full-length proteins that are plastid localized to characterize their targeting sequences and to infer potential modes of translocation. Of the 117 proteins identified as being potentially plastid localized whose N-terminal targeting sequences could be inferred, 83 were unique and could be classified into two major groups. Class I proteins have tripartite targeting sequences, comprising (in order) an N-terminal signal sequence, a plastid transit peptide domain, and a predicted stop-transfer sequence. Within this class of proteins are the lumen-targeted proteins (class IB), which have an additional hydrophobic domain similar to a signal sequence and required for further targeting across the thylakoid membrane. Class II proteins lack the putative stop-transfer sequence and possess only a signal sequence at the N terminus, followed by what, in amino acid composition, resembles a plastid transit peptide. Unexpectedly, a few unrelated plastid-targeted proteins exhibit highly similar transit sequences, implying either a recent swapping of these domains or a conserved function. This work represents the most comprehensive description to date of transit peptides in Euglena and hints at the complex routes of plastid targeting that must exist in this organism.
Collapse
Affiliation(s)
- Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3.
| | | |
Collapse
|
36
|
Gómez-García M, Losada M, Serrano A. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochem J 2006; 395:211-21. [PMID: 16313235 PMCID: PMC1409696 DOI: 10.1042/bj20051657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations.
Collapse
Affiliation(s)
- María R. Gómez-García
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| | - Manuel Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| |
Collapse
|
37
|
van Lis R, Atteia A, Nogaj LA, Beale SI. Subcellular localization and light-regulated expression of protoporphyrinogen IX oxidase and ferrochelatase in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 139:1946-58. [PMID: 16306143 PMCID: PMC1310572 DOI: 10.1104/pp.105.069732] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO) catalyzes the last common step in chlorophyll and heme synthesis, and ferrochelatase (FeC) catalyzes the last step of the heme synthesis pathway. In plants, each of these two enzymes is encoded by two or more genes, and the enzymes have been reported to be located in the chloroplasts or in the mitochondria. We report that in the green alga Chlamydomonas reinhardtii, PPO and FeC are each encoded by a single gene. Phylogenetic analysis indicates that C. reinhardtii PPO and FeC are most closely related to plant counterparts that are located only in chloroplasts. Immunoblotting results suggest that C. reinhardtii PPO and FeC are targeted exclusively to the chloroplast, where they are associated with membranes. These results indicate that cellular needs for heme in this photosynthetic eukaryote can be met by heme that is synthesized in the chloroplast. It is proposed that the multiplicity of genes for PPO and FeC in higher plants could be related to differential expression in differently developing tissues rather than to targeting of different gene products to different organelles. The FeC content is higher in C. reinhardtii cells growing in continuous light than in cells growing in the dark, whereas the content of PPO does not significantly differ in light- and dark-grown cells. In cells synchronized to a light/dark cycle, the level of neither enzyme varied significantly with the phase of the cycle. These results indicate that heme synthesis is not directly regulated by the levels of PPO and FeC in C. reinhardtii.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chlamydomonas reinhardtii/enzymology
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/radiation effects
- DNA, Algal/genetics
- DNA, Complementary/genetics
- DNA, Protozoan/genetics
- Escherichia coli/genetics
- Ferrochelatase/genetics
- Ferrochelatase/metabolism
- Gene Dosage
- Gene Expression Regulation, Enzymologic/radiation effects
- Genes, Protozoan
- Light
- Molecular Sequence Data
- Phylogeny
- Protoporphyrinogen Oxidase/genetics
- Protoporphyrinogen Oxidase/metabolism
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Sequence Homology, Amino Acid
- Subcellular Fractions/enzymology
Collapse
Affiliation(s)
- Robert van Lis
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
38
|
Mus F, Cournac L, Cardettini V, Caruana A, Peltier G. Inhibitor studies on non-photochemical plastoquinone reduction and H(2) photoproduction in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:322-32. [PMID: 15950924 DOI: 10.1016/j.bbabio.2005.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 11/15/2022]
Abstract
In the absence of PSII, non-photochemical reduction of plastoquinones (PQs) occurs following NADH or NADPH addition in thylakoid membranes of the green alga Chlamydomonas reinhardtii. The nature of the enzyme involved in this reaction has been investigated in vitro by measuring chlorophyll fluorescence increase in anoxia and light-dependent O(2) uptake in the presence of methyl viologen. Based on the insensitivity of these reactions to rotenone, a type-I NADH dehydrogenase (NDH-1) inhibitor, and their sensitivity to flavoenzyme inhibitors and thiol blocking agents, we conclude to the involvement of a type-II NADH dehydrogenase (NDH-2) in PQ reduction. Intact Chlamydomonas cells placed in anoxia have the property to produce H(2) in the light by a Fe-hydrogenase which uses reduced ferredoxin as an electron donor. H(2) production also occurs in the absence of PSII thanks to the existence of a non-photochemical pathway of PQ reduction. From inhibitors effects, we suggest the involvement of a plastidial NDH-2 in PSII-independent H(2) production in Chlamydomonas. These results are discussed in relation to the absence of ndh genes in Chlamydomonas plastid genome and to the existence of 7 ORFs homologous to type-II NDHs in its nuclear genome.
