1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Di Luca A, Kaila VRI. Molecular strain in the active/deactive-transition modulates domain coupling in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148382. [PMID: 33513365 DOI: 10.1016/j.bbabio.2021.148382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Complex I functions as a primary redox-driven proton pump in aerobic respiratory chains, establishing a proton motive force that powers ATP synthesis and active transport. Recent cryo-electron microscopy (cryo-EM) experiments have resolved the mammalian complex I in the biomedically relevant active (A) and deactive (D) states (Zhu et al., 2016; Fiedorczuk et al., 2016; Agip et al., 2018 [1-3]) that could regulate enzyme turnover, but it still remains unclear how the conformational state and activity are linked. We show here how global motion along the A/D transition accumulates molecular strain at specific coupling regions important for both redox chemistry and proton pumping. Our data suggest that the A/D motion modulates force propagation pathways between the substrate-binding site and the proton pumping machinery that could alter electrostatic and conformational coupling across large distances. Our findings provide a molecular basis to understand how global protein dynamics can modulate the biological activity of large molecular complexes.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
3
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Verkhovskaya M, Belevich N. Fluorescent signals associated with respiratory Complex I revealed conformational changes in the catalytic site. FEMS Microbiol Lett 2020; 366:5530755. [PMID: 31291453 DOI: 10.1093/femsle/fnz155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 11/14/2022] Open
Abstract
Fluorescent signals associated with Complex I (NADH:ubiquinone oxidoreductase type I) upon its reduction by NADH without added acceptors and upon NADH:ubiquinone oxidoreduction were studied. Two Complex I-associated redox-dependent signals were observed: with maximum emission at 400 nm (λex = 320 nm) and 526 nm (λex = 450 nm). The 400 nm signal derived from ubiquinol accumulated in Complex I/DDM (n-dodecyl β-D-maltopyranoside) micelles. The 526 nm redox signal unexpectedly derives mainly from FMN (flavin mononucleotide), whose fluorescence in oxidized protein is fully quenched, but arises transiently upon reduction of Complex I by NADH. The paradoxical flare-up of FMN fluorescence is discussed in terms of conformational changes in the catalytic site upon NADH binding. The difficulties in revealing semiquinone fluorescent signal are considered.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014, University of Helsinki, Finland
| | - Nikolai Belevich
- Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014, University of Helsinki, Finland
| |
Collapse
|
5
|
Wright JJ, Fedor JG, Hirst J, Roessler MM. Using a chimeric respiratory chain and EPR spectroscopy to determine the origin of semiquinone species previously assigned to mitochondrial complex I. BMC Biol 2020; 18:54. [PMID: 32429970 PMCID: PMC7238650 DOI: 10.1186/s12915-020-00768-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND For decades, semiquinone intermediates have been suggested to play an essential role in catalysis by one of the most enigmatic proton-pumping enzymes, respiratory complex I, and different mechanisms have been proposed on their basis. However, the difficulty in investigating complex I semiquinones, due to the many different enzymes embedded in the inner mitochondrial membrane, has resulted in an ambiguous picture and no consensus. RESULTS In this paper, we re-examine the highly debated origin of semiquinone species in mitochondrial membranes using a novel approach. Our combination of a semi-artificial chimeric respiratory chain with pulse EPR spectroscopy (HYSCORE) has enabled us to conclude, unambiguously and for the first time, that the majority of the semiquinones observed in mitochondrial membranes originate from complex III. We also identify a minor contribution from complex II. CONCLUSIONS We are unable to attribute any semiquinone signals unambiguously to complex I and, reconciling our observations with much of the previous literature, conclude that they are likely to have been misattributed to it. We note that, for this earlier work, the tools we have relied on here to deconvolute overlapping EPR signals were not available. Proposals for the mechanism of complex I based on the EPR signals of semiquinone species observed in mitochondrial membranes should thus be treated with caution until future work has succeeded in isolating any complex I semiquinone EPR spectroscopic signatures present.
Collapse
Affiliation(s)
- John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
6
|
Abstract
Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - James N Blaza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , , .,Current affiliation: York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| |
Collapse
|
7
|
Yamamoto K, Ikenaka Y, Ichise T, Bo T, Ishizuka M, Yasui H, Hiraoka W, Yamamori T, Inanami O. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR. Free Radic Res 2018; 52:648-660. [PMID: 29620489 DOI: 10.1080/10715762.2018.1460472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF2α and 5-iPF2α-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 × ADP]/[ATP + ADP + AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoshinori Ikenaka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Takahiro Ichise
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Mayumi Ishizuka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Hironobu Yasui
- c Central Institute of Isotope Science , Hokkaido University , Sapporo , Japan
| | - Wakako Hiraoka
- d Laboratory of Biophysics , School of Science and Technology, Meiji University , Kawasaki , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
8
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
9
|
Holt PJ, Efremov RG, Nakamaru-Ogiso E, Sazanov LA. Reversible FMN dissociation from Escherichia coli respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1777-1785. [PMID: 27555334 DOI: 10.1016/j.bbabio.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Respiratory complex I transfers electrons from NADH to quinone, utilizing the reaction energy to translocate protons across the membrane. It is a key enzyme of the respiratory chain of many prokaryotic and most eukaryotic organisms. The reversible NADH oxidation reaction is facilitated in complex I by non-covalently bound flavin mononucleotide (FMN). Here we report that the catalytic activity of E. coli complex I with artificial electron acceptors potassium ferricyanide (FeCy) and hexaamineruthenium (HAR) is significantly inhibited in the enzyme pre-reduced by NADH. Further, we demonstrate that the inhibition is caused by reversible dissociation of FMN. The binding constant (Kd) for FMN increases from the femto- or picomolar range in oxidized complex I to the nanomolar range in the NADH reduced enzyme, with an FMN dissociation time constant of ~5s. The oxidation state of complex I, rather than that of FMN, proved critical to the dissociation. Such dissociation is not observed with the T. thermophilus enzyme and our analysis suggests that the difference may be due to the unusually high redox potential of Fe-S cluster N1a in E. coli. It is possible that the enzyme attenuates ROS production in vivo by releasing FMN under highly reducing conditions.
