1
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
3
|
Tang X, Chen J, Wang Y, Wang X. Gene cloning, expression and polyclonal antibody preparation of Rab3A for protein interaction analysis. SPRINGERPLUS 2016; 5:1705. [PMID: 27795879 PMCID: PMC5052235 DOI: 10.1186/s40064-016-3330-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
Background Rab3A is a GTP-binding protein and plays critical roles in the regulation of synaptic vesicle exocytosis. Up to date, how Rab3A participates in such a regulatory process is not completely clear. Results In this report the Rab3A gene from Rattus norvegicus was cloned and heterologously expressed in E. coli using pCold-TF expression vector with folding capacity. Due to the presence of His-tag sequence on the N-terminal side, Rab3A fusion protein was purified to greater than 95 % purity with a single Ni-affinity purification step. After the Rab3A fusion protein was used to immunize mice, an anti-serum against Rab3A with a titer of about 6000 was generated. Western blot analysis indicated that the prepared polyclonal antibody could recognize both Rab3A fusion protein and native Rab3A protein. To remove the tag sequence, thrombin was used to cleave the Rab3A fusion protein, followed by SDS-PAGE to separate the cleavage products. Using the gel protein recovery strategy with a Micro Protein PAGE Recovery Kit, the de-tagged Rab3A protein of electrophoretic purity was prepared. Conclusions The present work not only prepared the ground for the study on Rab3A-mediated protein interactions, but also provided systematic experimental methods referable for the similar studies.
Collapse
Affiliation(s)
- Xia Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
4
|
Abstract
Rab proteins represent the largest branch of the Ras-like small GTPase superfamily and there are 66 Rab genes in the human genome. They alternate between GTP- and GDP-bound states, which are facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and function as molecular switches in regulation of intracellular membrane trafficking in all eukaryotic cells. Each Rab targets to an organelle and specify a transport step along exocytic, endocytic, and recycling pathways as well as the crosstalk between these pathways. Through interactions with multiple effectors temporally, a Rab can control membrane budding and formation of transport vesicles, vesicle movement along cytoskeleton, and membrane fusion at the target compartment. The large number of Rab proteins reflects the complexity of the intracellular transport system, which is essential for the localization and function of membrane and secretory proteins such as hormones, growth factors, and their membrane receptors. As such, Rab proteins have emerged as important regulators for signal transduction, cell growth, and differentiation. Altered Rab expression and/or activity have been implicated in diseases ranging from neurological disorders, diabetes to cancer.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC 417, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
5
|
Quellhorst GJ, Allen CM, Wessling-Resnick M. Modification of Rab5 with a photoactivatable analog of geranylgeranyl diphosphate. J Biol Chem 2001; 276:40727-33. [PMID: 11522782 DOI: 10.1074/jbc.m104398200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A photoprobe analog of geranylgeranyl diphosphate (2-diazo-3,3,3-trifluoropropionyloxy-farnesyl diphosphate or DATFP-FPP) inhibits mevalonate-dependent prenylation of in vitro translated Rab5 in rabbit reticulocyte lysate, suggesting that it competes for lipid binding to the Rab geranylgeranyl transferase. Modification of Rab5 with DATFP-FPP, demonstrated by gel mobility shift and Triton X-114 phase separation experiments, confirms that the enzyme uses the analog as a substrate. The sedimentation of DATFP-modified Rab5 as a larger mass complex on sucrose density gradients indicates that it binds to other factors in rabbit reticulocyte lysate. Most importantly, DATFP-Rab5 cross-links to these soluble factors upon exposure to UV light. Immunoprecipitation with antibodies raised against proteins known to interact with Rab5 reveals that the cross-linked complexes contain Rab escort protein and GDI-1. DATFP-Rab5 also associates with membranes in a guanosine-5'-O-(3-thiotriphosphate)-stimulated manner. However, although prenylated Rab5 can be cross-linked to two unknown membrane-associated factors by the chemical cross-linker disuccinimidyl suberate, these proteins fail to be UV cross-linked to membrane-bound DATFP-Rab5. These results strongly suggest that membrane-associated factors bind Rab5 through protein-protein interactions rather than protein-prenyl interactions. The modification of Rab5 with DATFP-FPP establishes a novel photoaffinity technique for the characterization of prenyl-binding sites.