Collapse
Affiliation(s)
- Florence Mus
- CEA Cadarache, DSV DEVM Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CNRS-CEA, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 138:490-515. [PMID: 15849308 PMCID: PMC1104202 DOI: 10.1104/pp.104.056069] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 05/19/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
40
|
Yamada M, Zhang H, Hanada S, Nagashima KVP, Shimada K, Matsuura K. Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol 2005; 187:1702-9. [PMID: 15716441 PMCID: PMC1063993 DOI: 10.1128/jb.187.5.1702-1709.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The photochemical reaction center (RC) complex of Roseiflexus castenholzii, which belongs to the filamentous anoxygenic phototrophic bacteria (green filamentous bacteria) but lacks chlorosomes, was isolated and characterized. The genes coding for the subunits of the RC and the light-harvesting proteins were also cloned and sequenced. The RC complex was composed of L, M, and cytochrome subunits. The cytochrome subunit showed a molecular mass of approximately 35 kDa, contained hemes c, and functioned as the electron donor to the photo-oxidized special pair of bacteriochlorophylls in the RC. The RC complex appeared to contain three molecules of bacteriochlorophyll and three molecules of bacteriopheophytin, as in the RC preparation from Chloroflexus aurantiacus. Phylogenetic trees based on the deduced amino acid sequences of the RC subunits suggested that R. castenholzii had diverged from C. aurantiacus very early after the divergence of filamentous anoxygenic phototrophic bacteria from purple bacteria. Although R. castenholzii is phylogenetically related to C. aurantiacus, the arrangement of its puf genes, which code for the light-harvesting proteins and the RC subunits, was different from that in C. aurantiacus and similar to that in purple bacteria. The genes are found in the order pufB, -A, -L, -M, and -C, with the pufL and pufM genes forming one continuous open reading frame. Since the photosynthetic apparatus and genes of R. castenholzii have intermediate characteristics between those of purple bacteria and C. aurantiacus, it is likely that they retain many features of the common ancestor of purple bacteria and filamentous anoxygenic phototrophic bacteria.
Collapse
Affiliation(s)
- Mitsunori Yamada
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Hanikenne M, Krämer U, Demoulin V, Baurain D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. PLANT PHYSIOLOGY 2005; 137:428-46. [PMID: 15710683 PMCID: PMC1065346 DOI: 10.1104/pp.104.054189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Marc Hanikenne
- Metal Homeostasis Group, Max Planck Institute for Plant Molecular Physiology, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
42
|
Vallon O. Chlamydomonas immunophilins and parvulins: survey and critical assessment of gene models. EUKARYOTIC CELL 2005; 4:230-41. [PMID: 15701785 PMCID: PMC549346 DOI: 10.1128/ec.4.2.230-241.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Olivier Vallon
- Institut de Biologie Physico-Chimique, UPR 1261 CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
43
|
Stauber EJ, Hippler M. Chlamydomonas reinhardtii proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:989-1001. [PMID: 15707836 DOI: 10.1016/j.plaphy.2004.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/27/2004] [Indexed: 05/01/2023]
Abstract
Proteomics, based on the expanding genomic resources, has begun to reveal new details of Chlamydomonas reinhardtii biology. In particular, analyses focusing on subproteomes have already provided new insight into the dynamics and composition of the photosynthetic apparatus, the chloroplast ribosome, the oxidative phosphorylation machinery of the mitochondria, and the flagellum. It assisted to discovered putative new components of the circadian clockwork as well as shed a light on thioredoxin protein-protein interactions. In the future, quantitative techniques may allow large scale comparison of protein expression levels. Advances in software algorithms will likely improve the use of genomic databases for mass spectrometry (MS) based protein identification and validation of gene models that have been predicted from the genomic DNA sequences. Although proteomics has only been recently applied for exploring C. reinhardtii biology, it will likely be utilized extensively in the near future due to the already existing genetic, genomic, and biochemical tools.
