1
|
Chiou SY, Sung JM, Huang PW, Lin SD. Antioxidant, Antidiabetic, and Antihypertensive Properties of Echinacea purpurea Flower Extract and Caffeic Acid Derivatives Using In Vitro Models. J Med Food 2017; 20:171-179. [PMID: 28061036 DOI: 10.1089/jmf.2016.3790] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extraction yield, total phenols, caffeic acid derivatives (CAD), and antioxidant properties of 50% ethanolic Echinacea purpurea flower extract were determined. The in vitro inhibitory effects of 50% ethanolic extract and CAD on α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) linked with type 2 diabetes were also investigated. The extraction yield, total phenols, and total CAD of the extract were 27.04%, 195.69 mg CAE/g and 78.42 mg/g, respectively. Cichoric acid (56.03 mg/g) was the predominant CAD compound in the extract. The extract exhibited good antioxidant properties. The extract and CAD inhibited α-amylase, α-glucosidase, and ACE activities in a concentration-dependent manner. Among the tested samples, chlorogenic acid, and caffeic acid (IC50 of 1.71-1.81 mg/mL) had the highest α-amylase inhibitory activity, cichoric acid (IC50 of 0.28 mg/mL) showed higher α-glucosidase inhibitory activity. Both chlorogenic acid and caffeic acid (IC50 of 0.11-0.14 mg/mL) demonstrated higher ACE-inhibitory activity. The in vitro results suggest that E. purpurea extract and CAD have good potential for managing hyperglycemia and hypertension. Overall, the data suggest it is a choice for developing antihyperglycemia and antihypertension compounds from field-grown E. purpurea.
Collapse
Affiliation(s)
- Shiow-Ying Chiou
- Department of Food Science and Technology, Hungkuang University , Taichung, Taiwan
| | - Jih-Min Sung
- Department of Food Science and Technology, Hungkuang University , Taichung, Taiwan
| | - Po-Wei Huang
- Department of Food Science and Technology, Hungkuang University , Taichung, Taiwan
| | - Sheng-Dun Lin
- Department of Food Science and Technology, Hungkuang University , Taichung, Taiwan
| |
Collapse
|
2
|
Du Y, Wu NC, Jiang L, Zhang T, Gong D, Shu S, Wu TT, Sun R. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis. mBio 2016; 7:e01801-16. [PMID: 27803181 PMCID: PMC5090041 DOI: 10.1128/mbio.01801-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 11/28/2022] Open
Abstract
Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. IMPORTANCE To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nicholas C Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Lin Jiang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Tianhao Zhang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Sara Shu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Park JY, Lee JY, Choi SH, Ko HM, Kim IC, Lee HB, Bai S. Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer. Biotechnol Lett 2014; 36:1693-9. [PMID: 24737083 DOI: 10.1007/s10529-014-1530-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Most Saccharomyces spp. cannot degrade or ferment dextrin, which is the second most abundant carbohydrate in wort for commercial beer production. Dextrin-degrading brewer's bottom and top yeasts expressing the glucoamylase gene (GAM1) from Debaryomyces occidentalis were developed to produce low-carbohydrate (calorie) beers. GAM1 was constitutively expressed in brewer's yeasts using a rDNA-integration system that contained yeast CUP1 gene coding for copper resistance as a selective marker. The recombinants secreted active glucoamylase, displaying both α-1,4- and α-1,6-debranching activities, that degraded dextrin and isomaltose and consequently grew using them as sole carbon source. One of the recombinant strains expressing GAM1 hydrolyzed 96 % of 2 % (w/v) dextrin and 98 % of 2 % (w/v) isomaltose within 5 days of growth. Growth, substrate assimilation, and enzyme activity of these strains were characterized.