Collapse
Affiliation(s)
- G J Quellhorst
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
6
|
Abstract
Choroideremia is an X-chromosome-linked disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium and the photoreceptor layer in the eye. The gene product defective in choroideremia, CHM, is identical to Rab escort protein 1 (REP1). CHM/REP1 is an essential component of the catalytic geranylgeranyltransferase II complex (GGTrII) that delivers newly synthesized small GTPases belonging to the RAB gene family to the catalytic complex for post-translational modification. CHM/REP family members are evolutionarily related to members of the guanine nucleotide dissociation inhibitor (GDI) family, proteins involved in the recycling of Rab proteins required for vesicular membrane trafficking through the exocytic and endocytic pathways, forming the GDI/CHM superfamily. Biochemical and structural analyses have now revealed a striking parallel in the organization and function of these two families allowing us to generate a general model for GDI/CHM superfamily function in health and disease.
Collapse
Affiliation(s)
- C Alory
- Departments of Cell and Molecular Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
7
|
Brummer MH, Richard P, Sundqvist L, Väänänen R, Keränen S. The GDI1 genes from Kluyveromyces lactis and Pichia pastoris: cloning and functional expression in Saccharomyces cerevisiae. Yeast 2001; 18:897-902. [PMID: 11447595 DOI: 10.1002/yea.736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The nucleotide sequences of 2.8 kb and 2.9 kb fragments containing the Kluyveromyces lactis and Pichia pastoris GDI1 genes, respectively, were determined. K. lactis GDI1 was found during sequencing of a genomic library clone, whereas the P. pastoris GDI1 was obtained from a genomic library by complementing a Saccharomyces cerevisiae sec19-1 mutant strain. The sequenced DNA fragments contain open reading frames of 1338 bp (K.lactis) and 1344 bp (P. pastoris), coding for polypeptides of 445 and 447 residues, respectively. Both sequences fully complement the S. cerevisiae sec19-1 mutation. They have high degrees of homology with known GDP dissociation inhibitors from yeast species and other eukaryotes.
Collapse
Affiliation(s)
- M H Brummer
- VTT Biotechnology, PO Box 1500, FIN-02044 VTT Espoo, Finland
| | | | | | | | | |
Collapse
|
8
|
Erdman RA, Maltese WA. Different Rab GTPases associate preferentially with alpha or beta GDP-dissociation inhibitors. Biochem Biophys Res Commun 2001; 282:4-9. [PMID: 11263962 DOI: 10.1006/bbrc.2001.4560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GDIs (GDP-dissociation inhibitors) bind to Rab GTPases and mediate their membrane targeting and recycling. In vitro, most Rabs can bind to either of the major isoforms of GDI, leading to the assumption that the proportion of each specific Rab/GDI complex in vivo reflects the relative abundance of the alpha versus beta forms of GDI. Here we show that when human teratocarcinoma cells (Ntera2) are induced to differentiate into postmitotic neurons (NT2N), there is a major change in the proportion of GDIalpha relative to GDIbeta. Under these conditions, certain Rab GTPases associate preferentially with either GDIalpha or GDIbeta, irrespective of the relative abundance of the GDI isoform. These findings suggest that heretofore unrecognized functional specificity may exist between the two major forms of GDI.
Collapse
Affiliation(s)
- R A Erdman
- Weis Center for Research, Penn State College of Medicine, Danville, Pennsylvania, 17822, USA
| | | |
Collapse
|
9
|
Götte M, Lazar T, Yoo JS, Scheglmann D, Gallwitz D. The full complement of yeast Ypt/Rab-GTPases and their involvement in exo- and endocytic trafficking. Subcell Biochem 2000; 34:133-73. [PMID: 10808333 DOI: 10.1007/0-306-46824-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Götte
- Department of Molecular Genetics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Elkind NB, Walch-Solimena C, Novick PJ. The role of the COOH terminus of Sec2p in the transport of post-Golgi vesicles. J Cell Biol 2000; 149:95-110. [PMID: 10747090 PMCID: PMC2175086 DOI: 10.1083/jcb.149.1.95] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Accepted: 02/23/2000] [Indexed: 11/22/2022] Open
Abstract
Sec2p is required for the polarized transport of secretory vesicles in S. cerevisiae. The Sec2p NH(2) terminus encodes an exchange factor for the Rab protein Sec4p. Sec2p associates with vesicles and in Sec2p COOH-terminal mutants Sec4p and vesicles no longer accumulate at bud tips. Thus, the Sec2p COOH terminus functions in targeting vesicles, however, the mechanism of function is unknown. We found comparable exchange activity for truncated and full-length Sec2 proteins, implying that the COOH terminus does not alter the exchange rate. Full-length Sec2-GFP, similar to Sec4p, concentrates at bud tips. A COOH-terminal 58-amino acid domain is necessary but not sufficient for localization. Sec2p localization depends on actin, Myo2p and Sec1p, Sec6p, and Sec9p function. Full-length, but not COOH-terminally truncated Sec2 proteins are enriched on membranes. Membrane association of full-length Sec2p is reduced in sec6-4 and sec9-4 backgrounds at 37 degrees C but unaffected at 25 degrees C. Taken together, these data correlate loss of localization of Sec2 proteins with reduced membrane association. In addition, Sec2p membrane attachment is substantially Sec4p independent, supporting the notion that Sec2p interacts with membranes via an unidentified Sec2p receptor, which would increase the accessibility of Sec2p exchange activity for Sec4p.
