1
|
Role of protein S-nitrosylation in regulating beef tenderness. Food Chem 2020; 306:125616. [DOI: 10.1016/j.foodchem.2019.125616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022]
|
2
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Qaid E, Zakaria R, Sulaiman SF, Yusof NM, Shafin N, Othman Z, Ahmad AH, Aziz CA. Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit - Lessons from rat studies. Hum Exp Toxicol 2017; 36:1315-1325. [PMID: 28111974 DOI: 10.1177/0960327116689714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impairment of memory is one of the most frequently reported symptoms during sudden hypoxia exposure in human. Cortical atrophy has been linked to the impaired memory function and is suggested to occur with chronic high-altitude exposure. However, the precise molecular mechanism(s) of hypoxia-induced memory impairment remains an enigma. In this work, we review hypoxia-induced learning and memory deficit in human and rat studies. Based on data from rat studies using different protocols of continuous hypoxia, we try to elicit potential mechanisms of hypobaric hypoxia-induced memory deficit.
Collapse
Affiliation(s)
- Eya Qaid
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - R Zakaria
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - S F Sulaiman
- 2 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Na Mohd Yusof
- 3 Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - N Shafin
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Z Othman
- 4 Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - A H Ahmad
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Cb Abd Aziz
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Association between single nucleotide polymorphism in ovine Calpain gene and growth performance in three Egyptian sheep breeds. J Genet Eng Biotechnol 2016; 14:233-240. [PMID: 30647620 PMCID: PMC6299862 DOI: 10.1016/j.jgeb.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 11/12/2022]
Abstract
The aim of the present study was to assess the association of single nucleotide polymorphisms (SNPs) of Calpain (CAPN) gene with birth weight (BW), final weight (FW) and average daily gain (ADG) in three Egyptian sheep breeds: Barki, Rahmani and Ossimi. Blood samples were collected from 108 animals representing the three breeds. DNA was isolated using salting out procedure and then the quality and quantity of DNA extracted were measured. A 190 bp of CAPN was amplified by PCR using specific primers. The allele and genotype frequencies for all the identified SNPs were calculated. The PCR products corresponding to each genotype were sequenced to identify SNPs associated with the traits in question. Two SNPs (C→T) were detected in the nucleotides 44 and 154. For each SNP, the two mentioned alleles were named C and T, respectively. The sequenced CAPN segments were subjected to nucleotide blast at NCBI, which revealed 99% identity with that reported for sheep in Genbank. The TT was the least common genotype, whereas frequencies of CT and CC genotypes were fluctuated in the three sheep breeds under study. Animal carrier TT genotype had higher BW, FW and ADG than those with CT genotype, while the lowest values were associated with CC genotype. For the three traits under study, Rahmani had the highest estimates followed by Ossimi and Barki. Males exhibited heavier BW and FW as well as higher ADG compared with females. The results generated provide preliminary indication of the functional diversity present in Barki, Rahmani and Ossimi sheep and the possibility of using this polymorphism in Egyptian sheep genetic improvement.
Collapse
|
5
|
Zare H, Moosavi-Movahedi AA, Salami M, Sheibani N, Khajeh K, Habibi-Rezaei M. Autolysis control and structural changes of purified ficin from Iranian fig latex with synthetic inhibitors. Int J Biol Macromol 2016; 84:464-71. [PMID: 26718871 PMCID: PMC5223272 DOI: 10.1016/j.ijbiomac.2015.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
The fig's ficin is a cysteine endoproteolytic enzyme, which plays fundamental roles in many plant physiological processes, and has many applications in different industries such as pharmaceutical and food. In this work, we report the inhibition and activation of autolysis and structural changes associated with reaction of ficin with iodoacetamide and tetrathionate using high-performance liquid chromatography (HPLC), ultra filtration membrane, and dynamic light scattering (DLS) methods. The ficin structural changes were also determined using UV-absorption, circular dichroism (CD), fluorescence spectroscopy, and differential scanning calorimetry (DSC) techniques. These techniques demonstrated that iodoacetamide completely inhibited ficin autolysis, which was irreversible. However, tetrathionate partially and reversibility inhibited its autolysis. The ficin structural changes with two synthetic inhibitors were associated with secondary structural changes related to decreased alpha-helix and increased beta sheet and random coil conformations, contributing to its aggregation.