Collapse
Affiliation(s)
- Jin-Yeong Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Chiang YC, Chen CL, Jeng TL, Sung JM. In vitroinhibitory effects of cranberry bean (Phaseolus vulgarisL.) extracts on aldose reductase, α-glucosidase and α-amylase. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yi Chen Chiang
- Department of Agronomy; National Chung Hsing University; No. 250 Kuo Kuang Rd Taichung City 402 Taiwan
| | - Chung Li Chen
- Department of Agronomy; National Chung Hsing University; No. 250 Kuo Kuang Rd Taichung City 402 Taiwan
| | - Toong Long Jeng
- Agricultural Research Institute; No. 189 Zhong Zheng Rd Wufong 41362 Taichung City Taiwan
| | - Jih Min Sung
- Department of Food Science & Technology; Hungkuang University; No. 1018 Sec. 6 Taiwan Boulevard Shalu Taichung City Taiwan
| |
Collapse
|
5
|
Congenital sucrase-isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. J Pediatr Gastroenterol Nutr 2012; 55 Suppl 2:S13-20. [PMID: 23103643 DOI: 10.1097/01.mpg.0000421402.57633.4b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
6
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Latorre-García L, Adam AC, Manzanares P, Polaina J. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. J Biotechnol 2005; 118:167-76. [PMID: 15963591 DOI: 10.1016/j.jbiotec.2005.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/26/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
Glucoamylase produced by amylolytic strains of Saccharomyces cerevisiae (var. diastaticus) lacks a starch binding domain that is present in homologous glucoamylases from Aspergillus niger and other filamentous fungi. The absence of the binding domain makes the enzyme inefficient against raw starch and hence unsuitable for most biotechnological applications. We have constructed a hybrid glucoamylase-encoding gene by in-frame fusion of the S. cerevisiae STA1 gene and DNA fragment that encodes the starch binding domain of A. niger glucoamylase. The hybrid enzyme resulting from expression of the chimeric gene in S. cerevisiae has substrate binding capability and hydrolyses insoluble starch, properties not present in the original yeast enzyme.
Collapse
Affiliation(s)
- Lorena Latorre-García
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos (CSIC) 73, E46100-Burjassot (Valencia), Spain, Paterna, Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Pröpsting MJ, Kanapin H, Jacob R, Naim HY. A phenylalanine-based folding determinant in intestinal sucrase-isomaltase that functions in the context of a quality control mechanism beyond the endoplasmic reticulum. J Cell Sci 2005; 118:2775-84. [PMID: 15944403 DOI: 10.1242/jcs.02364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotype II of congenital sucrase-isomaltase deficiency in man is characterized by a retention of the brush border protein sucrase-isomaltase (SI) in the ER/cis-Golgi intermediate compartment (ERGIC) and the cis-Golgi. The transport block is due to the substitution of a glutamine by a proline at amino acid residue 1098 that generates a temperature-sensitive mutant enzyme, SIQ1098P, the transport of which is regulated by several cycles of anterograde and retrograde transport between the ER and the cis-Golgi (Propsting, M. J., Jacob, R. and Naim, H. Y. (2003). J. Biol. Chem. 278, 16310-16314). A quality control beyond the ER has been proposed that implicates a retention signal or a folding determinant elicited by the Q1098P mutation. We have used alanine-scanning mutagenesis to screen upstream and downstream regions flanking Q1098 and identified a putative motif, F1093-x-F1095-x-x-x-F1099 that is likely to be implicated in sensing the folding and subsequent trafficking of SI from the ER to the Golgi. The characteristics of this motif are three phenylalanine residues that upon substitution by alanine generate the temperature-sensitive SIQ1098P phenotype. This mutant protein undergoes transport arrest in the ERGIC and cis-Golgi compartments and acquires correct folding and functional activity at reduced temperatures as a consequence of cycles of anterograde and retrograde transport between the ER and cis-Golgi. Other amino acid residues in this motif are not significant in the context of phenotype II. We propose that the phenylalanine cluster is required for shielding a folding determinant in the extracellular domain of SI; substitution of a Q by a P at residue 1098 of sucrase disrupts this determinant and elicits retention of SIQ1098P in ERGIC and cis-Golgi in phenotype II of CSID.
Collapse
Affiliation(s)
- Marcus J Pröpsting
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Germany
| | | | | | | |
Collapse
|
9
|
Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S. Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of alpha-glucosidase from Schizosaccharomyces pombe. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2270-80. [PMID: 11298744 DOI: 10.1046/j.1432-1327.2001.02104.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNA encoding Schizosaccharomyces pombe alpha-glucosidase was cloned from a library constructed from mRNA of the fission yeast, and expressed in Saccharomyces cerevisiae. The cDNA, 4176 bp in length, included a single ORF composed of 2910 bp encoding a polypeptide of 969 amino-acid residues with M(r) 106 138. The deduced amino-acid sequence showed a high homology to those of alpha-glucosidases from molds, plants and mammals. Therefore, the enzyme was categorized into the alpha-glucosidase family II. By site-directed mutagenesis, Asp481, Glu484 and Asp647 residues were confirmed to be essential in the catalytic reaction. The carboxyl group (-COOH) of the Asp647 residue was for the first time shown to be the most likely proton donor acting as the acid catalyst in the alpha-glucosidase of family II. Studies with the chemical modifier conduritol B epoxide suggested that the carboxylate group (-COO-) of the Asp481 residue was the catalytic nucleophile, although the role of the Glu484 residue remains obscure.