Collapse
Affiliation(s)
- N. Barry Elkind
- Department of Cell Biology, Yale University, New Haven, Connecticut, 06510
| | | | - Peter J. Novick
- Department of Cell Biology, Yale University, New Haven, Connecticut, 06510
| |
Collapse
|
11
|
Cao X, Ballew N, Barlowe C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 1998; 17:2156-65. [PMID: 9545229 PMCID: PMC1170560 DOI: 10.1093/emboj/17.8.2156] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ER-to-Golgi transport in yeast may be reproduced in vitro with washed membranes, purified proteins (COPII, Uso1p and LMA1) and energy. COPII coated vesicles that have budded from the ER are freely diffusible but then dock to Golgi membranes upon the addition of Uso1p. LMA1 and Sec18p are required for vesicle fusion after Uso1p function. Here, we report that the docking reaction is sensitive to excess levels of Sec19p (GDI), a treatment that removes the GTPase, Ypt1p. Once docked, however, vesicle fusion is no longer sensitive to GDI. In vitro binding experiments demonstrate that the amount of Uso1p associated with membranes is reduced when incubated with GDI and correlates with the level of membrane-bound Ypt1p, suggesting that this GTPase regulates Uso1p binding to membranes. To determine the influence of SNARE proteins on the vesicle docking step, thermosensitive mutations in Sed5p, Bet1p, Bos1p and Sly1p that prevent ER-to-Golgi transport in vitro at restrictive temperatures were employed. These mutations do not interfere with Uso1p-mediated docking, but block membrane fusion. We propose that an initial vesicle docking event of ER-derived vesicles, termed tethering, depends on Uso1p and Ypt1p but is independent of SNARE proteins.
Collapse
Affiliation(s)
- X Cao
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
12
|
Abstract
Synaptic vesicle exocytosis occurs in consecutive steps: docking, which specifically attaches vesicles to the active zone; priming, which makes the vesicles competent for Ca(2+)-triggered release and may involve a partial fusion reaction; and the final Ca(2+)-regulated step that completes fusion. Recent evidence suggests that the critical regulation of the last step in the reaction is mediated by two proteins with opposite actions: synaptotagmin, a Ca(2+)-binding protein that is essential for Ca(2+)-triggered release and probably serves as the Ca(2+)-sensor in fusion, and rab3, which limits the number of vesicles that can be fused as a function of Ca2+ in order to allow a temporally limited, repeatable signal.
Collapse
Affiliation(s)
- M Geppert
- Abteilung Molekulare Neurobiologie, Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
13
|
Affiliation(s)
- T C Südhof
- Department of Molecular Genetics, Southwestern Medical School, University of Texas, Dallas 75235, USA
| |
Collapse
|
14
|
Sasaki T, Shirataki H, Nakanishi H, Takai Y. Rab3A-rabphilin-3A system in neurotransmitter release. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:279-94. [PMID: 9344258 DOI: 10.1016/s1040-7952(97)80025-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T Sasaki
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | |
Collapse
|
15
|
Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:117-52. [PMID: 8652611 DOI: 10.1016/0304-4157(96)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
16
|
Pan JY, Sanford JC, Wessling-Resnick M. Effect of guanine nucleotide binding on the intrinsic tryptophan fluorescence properties of Rab5. J Biol Chem 1995; 270:24204-8. [PMID: 7592625 DOI: 10.1074/jbc.270.41.24204] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To gain further insight into structural elements involved in Rab5 function, differences in the intrinsic tryptophan fluorescence of the GDP- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-bound forms of the protein were examined. When excited at 290 nm, Rab5 displays emission maxima at 339.7 nm for the GDP-bound and 336.7 nm for the GTP gamma S-bound forms. The tryptophan fluorescence intensity is quenched by approximately 25% in the GTP gamma S-bound form relative to the GDP-bound conformation. Variant Rab5 molecules were created by site-directed mutagenesis to convert the protein's two tryptophans to phenylalanine residues. Fluorescence studies reveal that the observed changes upon GDP/GTP gamma S exchange are due to a blue shift in the emission spectra for both Trp74 (342.0 to 339.5 nm) and Trp114 (335.3 to 333.7 nm) and fluorescence quenching of Trp114. Consistent with the blue shift in the emission spectra, both tryptophans are more resistant to oxidation by N-bromosuccinimide in the GTP gamma S-bound state. These data indicate that both of Rab5's tryptophans are brought into a more sequestered, hydrophobic environment upon conformational changes promoted by guanine nucleotide exchange. Since Trp74 lies adjacent to Rab5's cognate switch II domain, local conformational changes would be predicted based on the known structure of Ras. However, Trp114 lies within a region of Rab5 potentially related to the switch III domain unique to heterotrimeric G alpha t. Thus, changes in the fluorescence properties of Trp114 upon guanine nucleotide exchange suggest that Rab proteins may have structure-function relationships similar to those described for heterotrimeric GTP-binding proteins.