Collapse
Affiliation(s)
- H Zare
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; Estahban Fig Research Station, Fars Agricultural and Natural Resources Research and Training Center, AREEO, Shiraz, Iran
| | - A A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics (CEBiotherm), University of Tehran, Tehran, Iran.
| | - M Salami
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - N Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - K Khajeh
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
6
|
Effect of cortisol on calpains in the C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 2014; 172:3153-62. [PMID: 24497045 DOI: 10.1007/s12010-014-0753-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
The present study was carried out to understand the effect of cortisol on calpain system in the C2C12 and 3T3-L1 adipocyte cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4 μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates. Ten microgram per milliliter of cortisol was added to the medium. Following treatment for 3 days, the cells in the lower well were harvested for analysis. Calpains such as μ-calpain, m-calpain, and calpastatin were selected for the analysis. RT-PCR results indicated the significant increase in the mRNA expression of μ-calpain, m-calpain, and calpastatin. In addition, the confocal microscopical investigation indicated the cortisol treatment increases calpain expression in the C2C12 and 3T3-L1 cells. Taking all these together, cortisol treatment with co-culture system shows most reliable status of calpains expression in the cells, which is quite distinct from one-dimensional monocultured cells.
Collapse
|
7
|
Higuchi M, Iwata N, Matsuba Y, Takano J, Suemoto T, Maeda J, Ji B, Ono M, Staufenbiel M, Suhara T, Saido TC. Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. FASEB J 2011; 26:1204-17. [PMID: 22173972 DOI: 10.1096/fj.11-187740] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanism by which amyloid-β peptide (Aβ) accumulation causes neurodegeneration in Alzheimer's disease (AD) remains unresolved. Given that Aβ perturbs calcium homeostasis in neurons, we investigated the possible involvement of calpain, a calcium-activated neutral protease. We first demonstrated close postsynaptic association of calpain activation with Aβ plaque formation in brains from both patients with AD and transgenic (Tg) mice overexpressing amyloid precursor protein (APP). Using a viral vector-based tracer, we then showed that axonal termini were dynamically misdirected to calpain activation-positive Aβ plaques. Consistently, cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of controls. Genetic deficiency of calpastatin (CS), a calpain-specific inhibitor protein, augmented Aβ amyloidosis, tau phosphorylation, microgliosis, and somatodendritic dystrophy, and increased mortality in APP-Tg mice. In contrast, brain-specific CS overexpression had the opposite effect. These findings implicate that calpain activation plays a pivotal role in the Aβ-triggered pathological cascade, highlighting a target for pharmacological intervention in the treatment of AD.
Collapse
Affiliation(s)
- Makoto Higuchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vital role of the calpain-calpastatin system for placental-integrity-dependent embryonic survival. Mol Cell Biol 2011; 31:4097-106. [PMID: 21791606 DOI: 10.1128/mcb.05189-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.
Collapse
|
9
|
Sivanandam A, Murthy S, Chinnakannu K, Bai VU, Kim SH, Barrack ER, Menon M, Reddy GPV. Calmodulin protects androgen receptor from calpain-mediated breakdown in prostate cancer cells. J Cell Physiol 2011; 226:1889-96. [PMID: 21506119 DOI: 10.1002/jcp.22516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival.
Collapse
Affiliation(s)
- Arun Sivanandam
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chou JS, Impens F, Gevaert K, Davies PL. m-Calpain activation in vitro does not require autolysis or subunit dissociation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:864-72. [PMID: 21549862 DOI: 10.1016/j.bbapap.2011.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/25/2011] [Accepted: 04/12/2011] [Indexed: 11/17/2022]
Abstract
Calpains are Ca(2+)-dependent, intracellular cysteine proteases involved in many physiological functions. How calpains are activated in the cell is unknown because the average intracellular concentration of Ca(2+) is orders of magnitude lower than that needed for half-maximal activation of the enzyme in vitro. Two of the proposed mechanisms by which calpains can overcome this Ca(2+) concentration differential are autoproteolysis (autolysis) and subunit dissociation, both of which could release constraints on the core by breaking the link between the anchor helix and the small subunit to allow the active site to form. By measuring the rate of autolysis at different sites in calpain, we show that while the anchor helix is one of the first targets to be cut, this occurs in the same time-frame as several potentially inactivating cleavages in Domain III. Thus autolytic activation would overlap with inactivation. We also show that the small subunit does not dissociate from the large subunit, but is proteolyzed to a 40-45k heterodimer of Domains IV and VI. It is likely that this autolysis-generated heterodimer has previously been misidentified as the small subunit homodimer produced by subunit dissociation. We propose a model for m-calpain activation that does not involve either autolysis or subunit dissociation.