Collapse
Affiliation(s)
- Peter J Holt
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Rouslan G Efremov
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, United States
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
10
|
Berrisford JM, Baradaran R, Sazanov LA. Structure of bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:892-901. [PMID: 26807915 DOI: 10.1016/j.bbabio.2016.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
| | - Rozbeh Baradaran
- Memorial Sloan-Kettering Cancer Center, 430 E 67th Street, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
11
|
Dröse S, Stepanova A, Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:946-57. [PMID: 26777588 PMCID: PMC4893024 DOI: 10.1016/j.bbabio.2015.12.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. The current knowledge on active/deactive (A/D) transition of complex I is reviewed. The mechanism and driving force of the A/D conformational change are discussed. The A/D transition can affect ROS production and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.
| | - Anna Stepanova
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
12
|
Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:872-83. [PMID: 26721206 PMCID: PMC4893023 DOI: 10.1016/j.bbabio.2015.12.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron–sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Current knowledge of the redox reactions catalyzed by complex I is reviewed. Possible quinone reduction pathways are presented. The presence and number of semiquinone intermediates are deliberated. The involvement of cluster N2/semiquinones in coupled proton transfer is discussed. Evidence for reactive oxygen species production by semiquinones is examined.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
13
|
Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 2015; 16:375-88. [PMID: 25991374 DOI: 10.1038/nrm3997] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.
Collapse
Affiliation(s)
- Leonid A Sazanov
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
14
|
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94:909-50. [PMID: 24987008 DOI: 10.1152/physrev.00026.2013] [Citation(s) in RCA: 3357] [Impact Index Per Article: 335.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Magdalena Juhaszova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Steven J Sollott
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
15
|
Roles of semiquinone species in proton pumping mechanism by complex I. J Bioenerg Biomembr 2014; 46:269-77. [PMID: 25077450 DOI: 10.1007/s10863-014-9557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022]
Abstract
Complex I (NDH-1) translocates protons across the membrane using electron transfer energy. Two different coupling mechanisms are currently being discussed for complex I: direct (redox-driven) and indirect (conformation-driven). Semiquinone (SQ) intermediates are suggested to be key for the coupling mechanism. Recently, using progressive power saturation and simulation techniques, three distinct SQ species were resolved by EPR analysis of E. coli complex I reconstituted into proteoliposomes. The fast-relaxing SQ (SQ(Nf)) signals completely disappeared in the presence of the uncoupler gramicidin D or the potent E. coli complex I inhibitor squamotacin. The slow-relaxing SQ (SQ(Ns)) signals were insensitive to gramicidin D, but they were sensitive to squamotacin. The very slow-relaxing SQ (SQ(Nvs)) signals were insensitive to both gramicidin D and squamotacin. Interestingly, no SQ(Ns) signal was observed in the ΔNuoL mutant, which lacks transporter module subunits NuoL and NuoM. Furthermore, we sought out the effect of using menaquinone (which has a lower redox potential compared to that of ubiquinone) as an electron acceptor on the proton pumping stoichiometry by in vitro reconstitution experiments with ubiquinone-rich or menaquinone-rich double knock-out membrane vesicles, which contain neither complex I nor NDH-2 (non-proton translocating NADH dehydrogenase). No difference in the proton pumping stoichiometry between menaquinone and ubiquinone was observed in the ΔNuoL and D178N mutants, which are considered to lack the indirect proton pumping mechanism. However, the proton pumping stoichiometry with menaquinone decreased by half in the wild-type. The roles and relationships of SQ intermediates in the coupling mechanism of complex I are discussed.
Collapse
|
16
|
Gorenkova N, Robinson E, Grieve DJ, Galkin A. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid Redox Signal 2013; 19:1459-68. [PMID: 23419200 PMCID: PMC3797456 DOI: 10.1089/ars.2012.4698] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS. RESULTS We found that in the heart, t½ of complex I deactivation during ischemia was 10 min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H2O2 or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis. INNOVATION A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting. CONCLUSION The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R.
Collapse
Affiliation(s)
- Natalia Gorenkova
- 1 Medical Biology Centre, School of Biological Sciences, Queen's University Belfast , Belfast, United Kingdom
| | | | | | | |
Collapse
|
17
|
Ransac S, Arnarez C, Mazat JP. The flitting of electrons in complex I: a stochastic approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:641-8. [PMID: 20230777 DOI: 10.1016/j.bbabio.2010.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 12/12/2022]
Abstract
A stochastic approach based on the Gillespie algorithm is particularly well adapted to describe the time course of the redox reactions that occur inside the respiratory chain complexes because they involve the motion of single electrons between the individual unique redox centres of a given complex. We use this approach to describe the molecular functioning of the peripheral arm of complex I based on its known crystallographic structure and the rate constants of electron tunnelling derived from the Moser and Dutton phenomenological equations. There are several possible electrons pathways but we show that most of them take the route defined by the successive sites and redox centres: NADH+ site-FMN-N3-N1b-N4-N5-N6a-N6b-N2-Q site. However, the electrons do not go directly from NADH towards the ubiquinone molecule. They frequently jump back and forth between neighbouring redox centres with the result that the net flux of electrons through complex I (i.e. net number of electrons reducing a ubiquinone) is far smaller than the number of redox reactions which actually occur. While most of the redox centres are reduced in our simulations the degree of reduction can vary according to the individual midpoint potentials. The high turnover number observed in our simulation seems to indicate that, in the whole complex I, one or several slower step(s) follow(s) the redox reactions involved in the peripheral arm. It also appears that the residence time of FMNH* and SQ* (possible producers of ROS) is low (around 4% and between 1.6% and 5% respectively according to the values of the midpoint potentials). We did not find any evidence for a role of N7 which remains mainly reduced in our simulations. The role of N1a is complex and depends upon its midpoint potential. In all cases its presence slightly decreases the life time of the flavosemiquinone species. These simulations demonstrate the interest of this type of model which links the molecular physico-chemistry of the individual redox reactions to the more global level of the reaction, as is observed experimentally.