Collapse
Affiliation(s)
- J Y Pan
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Pfeffer SR, Dirac-Svejstrup AB, Soldati T. Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J Biol Chem 1995; 270:17057-9. [PMID: 7615494 DOI: 10.1074/jbc.270.29.17057] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307, USA
| | | | | |
Collapse
|
18
|
TerBush DR, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 1995; 130:299-312. [PMID: 7615633 PMCID: PMC2199927 DOI: 10.1083/jcb.130.2.299] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the products of at least 14 genes are involved specifically in vesicular transport from the Golgi apparatus to the plasma membrane. Two of these genes, SEC8 and SEC15, encode components of a 1-2-million D multi-subunit complex that is found in the cytoplasm and associated with the plasma membrane. In this study, oligonucleotide-directed mutagenesis is used to alter the COOH-terminal portion of Sec8 with a 6-histidine tag, a 9E10 c-myc epitope, or both, to allow the isolation of the Sec8/15 complex from yeast lysates either by immobilized metal affinity chromatography or by immunoprecipitation. Sec6 cofractionates with Sec8/15 by immobilized metal affinity chromatography, gel filtration chromatography, and by sucrose velocity centrifugation. Sec6 and Sec15 coimmunoprecipitate from lysates with c-myc-tagged Sec8. These data indicate that the Sec8/15 complex contains Sec6 as a stable component. Additional proteins associated with Sec6/8/15 were identified by immunoprecipitations from radiolabeled lysates. The entire Sec6/8/15 complex contains at least eight polypeptides which range in molecular mass from 70 to 144 kD. Yeast strains containing temperature sensitive mutations in the SEC genes were also transformed with the SEC8-c-myc-6-histidine construct and analyzed by immunoprecipitation. The composition of the Sec6/8/15 complex is disrupted specifically in the sec3-2, sec5-24, and sec10-2 strain backgrounds. The c-myc-Sec8 protein is localized by immunofluorescence to small bud tips indicating that the Sec6/8/15 complex may function at sites of exocytosis.
Collapse
Affiliation(s)
- D R TerBush
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
19
|
Shapiro AD, Pfeffer SR. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides. J Biol Chem 1995; 270:11085-90. [PMID: 7744738 DOI: 10.1074/jbc.270.19.11085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.
Collapse
Affiliation(s)
- A D Shapiro
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307, USA
| | | |
Collapse
|
20
|
Garrett MD, Novick PJ. Expression, purification, and assays of Gdi1p from recombinant Escherichia coli. Methods Enzymol 1995; 257:232-40. [PMID: 8583926 DOI: 10.1016/s0076-6879(95)57028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M D Garrett
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- T Sasaki
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | |
Collapse
|
22
|
Sedlacek Z, Konecki DS, Korn B, Klauck SM, Poustka A. Evolutionary conservation and genomic organization of XAP-4, an Xq28 located gene coding for a human rab GDP-dissociation inhibitor (GDI). Mamm Genome 1994; 5:633-9. [PMID: 7849400 DOI: 10.1007/bf00411459] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After the development of efficient methods for the construction of transcription maps of defined genomic regions, the rate-limiting step in the analysis of the coding potentials of these regions is the elucidation of function of the novel genes and the examination of their possible involvement in hereditary diseases localized to the region. This can be greatly facilitated by the detection of sequence homology to a gene of known function. XAP-4 is one of the genes identified in the G6PD region of the human Xq28 by direct cDNA selection. The rapid assembly of this gene and the determination of its function was possible because of its sequence homology with the bovine smg p25A/rab3A GDP dissociation inhibitor (GDI). Sequence comparison with other GDIs in the databases has revealed that XAP-4 belongs to one of at least two distinct classes of mammalian rab GDIs. The rab GDIs, which play an important role in the regulation of cellular transport, are highly evolutionarily conserved, as are several other genes identified in the neighborhood of XAP-4. This genomic region is very gene dense, and all the cDNA clones from the approximately 2.5-kb-long transcript of XAP-4 map to a single 7.5-kb genomic EcoRI fragment. The genomic organization of XAP-4 has been examined to determine the distribution of the exonic sequences within this short segment of genomic DNA. It was found that, similar to several other genes from the region, XAP-4 is split into exons of average size, which are interrupted by very short introns.