Collapse
Affiliation(s)
- Jordan S Chou
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | |
Collapse
|
11
|
Imai S, Shimazawa M, Nakanishi T, Tsuruma K, Hara H. Calpain inhibitor protects cells against light-induced retinal degeneration. J Pharmacol Exp Ther 2010; 335:645-52. [PMID: 20823194 DOI: 10.1124/jpet.110.171298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calpains are activated by excessive light exposure and related to retinal degeneration. We investigated the protective effects of ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), a calpain inhibitor, against light-induced retinal degeneration in mice. SNJ-1945 was orally administrated at doses of 100 and 200 mg/kg at 30 min before and just after light exposure. Light-induced calpain activation was evaluated by using proteolysis of α-spectrin and p35 (a neuron-specific activator for cyclin-dependent kinase 5). The effects of SNJ-1945 against light-induced retinal damage were examined by the thickness of the outer nuclear layer (ONL). Photoreceptor apoptosis was assessed by counting terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in ONL. Retinal functions were measured in terms of a- and b-wave amplitudes by using an electroretinogram. As the mechanism of SNJ-1945, caspase-3/7 measurement was carried out. SNJ-1945 inhibited the proteolysis of α-spectrin and p35 by light exposure and presented a decrease in the numbers of TUNEL-positive cells and ONL atrophy. Furthermore, SNJ-1945 presented a decrease in a- and b-wave amplitude and caspase-3/7 activation induced by light exposure. These findings suggest that the activation of calpain plays a pivotal role in photoreceptor degeneration by light exposure, and SNJ-1945 may be a candidate for effectively treating diseases related to photoreceptor degeneration.
Collapse
Affiliation(s)
- Shunsuke Imai
- Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
12
|
Barhwal K, Hota SK, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Isradipine antagonizes hypobaric hypoxia induced CA1 damage and memory impairment: Complementary roles of L-type calcium channel and NMDA receptors. Neurobiol Dis 2009; 34:230-44. [PMID: 19385055 DOI: 10.1016/j.nbd.2009.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hypobaric hypoxia leads to cognitive dysfunctions due to increase in intracellular calcium through ion channels. The purpose of this study was to examine the temporal contribution of L-type calcium channels and N-methyl-D-aspartate receptors (NMDARs) in mediating neuronal death in male Sprague Dawley rats exposed to hypobaric hypoxia simulating an altitude of 25,000 ft for different durations. Decreasing exogenous calcium loads by blocking voltage-gated calcium influx with isradipine (2.5 mg kg(-1)), and its efficacy in providing neuroprotection and preventing memory impairment following hypoxic exposure was also investigated. Effect of isradipine on calcium-dependent enzymes mediating oxidative stress and apoptotic cell death was also studied. Blocking of L-type calcium channels with isradipine reduced hypoxia-induced activation of calcium dependent xanthine oxidases, monoamine oxidases, cytosolic phospholipase A(2) and cycloxygenases (COX-2) along with concomitant decrease in free radical generation and cytochrome c release. Increased expression of calpain and caspase 3 was also observed following exposure to hypobaric hypoxia along with augmented neurodegeneration and memory impairment which was adequately prevented by isradipine administration. Administration of isradipine during hypoxic exposure protected the hippocampal neurons following 3 and 7 days of exposure to hypobaric hypoxia along with improvement in spatial memory.