Collapse
Affiliation(s)
- Stéphane Ransac
- Université de Bordeaux 2, Mitochondrial physiopathology laboratory, INSERM U688, Bordeaux, France
| | | | | |
Collapse
|
18
|
Abstract
ROS (reactive oxygen species) are considered to be a major cause of cellular oxidative stress, linked to neuromuscular diseases and aging. Complex I (NADH:ubiquinone oxidoreductase) is one of the main contributors to superoxide production by mitochondria, and knowledge of its mechanism of O2 reduction is required for the formulation of causative connections between complex I defects and pathological effects. There is evidence for two distinct (but not mutually exclusive) sites of O2 reduction by complex I. Studies of the isolated enzyme largely support the participation of the reduced flavin mononucleotide in the active site for NADH oxidation, and this mechanism is supported in mitochondria by correlations between the NAD(P)+ potential and O2 reduction. In addition, studies of intact mitochondria or submitochondrial particles have suggested a mechanism involving the quinone-binding site, supported by observations during reverse electron transport and the use of 'Q-site' inhibitors. Here, we discuss extant data and models for O2 reduction by complex I. We compare results from the isolated enzyme with results from intact mitochondria, aiming to identify similarities and differences between them and progress towards combining them to form a single, unified picture.
Collapse
|
19
|
Vinogradov AD. NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:729-34. [PMID: 18471432 PMCID: PMC2494570 DOI: 10.1016/j.bbabio.2008.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/20/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
Abstract
The quantitative data on the binding affinity of NADH, NAD(+), and their analogues for complex I as emerged from the steady-state kinetics data and from more direct studies under equilibrium conditions are summarized and discussed. The redox-dependency of the nucleotide binding and the reductant-induced change of FMN affinity to its tight non-covalent binding site indicate that binding (dissociation) of the substrate (product) may energetically contribute to the proton-translocating activity of complex I.
Collapse
Affiliation(s)
- Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation.
| |
Collapse
|
20
|
Hepatocyte mitochondrion electron-transport chain alterations in CCl4 and alcohol induced hepatitis in rats and their correction with simvastatin. J Bioenerg Biomembr 2008; 40:27-34. [DOI: 10.1007/s10863-008-9125-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
21
|
Matsuzaki S, Szweda LI. Inhibition of complex I by Ca2+ reduces electron transport activity and the rate of superoxide anion production in cardiac submitochondrial particles. Biochemistry 2007; 46:1350-7. [PMID: 17260964 DOI: 10.1021/bi0617916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Declines in the rate of mitochondrial electron transport and subsequent increases in the half-life of reduced components of the electron transport chain can stimulate O2*- formation. We have previously shown that, in solubilized cardiac mitochondria, Ca2+ mediates reversible free radical-induced inhibition of complex I. In the study presented here, submitochondrial particles prepared from rat heart were utilized to determine the effects of Ca2+ on specific components of the respiratory chain and on the rates of electron transport and O2*- production. The results indicate that complex I is inactivated when submitochondrial particles are treated with Ca2+. Inactivation was specific to complex I with no alterations in the activities of other electron transport chain complexes. Complex I inactivation by Ca2+ resulted in the reduction of NADH-supported electron transport activity. In contrast to the majority of electron transport chain inhibitors, Ca2+ suppressed the rate of O2*- production. In addition, while inhibition of complex III stimulated O2*- production, Ca2+ reduced the relative rate of O2*- production, consistent with the magnitude of complex I inhibition. Evidence indicates that complex I is the primary source of O2*- released from this preparation of submitochondrial particles. Ca2+ therefore inhibits electron transport upstream of site(s) of free radical production. This may represent a means of limiting O2*- production by a compromised electron transport chain.
Collapse
Affiliation(s)
- Satoshi Matsuzaki
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
22
|
Sazanov LA. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 2007; 46:2275-88. [PMID: 17274631 DOI: 10.1021/bi602508x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complex I of respiratory chains plays a central role in cellular energy production. Mutations in its subunits lead to many human neurodegenerative diseases. Recently, a first atomic structure of the hydrophilic domain of complex I from Thermus thermophilus was determined. This domain represents a catalytic core of the enzyme. It consists of eight different subunits, contains all the redox centers, and comprises more than half of the entire complex. In this review, novel mechanistic implications of the structure are discussed, and the effects of many known mutations of complex I subunits are interpreted in a structural context.
Collapse
Affiliation(s)
- Leonid A Sazanov
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. sazanov@ mrc-dunn.cam.ac.uk
| |
Collapse
|
23
|
Galkin A, Dröse S, Brandt U. The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1575-81. [PMID: 17094937 DOI: 10.1016/j.bbabio.2006.10.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/28/2006] [Accepted: 10/04/2006] [Indexed: 11/30/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(+)/2e indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(+)/2e . This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme.
Collapse
Affiliation(s)
- Alexander Galkin
- Universität Frankfurt, Fachbereich Medizin, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:553-61. [PMID: 16678117 DOI: 10.1016/j.bbabio.2006.03.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/13/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.
Collapse
Affiliation(s)
- Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation
| | | |
Collapse
|
25
|
Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006; 311:1430-6. [PMID: 16469879 DOI: 10.1126/science.1123809] [Citation(s) in RCA: 612] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Respiratory complex I plays a central role in cellular energy production in bacteria and mitochondria. Its dysfunction is implicated in many human neurodegenerative diseases, as well as in aging. The crystal structure of the hydrophilic domain (peripheral arm) of complex I from Thermus thermophilus has been solved at 3.3 angstrom resolution. This subcomplex consists of eight subunits and contains all the redox centers of the enzyme, including nine iron-sulfur clusters. The primary electron acceptor, flavin-mononucleotide, is within electron transfer distance of cluster N3, leading to the main redox pathway, and of the distal cluster N1a, a possible antioxidant. The structure reveals new aspects of the mechanism and evolution of the enzyme. The terminal cluster N2 is coordinated, uniquely, by two consecutive cysteines. The novel subunit Nqo15 has a similar fold to the mitochondrial iron chaperone frataxin, and it may be involved in iron-sulfur cluster regeneration in the complex.