Collapse
Affiliation(s)
- M Okuyama
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Yu S, Bojsen K, Svensson B, Marcussen J. alpha-1,4-glucan lyases producing 1,5-anhydro-D-fructose from starch and glycogen have sequence similarity to alpha-glucosidases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:1-15. [PMID: 10446355 DOI: 10.1016/s0167-4838(99)00152-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the past few years a novel enzyme alpha-1,4-glucan lyase (EC 4.2. 2.13), which releases 1,5-anhydrofructose from starch and glycogen, has been cloned and characterized from red algae and fungi. Accumulated evidence indicates that the lytic degradation of starch and glycogen also occurs in other organisms. The present review focuses on the biochemical and molecular aspects of eight known alpha-1,4-glucan lyases and their genes from red algae and fungi. While the amino acid sequence identity is 75-80% among the alpha-1, 4-glucan lyases from each of the taxonomic groups, the identity between the algal and fungal alpha-1,4-glucan lyases is only 25-28%. Notably database searches disclosed that the alpha-1,4-glucan lyases have a clear identity of 23-28% with alpha-glucosidases of glycoside hydrolase family 31, thus for the first time linking enzymes from the class of hydrolases with that of lyases. The alignment of lyases and alpha-glucosidases revealed seven well-conserved regions, three of which have been reported to be involved in catalysis and substrate binding in alpha-glucosidases. The shared substrate and inhibitor specificity and sequence similarity of alpha-1,4-glucan lyases with alpha-glucosidases suggest that related structural elements are involved in the two different catalytic mechanisms.
Collapse
Affiliation(s)
- S Yu
- Danisco Biotechnology, Danisco A/S, Langebrogade 1, PO Box 17, DK 1001, Copenhagen K, Denmark
| | | | | | | |
Collapse
|
11
|
Abstract
This review describes the molecular studies of Schwanniomyces occidentalis (Debaryomyces occidentalis) concerning transformation, genome, gene cloning, gene structure, gene expression and its characteristics to application. Schw. occidentalis appears to have at least five or seven chromosomes and no native plasmid from the yeast has been reported. Four transformation systems based on complement of Schw. occidentalis auxotrophic mutants were established. Vectors with the replicon of 2-micron plasmid and autonomous replication sequences (ARS) of Saccharomyces cerevisiae and Schw. occidentalis ARS replicated extrachromosomally in Schw. occidentalis transformants, without modification of the transformed vector DNA. So far, at least 21 Schw. occidentalis genes encoding 14 different proteins have been cloned. Most of the Schw. occidentalis genes have shown homologies (45 to 91%) with the corresponding genes of other organisms, especially of S. cerevisiae. However, some Schw. occidentalis genes possess other unique structures for their operators, promoters, transcription initiation sites, and terminators. Some foreign genes were expressed in Schw. occidentalis, while Schw. occidentalis genes functioned in other yeasts and bacteria, Escherichia coli, and Streptomyces lividans. Due to a strong ability of secretion and low level of glycosylation, Schw. occidentalis might be a promising host to produce heterologous proteins.
Collapse
Affiliation(s)
- T T Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | | | | |
Collapse
|
12
|
Koletzko B, Aggett PJ, Bindels JG, Bung P, Ferré P, Gil A, Lentze MJ, Roberfroid M, Strobel S. Growth, development and differentiation: a functional food science approach. Br J Nutr 1998; 80 Suppl 1:S5-45. [PMID: 9849353 DOI: 10.1079/bjn19980104] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Few other aspects of food supply and metabolism are of greater biological importance than the feeding of mothers during pregnancy and lactation, and of their infants and young children. Nutritional factors during early development not only have short-term effects on growth, body composition and body functions but also exert long-term effects on health, disease and mortality risks in adulthood, as well as development of neural functions and behaviour, a phenomenon called 'metabolic programming'. The interaction of nutrients and gene expression may form the basis of many of these programming effects and needs to be investigated in more detail. The relation between availability of food ingredients and cell and tissue differentiation and its possible uses for promoting health and development requires further exploration. The course of pregnancy, childbirth and lactation as well as human milk composition and the short- and long-term outcome of the child are influenced by the intake of foods and particularly micronutrients, e.g. polyunsaturated fatty acids, Fe, Zn and I. Folic acid supplementation from before conception through the first weeks of pregnancy can markedly reduce the occurrence of severe embryonic malformations; other potential benefits of modulating nutrient supply on maternal and child health should be further evaluated. The evaluation of dietary effects on child growth requires epidemiological and field studies as well as evaluation of specific cell and tissue growth. Novel substrates, growth factors and conditionally essential nutrients (e.g. growth factors, amino acids, polyunsaturated fatty acids) may be potentially useful as ingredients