Collapse
Affiliation(s)
- Z Sedlacek
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Peter F, Nuoffer C, Pind SN, Balch WE. Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack. J Biophys Biochem Cytol 1994; 126:1393-406. [PMID: 8089173 PMCID: PMC2290957 DOI: 10.1083/jcb.126.6.1393] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway.
Collapse
Affiliation(s)
- F Peter
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
24
|
Miyazaki A, Sasaki T, Araki K, Ueno N, Imazumi K, Nagano F, Takahashi K, Takai Y. Comparison of kinetic properties between MSS4 and Rab3A GRF GDP/GTP exchange proteins. FEBS Lett 1994; 350:333-6. [PMID: 8070588 DOI: 10.1016/0014-5793(94)00804-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kinetic properties of MSS4 are studied in comparison with those of Rab3A GRF. MSS4 stimulates the dissociation of [3H]GDP from the lipid-modified and lipid-unmodified forms of Rab3A to the same extent, although Rab3A GRF is more effective on the lipid-modified form than on the lipid-unmodified form. Both MSS4 and Rab3A GRF are inactive on other Rab/Sec/Ypt family members including at least Rab2, Rab5, and Rab11. Rab GDI inhibits the MSS4 and Rab3A GRF effects on the lipid-modified form of Rab3A, but the doses of Rab GDI necessary for this inhibitory effect on Rab3A GRF are lower than those on MSS4. Moreover, Rab GDI slightly inhibits the Rab3A GRF effect on the lipid-unmodified form of Rab3A, but does not affect the MSS4 effect on the lipid-unmodified form of Rab3A. These results suggest that MSS4 and Rab3A GRF are different GDP/GTP exchange proteins for Rab3A.
Collapse
Affiliation(s)
- A Miyazaki
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Rab GTPases are thought to be likely to catalyze the accurate association of pairs of targeting molecules located on the surfaces of transport vesicles with their corresponding membrane acceptors. Advances during the past year have solidified our understanding of the mechanisms by which Rab proteins are recruited onto nascent transport vesicles and retrieved from their fusion targets. Functional analyses of Rab proteins in living cells have led to the surprising observation that vesicles do not seem to form if the appropriate Rab protein, in its GTP-bound conformation, is not present.
Collapse
Affiliation(s)
- S R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307
| |
Collapse
|
26
|
Dirac-Svejstrup A, Soldati T, Shapiro A, Pfeffer S. Rab-GDI presents functional Rab9 to the intracellular transport machinery and contributes selectivity to Rab9 membrane recruitment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40696-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Garrett MD, Zahner JE, Cheney CM, Novick PJ. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J 1994; 13:1718-28. [PMID: 8157010 PMCID: PMC395005 DOI: 10.1002/j.1460-2075.1994.tb06436.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
GTP binding proteins of the Sec4/Ypt/rab family regulate distinct vesicular traffic events in eukaryotic cells. We have cloned GDI1, an essential homolog of bovine rab GDI (GDP dissociation inhibitor) from the yeast Saccharomyces cerevisiae. Analogous to the bovine protein, purified Gdi1p slows the dissociation of GDP from Sec4p and releases the GDP-bound form from yeast membranes. Depletion of Gdi1p in vivo leads to loss of the soluble pool of Sec4p and inhibition of protein transport at multiple stages of the secretory pathway. Complementation analysis indicates that GDI1 is allelic to sec19-1. These results establish that Gdi1p plays an essential function in membrane traffic and are consistent with a role for Gdi1p in the recycling of proteins of the Sec4/Ypt/rab family from their target membranes back to their vesicular pools.
Collapse
Affiliation(s)
- M D Garrett
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- P Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|