Collapse
Affiliation(s)
- Leonid A Sazanov
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K.
| | | |
Collapse
|
26
|
Vinogradov AD, Grivennikova VG. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. BIOCHEMISTRY (MOSCOW) 2005; 70:120-7. [PMID: 15807648 DOI: 10.1007/s10541-005-0090-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Besides major NADH-, succinate-, and other substrate oxidase reactions resulting in four-electron reduction of oxygen to water, the mitochondrial respiratory chain catalyzes one-electron reduction of oxygen to superoxide radical O(2)(-.) followed by formation of hydrogen peroxide. In this paper the superoxide generation by Complex I in tightly coupled bovine heart submitochondrial particles is quantitatively characterized. The rate of superoxide formation during Deltamu(H(+))-controlled respiration with succinate depends linearly on oxygen concentration and contributes approximately 0.4% of the overall oxidase activity at saturating (0.25 mM) oxygen. The major part of one-electron oxygen reduction during succinate oxidation (approximately 80%) proceeds via Complex I at the expense of its Deltamu(H(+))-dependent reduction (reverse electron transfer). At saturating NADH the rate of O(2)(-.) formation is substantially smaller than that with succinate as the substrate. In contrast to NADH oxidase, the rate-substrate concentration dependence for the superoxide production shows a maximum at low (approximately 50 microM) concentrations of NADH. NAD+ and NADH inhibit the succinate-supported superoxide generation. Deactivation of Complex I results in almost complete loss of its NADH-ubiquinone reductase activity and in increase in NADH-dependent superoxide generation. A model is proposed according to which complex I has two redox active nucleotide binding sites. One site (F) serves as an entry for the NADH oxidation and the other one (R) serves as an exit during either the succinate-supported NAD+ reduction or superoxide generation or NADH-ferricyanide reductase reaction.
Collapse
Affiliation(s)
- A D Vinogradov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
27
|
Morkunaite-Haimi S, Kruglov AG, Teplova VV, Stolze K, Gille L, Nohl H, Saris NEL. Reactive oxygen species are involved in the stimulation of the mitochondrial permeability transition by dihydrolipoate. Biochem Pharmacol 2003; 65:43-9. [PMID: 12473377 DOI: 10.1016/s0006-2952(02)01450-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dihydrolipoic acid (DHLA) has been found to stimulate the Ca(2+)-induced mitochondrial permeability transition (MPT) in rat liver mitochondria (RLM) [Biochem. Mol. Biol. Int. 44 (1998) 127] which could be due to its prooxidant properties. We therefore investigated whether DHLA stimulated superoxide anion (O(2)(.-)) generation in RLM and in bovine heart submitochondrial particles (SMP). In RLM DHLA caused a concentration-dependent O(2)(.-) generation assayed by lucigenin chemiluminiscence. The stimulation was seen with the lowest concentrations of DHLA (5 microM) with pyruvate as the respiratory substrate, with 2-oxoglutarate or especially succinate the stimulation was less pronounced. Stimulation of O(2)(.-) production by DHLA was also observed in bovine heart SMP using an electron spin-trapping technique. Radical scavengers (butylhydroxytoluene and TEMPO) decreased O(2)(.-) generation induced by DHLA and inhibited MPT. Slight reduction of the mitochondrial membrane potential by a small amount of a protonophorous uncoupling agent also delayed the DHLA-induced MPT. These data indicate that the stimulation of MPT by DHLA is due to DHLA-derived prooxidants, i.e. stimulated production of O(2)(.-) and possibly other free radicals.
Collapse
Affiliation(s)
- Sarune Morkunaite-Haimi
- Department of Applied Chemistry and Microbiology, Viikki Biocentre I, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Schägger H. Respiratory chain supercomplexes of mitochondria and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:154-9. [PMID: 12206908 DOI: 10.1016/s0005-2728(02)00271-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory chain complexes are fragments of larger structural and functional units, the respiratory chain supercomplexes or "respirasomes", which exist in bacterial and mitochondrial membranes. Supercomplexes of mitochondria and bacteria contain complexes III, IV, and complex I, with the notable exception of Saccharomyces cerevisiae, which does not possess complex I. These supercomplexes often are stable to sonication but sensitive to most detergents except digitonin. In S. cerevisiae, a major component linking complexes III and IV together is cardiolipin.In Paracoccus denitrificans, complex I itself is rather detergent-sensitive and thus could not be obtained in detergent-solubilized form so far. However, it can be isolated as part of a supercomplex. Stabilization of complex I by binding to complex III was also found in human mitochondria. Further functional roles of the organization in a supercomplex are catalytic enhancement by reducing diffusion distances of substrates or, depending on the organism, channelling of the substrates quinone and cytochrome c. This makes redox reactions less dependent of midpoint potentials of substrates, and permits electron flow at low degree of substrate reduction.A dimeric state of ATP synthase seems to be specific for mitochondria. Exclusively, monomeric ATP synthase was found in Acetobacterium woodii, in P. denitrificans, and in spinach chloroplasts.
Collapse
Affiliation(s)
- Hermann Schägger
- Biochemie I, Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfort on the Main, Germany.
| |
Collapse
|
29
|
Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhäll C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T. EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 2002; 34:193-208. [PMID: 12171069 DOI: 10.1023/a:1016083419979] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proton-translocating NADH-ubiquinone oxidoreductase (complex I) is the largest and least understood respiratory complex. The intrinsic redox components (FMN and iron-sulfur clusters) reside in the promontory part of the complex. Ubiquinone is the most possible key player in proton-pumping reactions in the membrane part. Here we report the presence of three distinct semiquinone species in complex I in situ, showing widely different spin relaxation profiles. As our first approach, the semiquinone forms were trapped during the steady state NADH-ubiquinone-1 (Q1) reactions in the tightly coupled, activated bovine heart submitochondrial particles, and were named SQNf (fast-relaxing component), SQNS (slow-relaxing), and SQNx (very slow relaxing). This indicates the presence of at least three different quinone-binding sites in complex I. In the current study, special attention was placed on the SQNf, because of its high sensitivities to DeltamicroH+ and to specific complex I inhibitors (rotenone and piericidin A) in a unique manner. Rotenone inhibits the forward electron transfer reaction more strongly than the reverse reaction, while piericidine A inhibits both reactions with a similar potency. Rotenone quenched the SQNf signal at a much lower concentration than that required to quench the slower relaxing components (SQNs and SQNx). A close correlation was shown between the line shape alteration of the g// = 2.05 signal of the cluster N2 and the quenching of the SQNf signal, using two different experimental approaches: (1) changing the DeltamicroH+ poise by the oligomycin titration which decreases proton leak across the SMP membrane; (2) inhibiting the reverse electron transfer with different concentrations of rotenone. These new experimental results further strengthen our earlier proposal that a direct spin-coupling occurs between SQNf and cluster N2. We discuss the implications of these findings in connection with the energy coupling mechanism in complex .