Collapse
Affiliation(s)
- Kalpana Barhwal
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
13
|
Ma H, Nakajima E, Shih M, Azuma M, Shearer TR. Expression of calpain small subunit 2 in mammalian tissues. Curr Eye Res 2009; 29:337-47. [PMID: 15590481 DOI: 10.1080/02713680490516242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of the current experiments was to more closely define the distribution and the function of calpain small subunit 2 (css2). Css2 is a newly discovered regulatory protein for the calcium activated proteases, mu- and m-calpains. METHODS Tissues from rat, monkey, and man of various ages were used to determine expression patterns of css2 by relative quantitative RT-PCR using 18S rRNA as an endogenous standard. Recombinant css2 and the 80 kDa catalytic subunit of m-calpain (80 kDa/css2) were co-expressed in Escherichia coli. Casein zymography was used to measure the enzymatic activity of 80 kDa/css2 proteins. Lens alpha-crystallin and beta B1-crystallin were used as substrates to determine proteolysis by 80 kDa/css2. Computer-based homology modeling was used to predict interactions between the traditional small subunit (css1) or css2 with the 80 kDa catalytic subunit. RESULTS Css2 appears to be a functional equivalent of css1 in vitro in that the calcium-dependent proteolytic activity of 80 kDa/css2 was similar to recombinant m-calpain (80 kDa/css1). In rat and human lens, css2 transcripts increased with age, whereas css1 transcripts decreased with age. Human beta B1-crystallin and rat alpha A-crystallin were cleaved similarly by 80 kDa/css2 and 80 kDa/css1. Interestingly, alpha A-insert crystallin was not hydrolyzed when css2 was substituted for css1 in the calpain dimer, suggesting that css2 may perform different functions from css1 in terms of proteolysis of lens crystallins during maturational growth of the lens. Css2 may also assist in the proper folding of the 80 kDa subunit and regulate protease activity in the absence of calcium. CONCLUSIONS The wide distribution of css2 transcripts in rat and monkey suggested that css2 is a second, widely distributed (rather than tissue-specific) calpain small subunit, in addition to the long-recognized css1. Further studies at the protein level will indicate if css2 has unique functions apart from css1.
Collapse
Affiliation(s)
- H Ma
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
14
|
Russo I, Oksman A, Goldberg DE. Fatty acid acylation regulates trafficking of the unusual Plasmodium falciparum calpain to the nucleolus. Mol Microbiol 2009; 72:229-45. [PMID: 19239622 PMCID: PMC2746569 DOI: 10.1111/j.1365-2958.2009.06639.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Plasmodium falciparum genome encodes a single calpain. By generating P. falciparum clones expressing C-terminally tagged calpain, we localized this protein to the nucleolus. Pf_calpain possesses an unusual and long N-terminal domain in which we identified three subregions that are highly conserved among Plasmodium species. Two have putative targeting signals: a myristoylation motif and a nuclear localization sequence. We assessed their functionality. Our data show that the nuclear localization sequence is an active nuclear import motif that contains an embedded signal conferring nucleolar localization on various chimeras. The N-terminus is myristoylated at Gly2 and palmitoylated at Cys3 and Cys22. Palmitoylation status has an important role in dictating P. falciparum calpain localization. The targeting signals function in mammalian cells as well as in the parasite. P. falciparum calpain is a unique nucleolar protein with an interesting mechanism of targeting.
Collapse
Affiliation(s)
- Ilaria Russo
- Howard Hughes Medical Institute, Washington University School of Medicine, Department of Molecular Microbiology, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
15
|
Senger RS, Karim MN. Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation. Biotechnol Bioeng 2007; 98:378-90. [PMID: 17385745 DOI: 10.1002/bit.21428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L(-1) glucose and 1.18 g L(-1) of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation.
Collapse
Affiliation(s)
- Ryan S Senger
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | |
Collapse
|
16
|
Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC. Calpain Mediates Excitotoxic DNA Fragmentation via Mitochondrial Pathways in Adult Brains. J Biol Chem 2005; 280:16175-84. [PMID: 15691848 DOI: 10.1074/jbc.m414552200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Calpain has been implicated in excitotoxic neurode-generation, but its mechanism of action particularly in adult brains remains unclear. We generated mutant mice lacking or overexpressing calpastatin, the only solely calpain-specific inhibitor ever identified or synthesized. Modulation of calpastatin expression caused no defect in the mice under normal conditions, indicating that calpastatin functions as a negative regulator of calpain only under pathological conditions. Kainate-evoked excitotoxicity in hippocampus resulted in proteolytic activation of a proapoptotic Bcl-2 subfamily member (Bid), nuclear translocation of mitochondria-derived DNA fragmentation factors (apoptosis-inducing factor and endonuclease G), DNA fragmentation, and nuclear condensation in pyramidal neurons. These apoptotic responses were significantly augmented by calpastatin deficiency. Consistently calpastatin overexpression suppressed them. No evidence of caspase-3 activation was detected. Our results demonstrated that calpain mediates excitotoxic signals through mobilization of proapoptotic factors in a caspase-independent manner. These mutant mice will serve as useful tools for investigating calpain involvement in various diseases.