in functional foods and need to be assessed carefully. Intestinal growth, maturation, and adaptation as well as long-term function may be influenced by food ingredients such as oligosaccharides, gangliosides, high-molecular-mass glycoproteins, bile salt-activated lipase, pre- and probiotics. There are indications for some beneficial effects of functional foods on the developing immune response, for example induced by antioxidant vitamins, trace elements, fatty acids, arginine, nucleotides, and altered antigen contents in infant foods. Peak bone mass at the end of adolescence can be increased by dietary means, which is expected to be of long-term importance for the prevention of osteoporosis at older ages. Future studies should be directed to the combined effects of Ca and other constituents of growing bone, such as P, Mg and Zn, as well as vitamins D and K, and the trace elements F and B. Pregnancy and the first postnatal months are critical time periods for the growth and development of the human nervous system, processes for which adequate substrate supplies are essential. Early diet seems to have long-term effects on sensory and cognitive abilities as well as behaviour. The potential beneficial effects of a balanced supply of nutrients such as I, Fe, Zn and polyunsaturated fatty acids should be further evaluated. Possible long-term effects of early exposure to tastes and flavours on later food choice preferences may have a major impact on public health and need to be further elucidated. The use of biotechnology and recombinant techniques may offer the opportunity to include various bioactive substances in special dietary products, such as human milk proteins, peptides, growth factors, which may have beneficial physiological effects, particularly in infancy and early childhood.
Collapse
Affiliation(s)
- B Koletzko
- Kinderpoliklinik, Klinikum Innenstadt der Ludwig-Maximilians-Universität, München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ouwendijk J, Peters WJ, te Morsche RH, van de Vorstenbosch RA, Ginsel LA, Naim HY, Fransen JA. Analysis of a naturally occurring mutation in sucrase-isomaltase: glutamine 1098 is not essential for transport to the surface of COS-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:299-306. [PMID: 9630686 DOI: 10.1016/s0925-4439(98)00016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A glutamine for proline substitution at position 1098 was previously shown to result in accumulation of brush-border sucrase-isomaltase in the Golgi apparatus. The substitution is present in a highly homologous region of the protein, and results in a comparable accumulation when introduced into the same region in lysosomal alpha-glucosidase. To study the importance of the glutamine-1098, we analyzed the transport compatibility of two mutants in which glutamine-1098 is substituted by lysine or alanine. Both mutants were transported to the cell surface and processed comparable to wild type. We concluded that glutamine-1098 is not essential for transport to the cell surface.
Collapse
Affiliation(s)
- J Ouwendijk
- Department of Cell Biology and Histology, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Le Chevalier P, Van Wormhoudt A. Alpha-glucosidase from the hepatopancreas of the shrimp,Penaus vannamei (Crustacea-Decapoda). ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980415)280:6<384::aid-jez2>3.0.co;2-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Huie ML, Tsujino S, Sklower Brooks S, Engel A, Elias E, Bonthron DT, Bessley C, Shanske S, DiMauro S, Goto YI, Hirschhorn R. Glycogen storage disease type II: identification of four novel missense mutations (D645N, G648S, R672W, R672Q) and two insertions/deletions in the acid alpha-glucosidase locus of patients of differing phenotype. Biochem Biophys Res Commun 1998; 244:921-7. [PMID: 9535769 DOI: 10.1006/bbrc.1998.8255] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycogen storage disease type II (GSDII), an autosomal recessive myopathic disorder, results from deficiency of lysosomal acid alpha-glucosidase. We searched for mutations in an evolutionarily conserved region in 54 patients of differing phenotype. Four novel mutations (D645N, G448S, R672W, and R672Q) and a previously described mutation (C647W) were identified in five patients and their deleterious effect on enzyme expression demonstrated in vitro. Two novel frame-shifting insertions/deletions (delta nt766-785/insC and +insG@nt2243) were identified in two patients with exon 14 mutations. The remaining three patients were either homozygous for their mutations (D645N/D645 and C647W/C647W) or carried a previously described leaky splice site mutation (IVS1-13T-->G). For all patients "in vivo" enzyme activity was consistent with clinical phenotype. Agreement of genotype with phenotype and in vitro versus in vivo enzyme was seen in three patients (two infantile patients carrying C647W/C647W and D645N/+insG@nt2243 and an adult patient heteroallelic for G648S/IVS1-13T-->G). Relative discordance was found in a juvenile patient homozygous for the non-expressing R672Q and an adult patient heterozygous for the minimally expressing R672W and delta nt766-785/+insC. Possible explanations include differences in in vitro assays vs in vivo enzyme activity, tissue specific expression with diminished enzyme expression/stability in fibroblasts vs muscle, somatic mosaicism, and modifying genes.