Collapse
Affiliation(s)
- Sergey Magnitsky
- Department of Biochemistry and Biophysics, Medical School, University of Pennsylvania, Philadelphia 19104-6059, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 2000; 19:1777-83. [PMID: 10775262 PMCID: PMC302020 DOI: 10.1093/emboj/19.8.1777] [Citation(s) in RCA: 1008] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Revised: 02/03/2000] [Accepted: 03/08/2000] [Indexed: 11/13/2022] Open
Abstract
Around 30-40 years after the first isolation of the five complexes of oxidative phosphorylation from mammalian mitochondria, we present data that fundamentally change the paradigm of how the yeast and mammalian system of oxidative phosphorylation is organized. The complexes are not randomly distributed within the inner mitochondrial membrane, but assemble into supramolecular structures. We show that all cytochrome c oxidase (complex IV) of Saccharomyces cerevisiae is bound to cytochrome c reductase (complex III), which exists in three forms: the free dimer, and two supercomplexes comprising an additional one or two complex IV monomers. The distribution between these forms varies with growth conditions. In mammalian mitochondria, almost all complex I is assembled into supercomplexes comprising complexes I and III and up to four copies of complex IV, which guided us to present a model for a network of respiratory chain complexes: a 'respirasome'. A fraction of total bovine ATP synthase (complex V) was isolated in dimeric form, suggesting that a dimeric state is not limited to S.cerevisiae, but also exists in mammalian mitochondria.
Collapse
Affiliation(s)
- H Schägger
- Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, D-60590 Frankfurt, Germany.
| | | |
Collapse
|
31
|
McLennan HR, Degli Esposti M. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 2000; 32:153-62. [PMID: 11768748 DOI: 10.1023/a:1005507913372] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work was focused on distinguishing the contribution of mitochondrial redox complexes to the production of reactive oxygen species (ROS) during cellular respiration. We were able to accurately measure, for the first time, the basal production of ROS under uncoupled conditions by using a very sensitive method, based on the fluorescent probe dichlorodihydrofluorescein diacetate. The method also enabled the detection of the ROS generated by the oxidation of the endogenous substrates in the mitochondrial preparations and could be applied to both mitochondria and live cells. Contrary to the commonly accepted view that complex III (ubiquinol:cytochrome c reductase) is the major contributor to mitochondrial ROS production, we found that complex I (NADH-ubiquinone reductase) and complex II (succinate-ubiquinone reductase) are the predominant generators of ROS during prolonged respiration under uncoupled conditions. Complex II, in particular, appears to contribute to the basal production of ROS in cells.
Collapse
Affiliation(s)
- H R McLennan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
32
|
Darrouzet E, Issartel JP, Lunardi J, Dupuis A. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 1998; 431:34-8. [PMID: 9684860 DOI: 10.1016/s0014-5793(98)00719-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piericidin is a potent inhibitor of the mitochondrial and bacterial type I NADH-ubiquinone oxidoreductases (Complex I) and is considered to bind at or close to the ubiquinone binding site(s) of the enzyme. Piericidin-resistant mutants of the bacterium Rhodobacter capsulatus have been isolated and the present work demonstrates that a single missense mutation at the level of the gene encoding the peripheral 49-kDa/NUOD subunit of Complex I is definitely associated with this resistance. Based on this original observation, we propose a model locating the binding site for piericidin (and quinone) at the interface between the hydrophilic and hydrophobic domains of Complex I.
Collapse
Affiliation(s)
- E Darrouzet
- Laboratoire de Bioénergétique Cellulaire et Pathologique, (EA 2411-UJF), Départment de Biologie Moléculaire et Structurale CEA Grenoble, France
| | | | | | | |
Collapse
|
33
|
Kotlyar AB, Albracht SP, van Spanning RJ. Comparison of energization of complex I in membrane particles from Paracoccus denitrificans and bovine heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:53-9. [PMID: 9693721 DOI: 10.1016/s0005-2728(98)00042-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The results of preliminary studies of the effects of energization on the catalytic and EPR properties of complex I in tightly coupled membrane vesicles of Paracoccus denitrificans (SPP) are presented. They are compared to those observed in submitochondrial particles from bovine heart (SMP). All signs of energization of complex I detected by EPR in SMP (uncoupler-sensitive splitting of the gz lines of the clusters 2 and a broadening of their gxy lines, a fast-relaxing, piericidin-sensitive ubiquinone-radical signal, and a broad signal around g = 1.94) were also observed with the bacterial enzyme. There were some prominent differences, though. The signal of the fast-relaxing radicals could be evoked both in the presence or absence of reduced clusters 2, suggesting that enhancement of its spin-relaxation rate is caused by coupling to another paramagnet. The signal was hardly affected by the presence of gramicidin. The slow-relaxing radical signal did not disappear upon anaerobiosis, but was detectable for at least another 30 s. The fast-relaxing signal vanished immediately upon anaerobiosis. The activity of the bacterial enzyme during oxidation of NADH by oxygen or reduction of NAD induced by succinate oxidation, was 5-6 times higher than that of the mitochondrial enzyme. Unlike the mitochondrial enzyme, the bacterial enzyme was not inactivated by incubation at 35 degrees C. The spin concentration of the NADH-reducible [2Fe-2S] cluster (1b) was half that of the clusters 2, indicating no difference with the mitochondrial enzyme.
Collapse
Affiliation(s)
- A B Kotlyar
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | | | | |
Collapse
|
34
|
Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD. Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:301-8. [PMID: 9693742 DOI: 10.1016/s0005-2728(98)00082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our recent experimental data on iron-sulfur clusters and semiquinones in the complex I segment of the respiratory chain is presented, focusing on the Paracoccus (P.) denitrificans and bovine heart studies. The iron-sulfur cluster N2 has attracted the attention of investigators in the research field of complex I, since the mid-point redox potential of this cluster is the highest among all clusters in complex I, and is pH dependent (60 mV/pH). It is known that this cluster is located either in the NQO6 (NuoB in E. coli/PSST in bovine heart nomenclature) or in the NQO9 (NuoI/TYKY) subunit in the amphipathic domain of complex I. Our preliminary data indicate that the cluster N2 is located in the NuoB rather than the long-advocated NuoI subunit, and may have a unique ligand structure. We previously reported spin-spin interactions between cluster N2 and two distinct species of semiquinone (designated SQNf and SQNs) associated with complex I. A parallel intensity change was observed between the SQNf (g = 2.00) signal and the N2 split g parallel signal, further supporting our proposed interaction between SQNf and N2 spins.