Collapse
Affiliation(s)
- Jiro Takano
- Laboratories for Proteolytic Neuroscience and Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Inoue A, Yamazaki M, Ishidoh K, Ogawa H. Epidermal growth factor activates m-calpain, resulting in apoptosis of HaCaT keratinocytes. J Dermatol Sci 2004; 36:60-2. [PMID: 15488707 DOI: 10.1016/j.jdermsci.2004.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Indexed: 11/16/2022]
|
18
|
Schaub FJ, Liles WC, Ferri N, Sayson K, Seifert RA, Bowen-Pope DF. Fas and Fas-associated death domain protein regulate monocyte chemoattractant protein-1 expression by human smooth muscle cells through caspase- and calpain-dependent release of interleukin-1alpha. Circ Res 2003; 93:515-22. [PMID: 12946945 DOI: 10.1161/01.res.0000093205.42313.7c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously reported that treatment of human vascular smooth muscle cells (SMCs) with proapoptotic stimuli, including Fas ligand plus cycloheximide (FasL/Chx), or overexpression of Fas-associated death domain protein (FADD) result in increased expression of monocyte chemoattractant protein-1 (MCP-1) and other proinflammatory genes. In this study, we demonstrate that Fas/FADD-induced MCP-1 upregulation is driven by an autocrine/paracrine signaling loop in which interleukin (IL)-1alpha synthesis and release are activated through caspase- and calpain-dependent processes. Untreated SMCs contain very little IL-1alpha protein or transcript. Both were increased greatly in response to Fas/FADD activation, primarily through an autocrine/paracrine pathway in which secreted IL-1alpha stimulated additional IL-1alpha synthesis and release. Caspase 8 (Csp8) activity increased in response to FasL/Chx treatment, and Csp8 inhibitors markedly reduced IL-1alpha release and MCP-1 upregulation. In contrast, Csp8 activity was not significantly increased in response to FADD overexpression and caspase inhibitors did not effect FADD-induced MCP-1 upregulation. Both FasL/Chx treatment and FADD overexpression increased the activity of calpains. Calpain inhibitors reduced IL-1alpha release and MCP-1 upregulation in both FADD-overexpressing SMCs and FasL/Chx-treated SMCs without blocking Csp8 activity. This indicates that calpains are not required for activation of caspases and that caspase activation is not sufficient for IL-1alpha release and MCP-1 upregulation. These data suggest that calpains play a dominant role in Fas/FADD-induced IL-1alpha release and MCP-1 upregulation and that caspase activation may function to amplify the effects of calpain activation.
Collapse
Affiliation(s)
- Friedemann J Schaub
- Department of Pathology, University of Washington, Box 357470, Seattle, Wash 98195-7470, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yokota M, Saido TC, Kamitani H, Tabuchi S, Satokata I, Watanabe T. Calpain induces proteolysis of neuronal cytoskeleton in ischemic gerbil forebrain. Brain Res 2003; 984:122-32. [PMID: 12932846 DOI: 10.1016/s0006-8993(03)03121-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the relationship between the activity of calcium-dependent protease (calpain) and the ischemic neuronal damage. We also investigated the mechanism of ischemic resistance in astrocytes. In gerbil, a 10-min forebrain ischemia was induced by occlusion of both common carotid arteries. The calpain-induced proteolysis of cytoskeleton (fodrin) was examined by immunohistochemistry. Immunolocalization of micro and m-calpain was also examined. Intact fodrin was observed both in neurons and astrocytes, but proteolyzed fodrin was not observed in normal brain. Fifteen minutes after ischemia, proteolysis of fodrin took place in putamen, parietal cortex and hippocampal CA1. The proteolysis extended to thalamus 4 h after ischemia after which the immunoreactivity faded down in all areas except hippocampus. On day 7, the proteolysis was still observed only in hippocampus. Neurons with the proteolysis of soma resulted in neuronal death. Throughout the experiment, the proteolysis was not observed in astrocytes. micro -Calpain was observed only in neurons but m-calpain was observed both in neurons and astrocytes. The ischemia induced only micro -calpain activation, which resulted in fodrin proteolysis of neurons with differential spatial distribution and temporal course. The proteolysis was developed rapidly and was completed within 24 h in all vulnerable regions except hippocampal CA1. The proteolysis preceded the neuronal death. The mechanism of the proteolysis seemed to be involved by Ca(2+) influx via glutamate receptor and rapid neuronal death seemed reasonable. The reason why neuronal death in CA1 evolved slowly was not clarified. In astrocytes, fodrin was not proteolyzed by m-calpain. The low Ca(2+)-sensitivity of m-calpain may be the reason of ischemic resistance in astrocytes.