Collapse
Affiliation(s)
- M L Huie
- Department of Medicine, NYU Med Center, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Arendt CW, Ostergaard HL. Identification of the CD45-associated 116-kDa and 80-kDa proteins as the alpha- and beta-subunits of alpha-glucosidase II. J Biol Chem 1997; 272:13117-25. [PMID: 9148925 DOI: 10.1074/jbc.272.20.13117] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD45 is an abundant, highly glycosylated transmembrane protein-tyrosine phosphatase expressed on hematopoietic cells. Herein we demonstrate that two proteins of 116 kDa and 80 kDa copurify with CD45 from mouse T cells. Microsequence analysis of the 116-kDa protein revealed high similarity to an incomplete human open reading frame that has been suggested to correspond to the catalytic alpha-subunit of glucosidase II. We determined the nucleotide sequence of the mouse cDNA and observed that it encodes a protein product nearly identical to its human homologue and shares an active site consensus sequence with Family 31 glucosidases. Amino acid sequencing of the 80-kDa protein, followed by molecular cloning, revealed high homology to human and bovine cDNAs postulated to encode the beta-subunit of glucosidase II. Antisera developed to the mouse beta-subunit allowed us to demonstrate that the interaction between CD45 and glucosidase II can be reconstituted in vitro in an endoglycosidase H-sensitive manner. The strong interaction between glucosidase II and CD45 may provide a paradigm for investigating novel aspects of the biology of these proteins.
Collapse
Affiliation(s)
- C W Arendt
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
17
|
Suzuki Y, Nobiki M, Matsuda M, Sawai T. Bacillus thermoamyloliquefaciens KP1071 alpha-glucosidase II is a thermostable M(r) 540,000 homohexameric alpha-glucosidase with both exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:129-36. [PMID: 9128733 DOI: 10.1111/j.1432-1033.1997.t01-1-00129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
alpha-Glucosidase II of the facultative thermophile Bacillus thermoamyloliquefaciens KP1071 (FERM-P8477; growth over 30-66 degrees C) was purified to a homogeneous state. Its M(r) was estimated as 90000 by SDS/PAGE. However, the enzyme behaved as an active Mr 540000 protein on gel filtration with each of two gels of different matrices as well as on gel electrophoresis under native conditions. The enzyme was not glycosylated. Its isoelectric point was estimated as 5.7. The N-terminal sequence of 20 residues was determined asAla1-Ile-Gln-Pro-Glu-Gln-Asp-Asp-Lys-Thr-Gln-Glu-Asp-Gly- Tyr-Ile-Asp-Ile-Gly-Asn20. The sequence did not resemble those of procaryotic and eucaryotic proteins hitherto reported including the monomeric exo-alpha-1,4-glucosidase and the monomeric oligo-1,6-glucosidase from the same microorganism. The alpha-glucosidase II had no antigenic group shared with the latter two enzymes. Analysis of substrate specificity showed that the alpha-glucosidase II has dual activity towards oligo-1,6-glucosidases and exo-alpha-1,4-glucosidases, but its preference is for non-reducing terminal alpha-1,4 glucosidic bonds in substrates. Kinetic studies proved that both activities are attributed to the same catalytic site. The enzyme was most active at 81 degrees C and pH 7.0. Its half-life at pH 6.8 was 10 min at 81 degrees C, and 5 h at 55 degrees C in 6.4 M urea, 26% ethanol or 2.5% SDS. We suggest that the alpha-glucosidase II is a thermostable, homohexameric enzyme of origin distinct from the exo-alpha-1,4-glucosidase and the oligo-1,6-glucosidase present in the same strain.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Agricultural Chemistry, Kyoto Prefectural University, Japan.