Collapse
Affiliation(s)
- T Ohnishi
- Johnson Research Foundation, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Degli Esposti M. Inhibitors of NADH-ubiquinone reductase: an overview. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:222-35. [PMID: 9593904 DOI: 10.1016/s0005-2728(98)00029-2] [Citation(s) in RCA: 378] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an updated overview of the plethora of complex I inhibitors. The inhibitors are presented within the broad categories of natural and commercial compounds and their potency is related to that of rotenone, the classical inhibitor of complex I. Among commercial products, particular attention is dedicated to inhibitors of pharmacological or toxicological relevance. The compounds that inhibit the NADH-ubiquinone reductase activity of complex I are classified according to three fundamental types of action on the basis of available evidence and recent insights: type A are antagonists of the ubiquinone substrate, type B displace the ubisemiquinone intermediate, and type C are antagonists of the ubiquinol product.
Collapse
Affiliation(s)
- M Degli Esposti
- Department of Biochemistry and Molecular Biology, Monash University, 3168 Clayton, Victoria, Australia.
| |
Collapse
|
36
|
Vinogradov AD. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:169-85. [PMID: 9593879 DOI: 10.1016/s0005-2728(98)00026-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119899, Russian Federation.
| |
Collapse
|
37
|
Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T. A reductant-induced oxidation mechanism for complex I. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:245-57. [PMID: 9593917 DOI: 10.1016/s0005-2728(98)00031-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A model for energy conversion in Complex I is proposed that is a conservative expansion of Mitchell's Q-cycle using a simple mechanistic variation of that already established experimentally for Complex III. The model accommodates the following proposals. (1) The large number of flavin and iron-sulfur redox cofactors integral to Complex I form a simple but long electron transfer chain guiding submillisecond electron transfer from substrate NADH in the matrix to the [4Fe-4S] cluster N2 close to the matrix-membrane interface. (2) The reduced N2 cluster injects a single electron into a ubiquinone (Q) drawn from the membrane pool into a nearby Qnz site, generating an unstable transition state semiquinone (SQ). The generation of a SQ species is the primary step in the energy conversion process in Complex I, as in Complex III. In Complex III, the SQ at the Qo site near the cytosolic side acts as a strong reductant to drive electronic charge across the membrane profile via two hemes B to a Qi site near the matrix side. We propose that in Complex I, the SQ at the Qnz site near the matrix side acts as a strong oxidant to pull electronic charge across the membrane profile via a quinone (Qny site) from a Qnx site near the cytosolic side. The opposing locations of matrix side Qnz and cytosolic side Qo, together with the opposite action of Qnz as an oxidant rather than a reductant, renders the Complex I and III processes vectorially and energetically complementary. The redox properties of the Qnz and Qo site occupants can be identical. (3) The intervening Qny site of Complex I acts as a proton pumping element (akin to the proton pump of Complex IV), rather than the simple electron guiding hemes B of Complex III. Thus the transmembrane action of Complex I doubles to four (or more) the number of protons and charges translocated per NADH oxidized and Q reduced. The Qny site does not exchange with the pool and may even be covalently bound. (4) The Qnx site on the cytosol side of Complex I is complementary to the Qi site on the matrix side of Complex III and can have the same redox properties. The Qnx site draws QH2 from the membrane pool to be oxidized in two single electron steps. Besides explaining earlier observations and making testable predictions, this Complex I model re-establishes a uniformity in the mechanisms of respiratory energy conversion by using engineering principles common to Complexes III and IV: (1) all the primary energy coupling reactions in the different complexes use oxygen chemistry in the guise of dioxygen or ubiquinone, (2) these reactions are highly localized structurally, utilizing closely placed catalytic redox cofactors, (3) these reactions are also highly localized energetically, since virtually all the free energy defined by substrates is conserved in the form of transition state that initiates the transmembrane action and (4) all complexes possess apparently supernumerary oxidation-reduction cofactors which form classical electron transfer chains that operate with high directional specificity to guide electron at near zero free energies to and from the sites of localized coupling.
Collapse
Affiliation(s)
- P L Dutton
- The Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
38
|
Skulachev V. Energy Transduction Mechanisms (Animals and Plants). Compr Physiol 1997. [DOI: 10.1002/cphy.cp140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Darrouzet E, Dupuis A. Genetic evidence for the existence of two quinone related inhibitor binding sites in NADH-CoQ reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1319:1-4. [PMID: 9107311 DOI: 10.1016/s0005-2728(97)00009-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using the NADH-CoQ reductase of Rhodobacter capsulatus as a model for the mitochondrial Complex I, we have for the first time isolated bacterial mutants resistant to piericidin-A, a classical inhibitor of the mitochondrial enzyme. Their sensitivity to other inhibitors directed towards the quinone binding domain of complex I gives direct genetic evidence for the existence of two inhibitor binding sites.
Collapse
Affiliation(s)
- E Darrouzet
- Département de Biologie Moléculaire et Structurale, CEA Grenoble, France
| | | |
Collapse
|
40
|
Helfenbaum L, Ngo A, Ghelli A, Linnane AW, Degli Esposti M. Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone. J Bioenerg Biomembr 1997; 29:71-80. [PMID: 9067804 DOI: 10.1023/a:1022415906999] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As part of the ongoing studies aimed at elucidating the mechanism of the energy conserving function of mitochondrial complex I, NADH: ubiquinone (Q) reductase, we have investigated how short-chain Q analogs activate the proton pumping function of this complex. Using a pH-sensitive fluorescent dye we have monitored both the extent and initial velocity of proton pumping of complex I in submitochondrial particles. The results are consistent with two sites of interaction of Q analogs with complex I, each having different proton pumping capacity. One is the physiological site which leads to a rapid proton pumping and a stoichiometric consumption of NADH associated with the reduction of the most hydrophobic Q analogs. Of these, heptyl-Q appears to be the most efficient substrate in the assay of proton pumping. Q analogs with a short-chain of less than six carbons interact with a second site which drives a slow proton pumping activity associated with NADH oxidation that is overstoichiometric to the reduced quinone acceptor. This activity is also nonphysiological, since hydrophilic Q analogs show little or no respiratory control ratio of their NADH:Q reductase activity, contrary to hydrophobic Q analogs.