Collapse
Affiliation(s)
- Einar J Stauber
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller Universität Jena, Dornburger Street 159, 07743 Jena, Germany
| | | |
Collapse
|
44
|
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. PHOTOSYNTHESIS RESEARCH 2004; 82:221-40. [PMID: 16143837 DOI: 10.1007/s11120-004-2216-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/11/2004] [Indexed: 05/04/2023]
Abstract
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
Collapse
Affiliation(s)
- Michael Schroda
- Institut für Biologie II/Biochemie, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany,
| |
Collapse
|
45
|
Westerlund I, Von Heijne G, Emanuelsson O. LumenP--a neural network predictor for protein localization in the thylakoid lumen. Protein Sci 2003; 12:2360-6. [PMID: 14500894 PMCID: PMC2366911 DOI: 10.1110/ps.0306003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 06/19/2003] [Accepted: 07/11/2003] [Indexed: 10/27/2022]
Abstract
We report the development of LumenP, a new neural network-based predictor for the identification of proteins targeted to the thylakoid lumen of plant chloroplasts and prediction of their cleavage sites. When used together with the previously developed TargetP predictor, LumenP reaches a significantly better performance than what has been recorded for previous attempts at predicting thylakoid lumen location, mostly due to a lower false positive rate. The combination of TargetP and LumenP predicts around 1.5%-3% of all proteins encoded in the genomes of Arabidopsis thaliana and Oryza sativa to be located in the lumen of the thylakoid.
Collapse
Affiliation(s)
- Isabelle Westerlund
- Stockholm Bioinformatics Center, and Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
46
|
Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M. Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2750-8. [PMID: 12823545 DOI: 10.1046/j.1432-1033.2003.03656] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated and characterized a second [Fe]-hydrogenase gene from the green alga, Chlamydomonas reinhardtii. The HydA2 gene encodes a protein of 505 amino acids that is 74% similar and 68% identical to the known HydA1 hydrogenase from C. reinhardtii. HydA2 contains all the conserved residues and motifs found in the catalytic core of the family of [Fe]-hydrogenases. We demonstrate that both the HydA1 and the HydA2 transcripts are expressed upon anaerobic induction, achieved either by neutral gas purging or by sulfur deprivation of the cultures. Furthermore, the expression levels of both transcripts are regulated (in some cases differently) by incubation conditions, such as the length of anaerobiosis, the readdition of O2, the presence of acetate, and/or the absence of nutrients such as sulfate during growth. Antibodies specific for HydA2 recognized a protein of about 49 kDa in extracts from anaerobically induced C. reinhardtii cells, strongly suggesting that HydA2 encodes for an expressed protein. Homology-based 3D modeling of the HydA2 hydrogenase shows that its catalytic site models well to the known structure of Clostridium pasteurianum CpI, including the H2-gas channel. The major differences between HydA1, HydA2 and CpI are the absence of the N-terminal Fe-S centers and the existence of extra sequences in the algal enzymes. To our knowledge, this work represents the first systematic study of expression of two algal [Fe]-hydrogenases in the same organism.