| | | | | | | |
Collapse
|
18
|
Moolenaar CE, Ouwendijk J, Wittpoth M, Wisselaar HA, Hauri HP, Ginsel LA, Naim HY, Fransen JA. A mutation in a highly conserved region in brush-border sucrase-isomaltase and lysosomal alpha-glucosidase results in Golgi retention. J Cell Sci 1997; 110 ( Pt 5):557-67. [PMID: 9092938 DOI: 10.1242/jcs.110.5.557] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A point mutation in the cDNA of human intestinal sucrase-isomaltase has been recently identified in phenotype II of congenital sucrase-isomaltase deficiency. The mutation results in a substitution of glutamine by proline at position 1098 (Q1098P) in the sucrase subunit. Expression of this mutant sucrase-isomaltase cDNA in COS-1 cells results in an accumulation of sucrase-isomaltase in the ER, intermediate compartment and the cis-Golgi cisternae similar to the accumulation in phenotype II intestinal cells. An interesting feature of the Q1098P substitution is its location in a region of the sucrase subunit that shares striking similarities with the isomaltase subunit and other functionally related enzymes, such as human lysosomal acid alpha-glucosidase and Schwanniomyces occidentalis glucoamylase. We speculated that the Q—>P substitution in these highly conserved regions may result in a comparable accumulation. Here we examined this hypothesis using lysosomal alpha-glucosidase as a reporter gene. Mutagenesis of the glutamine residue at position 244 in the homologous region of alpha-glucosidase to proline results in a protein that is neither transported to the lysosomes nor secreted extracellularly but accumulates in the ER, intermediate compartment and cis-Golgi as a mannose-rich polypeptide similar to mutant sucrase-isomaltase in phenotype II. We propose that the Q1098P and Q244P mutations (in sucrase-isomaltase and alpha-glucosidase, respectively) generate structural alterations that are recognized by a control mechanism, operating beyond the ER in the intermediate compartment or cis-Golgi.
Collapse
Affiliation(s)
- C E Moolenaar
- Protein Secretion Group, Institute of Microbiology, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hülseweh B, Dahlems UM, Dohmen J, Strasser AW, Hollenberg CP. Characterization of the active site of Schwanniomyces occidentalis glucoamylase by in vitro mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:128-33. [PMID: 9063455 DOI: 10.1111/j.1432-1033.1997.00128.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Site-directed mutagenesis was performed to define the active site of the Schwanniomyces occidentalis glucoamylase. The mutated GAM1 genes were expressed in Saccharomyces cerevisiae, and enzymatic and growth properties of the transformants were determined. Mutants were transcribed and translated similar to the wild-type glucoamylase. Therefore, all effects on enzymatic activity could be referred to single amino acid substitutions. Asp470 was shown to be essential for the enzyme activity. Replacement of Asp470 by glycine led to a complete loss of activity. We suppose that Asp470 serves as a general acid-base and stabilizes the formation of the intermediate carbenium ion. Substitution of Trp468 by alanine affected predominantly the alpha-1,6 activity and not the alpha-1,4 activity of the enzyme. The exchange impaired substrate binding as well as enzymatic catalysis. An influence of amino acid 474 on the substrate specificity could not be demonstrated. Exchanges at position 474 exhibited K(m) and Vmax values similar to wild-type glucoamylase.
Collapse
Affiliation(s)
- B Hülseweh
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
20
|
Takesue Y, Takesue S. Purification and characterization of alpha-glucosidase complex from the intestine of the frog, Rana japonica. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:152-8. [PMID: 8814221 DOI: 10.1016/0167-4838(96)00063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enzymes responsible for much of the isomaltase and maltase activities in the intestine of the frog, Rana japonica, were purified by detergent solubilization and affinity chromatography on Sephadex G-200 gel. The two activities paralleled each other during purification. The isomaltase, maltase and glucoamylase activities eluted in the same pattern on Sepharose 4B gel filtration as well as on Sephadex G-200 gel affinity chromatography. Anti-rabbit sucrase-isomaltase antibody inhibited the isomaltase activity but not the maltase or glucoamylase activity of the purified enzyme preparation, while the three activities were precipitated in parallel by the antibody. The isomaltase activity was more stable at 55 degrees C than the maltase and glucoamylase activities. On SDS-polyacrylamide gel electrophoresis under nondissociating conditions the purified enzyme preparation showed only one major band of 330 kDa, while under dissociating conditions it showed two bands of 116 and 212 kDa. These results suggest that isomaltase (apparently with no or minor maltase activity) is due to a protein domain (or protein) different from one which is responsible for maltase and glucoamylase activities. This implies that isomaltase is associated with maltase/glucoamylase to form alpha-glucosidase complex in the brush border membrane of the frog intestine.