Collapse
Affiliation(s)
- L Helfenbaum
- Centre for Molecular Biology and Medicine, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
41
|
Musser SM, Stowell MH, Lee HK, Rumbley JN, Chan SI. Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton translocation mechanism. Biochemistry 1997; 36:894-902. [PMID: 9020789 DOI: 10.1021/bi961723r] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cytochrome bo3 ubiquinol oxidase complex from Escherichia coli contains two binding sites for ubiquinone(ol) (UQ(H2)). One of these binding sites, the ubiquinol oxidation site, is clearly in dynamic equilibrium with the UQ(H2) pool in the membrane. The second site has a high affinity for ubiquinone (UQ), stabilizes a semiquinone species, and is located physically close to the low-spin heme b component of the enzyme. The UQ molecule in this site has been proposed to remain strongly bound to the enzyme during enzyme turnover and to act as a cofactor facilitating the transfer of electrons from the substrate ubiquinol to heme b [Sato-Watanabe et al. (1994) J. Biol. Chem. 269, 28908-28912]. In this paper, the steady-state turnover of the enzyme is examined in the presence and absence of inhibitors (UHDBT and NQNO) that appear to be recognized as ubisemiquinone analogs. It is found that the kinetics are accounted for best by a noncompetitive inhibitor binding model. Furthermore, at high concentrations, the substrates ubiquinol-1 and ubiquinol-2 inhibit turnover in an uncompetitive fashion. Together, these observations strongly suggest that there must be at least two UQ(H2) binding sites that are in rapid equilibrium with the UQ(H2) pool under turnover conditions. Although these data do not rule out the possibility that a strongly bound UQ molecule functions to facilitate electron transfer to heme b, they are more consistent with the behavior expected if the two UQ(H2) binding sites were to function in a Q(H2)-loop mechanism (similar to that of the cytochrome bc1 complex) as originally proposed by Musser and co-workers [(1993) FEBS Lett. 327, 131-136]. In this model, ubiquinol is oxidized at one site and ubiquinone is reduced at the second site. While the structural similarities of the heme-copper ubiquinol and cytochrome c oxidase complexes suggest the possibility that these two families of enzymes translocate protons by similar mechanisms, the current observations indicate that the Q(H2)-loop proton translocation mechanism for the heme-copper ubiquinol oxidase complexes should be further investigated and experimentally tested.
Collapse
Affiliation(s)
- S M Musser
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
42
|
Brandt U. Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:79-91. [PMID: 9030257 DOI: 10.1016/s0005-2728(96)00141-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
For the catalytic mechanism of proton-translocating NADH-dehydrogenase (complex I, EC 1.6.99.3) a number of hypothetical models have been proposed over the last three decades. These models are discussed in the light of recent substantial progress on the structure and function of this very complicated multiprotein complex. Only the high-potential iron-sulfur center N-2 and ubiquinone seem to contribute to the proton-translocating machinery of complex I: Based on the pH dependent midpoint potential of iron-sulfur cluster N-2 and the physical properties of ubiquinone intermediates a novel mechanism is proposed. The model builds on a series of defined chemical reactions taking place at three different ubiquinone-binding sites. Therefore, some aspects of this redox-gated ligand conduction mechanism are reminiscent to the proton-motive Q-cycle. However, its central feature is the abstraction of a proton from ubihydroquinone by a redox-Bohr group associated with iron-sulfur cluster N-2. Thus, in the proposed mechanism proton translocation is driven by a direct linkage between redox dependent protonation of iron-sulfur cluster N-2 and the redox chemistry of ubiquinone.
Collapse
Affiliation(s)
- U Brandt
- Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Germany.
| |
Collapse
|
43
|
Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29:169-202. [PMID: 8870073 DOI: 10.1017/s0033583500005795] [Citation(s) in RCA: 512] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractTo proceed at a high rate, phosphorylating respiration requires ADP to be available. In the resting state, when the energy consumption is low, the ADP concentration decreases so that phosphorylating respiration ceases. This may result in an increase in the intracellular concentrations of O2as well as of one-electron O2reductants such asThese two events should dramatically enhance non-enzymatic formation of reactive oxygen species, i.e. of, and OHׁ, and, hence, the probability of oxidative damage to cellular components. In this paper, a concept is put forward proposing that non-phosphorylating (uncoupled or non-coupled) respiration takes part in maintenance of low levels of both O2and the O2reductants when phosphorylating respiration fails to do this job due to lack of ADP.In particular, it is proposed that some increase in the H+leak of mitochondrial membrane in State 4 lowers, stimulates O2consumption and decreases the level ofwhich otherwise accumulates and serves as one-electron O2reductant. In this connection, the role of natural uncouplers (thyroid hormones), recouplers (male sex hormones and progesterone), non-specific pore in the inner mitochondrial membrane, and apoptosis, as well as of non-coupled electron transfer chains in plants and bacteria will be considered.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
44
|
Degli Esposti M, Ngo A, McMullen GL, Ghelli A, Sparla F, Benelli B, Ratta M, Linnane AW. The specificity of mitochondrial complex I for ubiquinones. Biochem J 1996; 313 ( Pt 1):327-34. [PMID: 8546703 PMCID: PMC1216902 DOI: 10.1042/bj3130327] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the first detailed study on the ubiquinone (coenzyme Q; abbreviated to Q) analogue specificity of mitochondrial complex I, NADH:Q reductase, in intact submitochondrial particles. The enzymic function of complex I has been investigated using a series of analogues of Q as electron acceptor substrates for both electron transport activity and the associated generation of membrane potential. Q analogues with a saturated substituent of one to three carbons at position 6 of the 2,3-dimethoxy-5-methyl-1,4-benzoquinone ring have the fastest rates of electron transport activity, and analogues with a substituent of seven to nine carbon atoms have the highest values of association constant derived from NADH:Q reductase activity. The rate of NADH:Q reductase activity is potently but incompletely inhibited by rotenone, and the residual rotenone-insensitive rate is stimulated by Q analogues in different ways depending on the hydrophobicity of their substituent. Membrane potential measurements have been undertaken to evaluate the energetic efficiency of complex I with various Q analogues. Only hydrophobic analogues such as nonyl-Q or undecyl-Q show an efficiency of membrane potential generation equivalent to that of endogenous Q. The less hydrophobic analogues as well as the isoprenoid analogue Q-2 are more efficient as substrates for the redox activity of complex I than for membrane potential generation. Thus the hydrophilic Q analogues act also as electron sinks and interact incompletely with the physiological Q site in complex I that pumps protons and generates membrane potential.