Collapse
Affiliation(s)
- Marc Forestier
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
48
|
Abstract
The eyespot organelle of the green alga Chlamydomonas allows the cell to phototax toward (or away) from light to maximize the light intensity for photosynthesis and minimize photo-damage. At cytokinesis, the eyespot is resorbed at the cleavage furrow and two new eyespots form in the daughter cells 180 degrees from each other. The eyespots are positioned asymmetrically with respect to the microtubule cytoskeleton. Eyespots are assembled from all three chloroplast membranes and carotenoid-filled granules, which form a sandwich structure overlaid by the tightly apposed plasma membrane. This review describes (1) my interest in cellular asymmetry and organelle biology, (2) isolation of mutations that describe four genes governing eyespot placement and assembly, (3) the characterization of the EYE2 gene, which encodes a thioredoxin superfamily member, and (4) the characterization of the MIN1 gene, which is required for the layered organization of granules and membranes in the eyespot. BioEssays 25:410-416, 2003.
Collapse
Affiliation(s)
- Carol L Dieckmann
- Department of Biochemistry and Molecular Biophysics, University of Arizona, P. O. Box 210106, Tucson, AZ 85721-0106, USA.
| |
Collapse
|
49
|
Chabregas SM, Luche DD, Van Sluys MA, Menck CFM, Silva-Filho MC. Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 2003; 116:285-91. [PMID: 12482914 DOI: 10.1242/jcs.00228] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arabidopsis thaliana THI1 is encoded by a single nuclear gene and directed simultaneously to mitochondria and chloroplasts from a single major transcript. In vitro transcription/translation experiments revealed the presence of two translational products by the differential usage of two in-frame translational start codons. The coupling site-specific mutations on the THI1 encoding sequence with green fluorescent protein (GFP) gene fusions showed that translation initiation at the first AUG directs translocation of THI1 to chloroplasts. However, when translation starts from the second AUG, THI1 is addressed to mitochondria. Analysis of the translation efficiency of thi1 mRNA revealed that the best context for translation initiation is to use the first AUG. In addition, a suboptimal context in the vicinity of the second AUG initiation codon, next to a stable stem-and-loop structure that is likely to slow translation, has been noted. The fact that translation preferentially occurs in the first AUG of this protein suggests a high requirement for TH1 in chloroplasts. Although the frequency of upstream AUG translation is higher, according to the first AUG rule, initiation at the second AUG deviates significantly from Kozak's consensus. It suggests leaky ribosomal scanning, reinitiation or the internal entry of ribosomes to assure mitochondrial protein import.
Collapse
Affiliation(s)
- Sabrina M Chabregas
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 83, 13400-970, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Kasai K, Usami S, Yamada T, Endo Y, Ochi K, Tozawa Y. A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res 2002; 30:4985-92. [PMID: 12434003 PMCID: PMC137175 DOI: 10.1093/nar/gkf628] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A gene encoding a putative guanosine 3',5'-bispyrophosphate (ppGpp) synthase-degradase, designated Cr-RSH, was identified in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. The encoded Cr-RSH protein possesses a putative chloroplast-targeting signal at its NH2-terminus, and translocation of Cr-RSH into chloroplasts isolated from C.reinhardtii was demonstrated in vitro. The predicted mature region of Cr-RSH exhibits marked similarity to eubacterial members of the RelA-SpoT family of proteins. Expression of an NH2-terminal portion of Cr-RSH containing the putative ppGpp synthase domain in a relA, spoT double mutant of Escherichia coli complemented the growth deficits of the mutant cells. Chromatographic analysis of 32P-labeled cellular mononucleotides also revealed that expression of Cr-RSH in the mutant bacterial cells resulted in the synthesis of ppGpp. SpoT, which catalyzes (p)ppGpp degradation, is dispensable in E.coli only if cells also lack RelA, which possesses (p)ppGpp synthase activity. The complementation analysis thus indicated that Cr-RSH possesses both ppGpp synthase and degradase activities. These results represent the first demonstration of ppGpp synthase-degradase activities in a eukaryotic organism, and they suggest that eubacterial stringent control mediated by ppGpp has been conserved during evolution of the chloroplast from a photosynthetic bacterial symbiont.
Collapse
Affiliation(s)
- Koji Kasai
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|