Collapse
Affiliation(s)
- Y Takesue
- Department of Chemistry, Faculty of General Education, Gifu University, Japan.
| | | |
Collapse
|
21
|
Huie ML, Menaker M, McAlpine PJ, Hirschhorn R. Identification of an E689K substitution as the molecular basis of the human acid alpha-glucosidase type 4 allozyme (GAA*4). Ann Hum Genet 1996; 60:365-8. [PMID: 8912788 DOI: 10.1111/j.1469-1809.1996.tb00433.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified the molecular basis of the GAA*4 allozyme as a G to A transition at nt2065 which predicts the substitution of glutamic acid by lysine at codon 689 (E689K). The conclusion that this change represents the molecular basis of the GAA*4 allozyme is based on 1) presence of the G2065A in homozygosity in a known GAA*4 homozygote, 2) transient expression studies showing normal enzyme activity expressed by cDNA containing the G2065A transition and 3) isoelectric focusing studies showing a more cathodal pattern for the expressed product as compared to the common GAA*1, analogous to the patterns seen in normal and known GAA*4 lymphoid cells.
Collapse
Affiliation(s)
- M L Huie
- New York University Medical Center, Department of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
22
|
Ouwendijk J, Moolenaar CE, Peters WJ, Hollenberg CP, Ginsel LA, Fransen JA, Naim HY. Congenital sucrase-isomaltase deficiency. Identification of a glutamine to proline substitution that leads to a transport block of sucrase-isomaltase in a pre-Golgi compartment. J Clin Invest 1996; 97:633-41. [PMID: 8609217 PMCID: PMC507098 DOI: 10.1172/jci118459] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Congenital sucrase-isomaltase deficiency is an example of a disease in which mutant phenotypes generate transport-incompetent molecules. Here, we analyze at the molecular level a phenotype of congenital sucrase-isomaltase deficiency in which sucrase-isomaltase (SI) is not transported to the brush border membrane but accumulates as a mannose-rich precursor in the endoplasmic reticulum (ER), ER-Golgi intermediate compartment, and the cis-Golgi, where it is finally degraded. A 6-kb clone containing the full-length cDNA encoding SI was isolated from the patient's intestinal tissue and from normal controls. Sequencing of the cDNA revealed a single mutation, A/C at nucleotide 3298 in the coding region of the sucrase subunit of the enzyme complex. The mutation leads to a substitution of the glutamine residue by a proline at amino acid 1098 (Q1098P). The Q1098P mutation lies in a region that is highly conserved between sucrase and isomaltase from different species and several other structurally and functionally related proteins. This is the first report that characterizes a point mutation in the SI gene that is responsible for the transport incompetence of SI and for its retention between the ER and the Golgi.
Collapse
Affiliation(s)
- J Ouwendijk
- Department of Cell Biology and Histology, University of Nijimegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Tibbot BK, Skadsen RW. Molecular cloning and characterization of a gibberellin-inducible, putative alpha-glucosidase gene from barley. PLANT MOLECULAR BIOLOGY 1996; 30:229-241. [PMID: 8616248 DOI: 10.1007/bf00020110] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A putative alpha-glucosidase clone has been isolated from a cDNA library constructed from mRNA of barley aleurones treated with gibberellin A 3 (GA). The clone is 2752 bp in length and has an uninterrupted open reading frame encoding a polypeptide of 877 amino acids. A 680 amino acid region is 43% identical to human lysosomal alpha-glucosidase and other glycosyl hydrolases. In isolated aleurones, the levels of the corresponding mRNA increase strongly after the application of GA, similar to the pattern exhibited by low-pI alpha-amylase mRNA. High levels are also observed in the aleurone and scutellum after germination, while low levels are found in developing seeds. The genome contains a single form of this alpha-glucosidase gene and two additional sequences that may be related genes or pseudogenes.
Collapse
Affiliation(s)
- B K Tibbot
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Henrich B, Binishofer B, Bläsi U. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh. J Bacteriol 1995; 177:723-32. [PMID: 7836307 PMCID: PMC176649 DOI: 10.1128/jb.177.3.723-732.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lysis genes of the Lactobacillus gasseri bacteriophage phi adh were isolated by complementation of a lambda Sam mutation in Escherichia coli. Nucleotide sequencing of a 1,735-bp DNA fragment revealed two adjacent coding regions of 342 bp (hol) and 951 bp (lys) in the same reading frame which appear to belong to a common transcriptional unit. Proteins corresponding to the predicted gene products, holin (12.9 kDa) and lysin (34.7 kDa), were identified by in vitro and in vivo expression of the cloned genes. The phi adh holin is a membrane-bound protein with structural similarity to lysis proteins of other phage, known to be required for the transit of murein hydrolases through the cytoplasmic membrane. The phi adh lysin shows homology with mureinolytic enzymes encoded by the Lactobacillus bulgaricus phage mv4, the Streptococcus pneumoniae phage Cp-1, Cp-7, and Cp-9, and the Lactococcus lactis phage phi LC3. Significant homology with the N termini of known muramidases suggests that phi adh lysin acts by a similar catalytic mechanism. In E. coli, the phi adh lysin seems to be associated with the total membrane fraction, from which it can be extracted with lauryl sarcosinate. Either one of the phi adh lysis proteins provoked lysis of E. coli when expressed along with holins or lysins of phage lambda or Bacillus subtilis phage phi 29. Concomitant expression of the combined holin and lysin functions of phi adh in E. coli, however, did not result in efficient cell lysis.