Collapse
Affiliation(s)
- M Degli Esposti
- Centre for Molecular Biology and Medicine, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vinogradov AD, Sled VD, Burbaev DS, Grivennikova VG, Moroz IA, Ohnishi T. Energy-dependent Complex I-associated ubisemiquinones in submitochondrial particles. FEBS Lett 1995; 370:83-7. [PMID: 7649309 DOI: 10.1016/0014-5793(95)00803-h] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two distinct species of Complex I-associated ubisemiquinones (SQNf and SQNs) were detected by cryogenic EPR analysis of tightly coupled submitochondrial particles oxidizing NADH or succinate under steady-state conditions. The g = 2.00 signals from both fast-relaxing SQNf (P1/2 = 170 mW at 40 K) and slow-relaxing SQNs (P1/2 = 0.7 mW) are sensitive to uncouplers, rotenone and thermally induced deactivation of Complex I. At higher temperatures the SQNf signal is broadened and only the SQNs signal is seen (P1/2 = 7 mW at 105 K). The spin-spin interaction between SQNf and the iron-sulfur cluster N2 was detected as split peaks of the g parallel 2.5 signal with a coupling constant of 1.65 mT, revealing their mutual distance of 8-11 A. The data obtained are consistent with a model in which N2 and two interacting bound ubisemiquinone species are spatially arranged within the hydrophobic domain of Complex I, participating in the vectorial proton translocation.
Collapse
Affiliation(s)
- A D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | | | | | | | |
Collapse
|
46
|
Papa S, Lorusso M, Capitanio N. Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria. J Bioenerg Biomembr 1994; 26:609-18. [PMID: 7721722 DOI: 10.1007/bf00831535] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (delta p) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochrome c oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of <--H+/e- stoichiometries, in cytochrome c oxidase and cytochrome c reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | |
Collapse
|
47
|
Degli Esposti M, Carelli V, Ghelli A, Ratta M, Crimi M, Sangiorgi S, Montagna P, Lenaz G, Lugaresi E, Cortelli P. Functional alterations of the mitochondrially encoded ND4 subunit associated with Leber's hereditary optic neuropathy. FEBS Lett 1994; 352:375-9. [PMID: 7926004 DOI: 10.1016/0014-5793(94)00971-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disease associated with point mutations in mitochondrial DNA. The most frequent of these mutations is the G-to-A substitution at nucleotide position 11,778 which changes an evolutionarily conserved arginine with a histidine at position 340 in subunit ND4 of NADH:ubiquinone reductase (respiratory complex I). We report that this amino acid substitution alters the affinity of complex I for the ubiquinone substrate and induces resistance towards its potent inhibitor rotenone in mitochondria of LHON patients. Such changes could reflect a substantial loss in the energy conserving function of NADH:ubiquinone reductase and thus explain the pathological effect of the ND4/11,778 mutation.
Collapse
Affiliation(s)
- M Degli Esposti
- Department of Biology, Institute of Clinical Neurology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ueno H, Miyoshi H, Ebisui K, Iwamura H. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:411-7. [PMID: 7925463 DOI: 10.1111/j.1432-1033.1994.00411.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two stereoisomers of natural rotenone (5'alpha-epirotenone and 5'beta-epirotenone) were synthesized to identify the stereochemical factor of rotenone required for the inhibition and also to probe the structure of the rotenone binding site. The inhibitory action of the stereoisomers was compared with that of rotenone using NADH-ubiquinone reductases from bovine heart submitochondrial particles (SMP), potato tubers (Solanum tuberosum L.) SMP and Escherichia coli (GR19N) membranes. With respect to bovine heart SMP, it was found that the bent form of rotenone is essential for the activity. The modification of the E-ring moiety also affected both the inhibitory potency and the pattern of inhibition. These results indicated that the rotenone-binding site recognizes the whole molecular structure (or shape) of rotenone in a strict sense. Rotenone and 5'beta-epirotenone inhibited the NADH-ubiquinone reductase of bovine heart SMP in a noncompetitive manner against exogenous quinones. In contrast, the inhibition pattern of 5'alpha-epirotenone varied from noncompetitive to competitive as the concentration of quinone increased. These results suggest that rotenone binds close to, but not at a site identical to, the location for ubiquinone in the ubiquinone-catalytic reaction site, whereas the 5'alpha-epirotenone-binding site overlaps that for ubiquinone due to a structural modification of E-ring moiety. Furthermore, the complex inhibition pattern of 5'alpha-epirotenone suggests that there are two quinone-binding sites in NADH-ubiquinone reductase. In contrast, the order of the inhibitory potencies of the three inhibitors with proton-pumping NADH-ubiquinone reductase of potato SMP was the same as that observed for the bovine enzyme. This suggests that the structure of rotenone-binding sites (or ubiquinone-binding sites) of these enzymes are similar. It was further demonstrated that 5'alpha-epirotenone inhibits quinone binding to both proton-pumping and non-proton-pumping NADH-ubiquinone reductases of potato SMP in a competitive manner. With respect to the proton-pumping NADH-ubiquinone reductase of the E. coli membrane, the sensitivity of the enzyme to the inhibitor was remarkably decreased and the difference in the inhibitory potencies of the three inhibitors became ambiguous. In addition, the inhibition pattern of the three inhibitors was competitive against quinone. These results indicated that, contrary to the mammalian enzyme, only part of the rotenone molecule is recognized by the quinone-binding site of this enzyme.
Collapse
Affiliation(s)
- H Ueno
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | |
Collapse
|
49
|
Degli Esposti M, Ghelli A. The mechanism of proton and electron transport in mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1187:116-20. [PMID: 8075103 DOI: 10.1016/0005-2728(94)90095-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Singer TP, Ramsay RR. The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1187:198-202. [PMID: 8075112 DOI: 10.1016/0005-2728(94)90110-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article summarizes recent studies in the authors' and other laboratories of selective inhibitors acting at the 'rotenone' site and at the Q binding site in the NADH-Q oxidoreductase segment of the respiratory chain. A wide array of inhibitors act at the rotenone site to block electron flux from the enzyme to the Q pool. Using evidence from studies with rotenone, piericidin A, and analogs of the neurotoxic N-methyl-4-phenylpyridinium, we have proposed two binding sites for these inhibitors, both of which must be occupied for complete inhibition of NADH oxidation.
Collapse
Affiliation(s)
- T P Singer
- Department of Biochemistry and Biophysics, University of California, San Francisco
| | | |
Collapse
|