Collapse
Affiliation(s)
- B Henrich
- Abteilung Mikrobiologie, Universität Kaiserslautern, Germany
| | | | | |
Collapse
|
25
|
Van Beers EH, Büller HA, Grand RJ, Einerhand AW, Dekker J. Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 1995; 30:197-262. [PMID: 7555019 DOI: 10.3109/10409239509085143] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hydrolytic enzymes of the intestinal brush border membrane are essential for the degradation of nutrients to absorbable units. Particularly, the brush border glycohydrolases are responsible for the degradation of di- and oligosaccharides into monosaccharides, and are thus crucial for the energy-intake of humans and other mammals. This review will critically discuss all that is known in the literature about intestinal brush border glycohydrolases. First, we will assess the importance of these enzymes in degradation of dietary carbohydrates. Then, we will closely examine the relevant features of the intestinal epithelium which harbors these glycohydrolases. Each of the glycohydrolytic brush border enzymes will be reviewed with respect to structure, biosynthesis, substrate specificity, hydrolytic mechanism, gene regulation and developmental expression. Finally, intestinal disorders will be discussed that affect the expression of the brush border glycohydrolases. The clinical consequences of these enzyme deficiency disorders will be discussed. Concomitantly, these disorders may provide us with important details regarding the functions and gene expression of these enzymes under specific (pathogenic) circumstances.
Collapse
|
26
|
Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. PLANT MOLECULAR BIOLOGY 1994; 25:141-57. [PMID: 8018865 DOI: 10.1007/bf00023233] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most starch hydrolases and related enzymes belong to the alpha-amylase family which contains a characteristic catalytic (beta/alpha)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the alpha-amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the alpha-amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the beta-->alpha loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of alpha-amylases, changed the distribution of alpha-, beta- and gamma-cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative alpha-1,4:alpha-1,6 dual-bond specificity of neopullulanase. Barley alpha-amylase isozyme hybrids and Bacillus alpha-amylases demonstrate the impact of a small domain B protruding from the (beta/alpha)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as alpha-amylase, starch branching and debranching enzymes, and amylomaltase.
Collapse
Affiliation(s)
- B Svensson
- Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby, Denmark
| |
Collapse
|
27
|
Huie ML, Hirschhorn R, Chen AS, Martiniuk F, Zhong N. Mutation at the catalytic site (M519V) in glycogen storage disease type II (Pompe disease). Hum Mutat 1994; 4:291-3. [PMID: 7866409 DOI: 10.1002/humu.1380040410] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M L Huie
- New York University Medical Center, Department of Medicine, New York 10016
| | | | | | | | | |
Collapse
|
28
|
Janecek S, Baláz S. Evolution of parallel beta/alpha-barrel enzyme family lightened by structural data on starch-processing enzymes. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:509-14. [PMID: 8141995 DOI: 10.1007/bf01025115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The parallel beta/alpha-barrel domain consisting of eight parallel beta-sheets surrounded by eight alpha-helices has been currently identified in crystal structures of more than 20 enzymes. This type of protein folding motif makes it possible to catalyze various biochemical reactions on a variety of substrates (i.e., it seems to be robust enough so that different enzymatic functionalities could be designed on it). In spite of many efforts aimed at elucidation of evolutionary history of the present-day beta/alpha-barrels, a challenging question remains unanswered: How has the parallel beta/alpha-barrel fold arisen? Although the complete sequence comparison of all beta/alpha-barrel amino acid sequences is not yet available, several sequence similarities have been revealed by using the highly conserved regions of alpha-amylase as structural templates. Since many starch-processing enzymes adopt the parallel beta/alpha-barrel structure these enzymes might be useful in the search for evolutionary relationships of the whole parallel eight-folded beta/alpha-barrel enzyme family.
Collapse
Affiliation(s)
- S Janecek
- Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Technical University, Bratislava
| | | |
Collapse
|