Collapse
Affiliation(s)
- Masayuki Yokota
- Department of Neurosurgery, School of Medicine, Tottori University, Tottori, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
Collapse
Affiliation(s)
- Darrell E Goll
- Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
21
|
Deliliers GL, Servida F, Fracchiolla NS, Ricci C, Borsotti C, Colombo G, Soligo D. Effect of inositol hexaphosphate (IP(6)) on human normal and leukaemic haematopoietic cells. Br J Haematol 2002; 117:577-87. [PMID: 12028025 DOI: 10.1046/j.1365-2141.2002.03453.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol hexaphosphate (IP(6)), a naturally polyphosphorylated carbohydrate, has been reported to have significant in vivo and in vitro anticancer activity against numerous tumours, such as colon, prostate, breast, liver and rhabdomyosarcomas. To confirm this activity in haematological malignancies and to characterize some of the mechanisms of IP(6) action, we analysed its effects on human leukaemic cell lines and fresh chronic myelogenous leukaemia (CML) progenitor cells using a combined cellular and molecular approach. IP(6) had a dose-dependent cytotoxic effect on all of the evaluated cell lines, with accumulation in the G2M phase in two out of five cell lines tested. At the molecular level, cDNA microarray analysis after IP(6) exposure showed an extensive downmodulation of genes involved in transcription and cell cycle regulation and a coherent upregulation of cell cycle inhibitors. Furthermore, IP(6) treatment of fresh leukaemic samples of bone marrow CD34+ CML progenitor cells significantly inhibited granulocyte-macrophage colony-forming unit (CFU-GM) formation (P = 0.0062) in comparison to normal bone marrow specimens, which were not affected. No differentiating effect on HL60 cells was observed. Taken together, our results confirm the antiproliferative activity of IP(6) and suggest that it may have a specific antitumour effect also in chronic myeloid leukaemias, via active gene modulation.
Collapse
Affiliation(s)
- Giorgio Lambertenghi Deliliers
- Bone Marrow Transplantation Unit, I.R.C.C.S., Ospedale Maggiore and University of Milan, Via F. Sforza 35, 20122 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Schád E, Farkas A, Jékely G, Tompa P, Friedrich P. A novel human small subunit of calpains. Biochem J 2002; 362:383-8. [PMID: 11853546 PMCID: PMC1222398 DOI: 10.1042/0264-6021:3620383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Typical calpains are heterodimeric cysteine proteases which have distinct large catalytic subunits (80 kDa) but share a common small regulatory subunit (30 kDa; css1). Here we report the identification, cloning and characterization of a novel human small subunit (css2) encoded by an intronless gene, capns2, located on chromosome 16. This new protein displays 73% sequence identity within the Ca(2+)-binding region but lacks two oligo-Gly stretches characteristic of the N-terminal domain of the conventional small subunit. css2 appears to be the functional equivalent of the conventional small subunit in vitro in that it helps the large subunit fold into the active conformation of similar Ca(2+) sensitivity when the two proteins are co-expressed in Escherichia coli. The purification of various chimaeric rat 80 kDa-human css2 constructs, on the other hand, shows that css2 binds the large subunit much more weakly than css1. Further, it does not undergo the autolytic conversion typical of the classical small subunit. The expression of this protein in vivo, as assessed from its appearance in expressed sequence tag clones, is rather limited, making it an example of a tissue-specific, rather than ubiquitous, small subunit.
Collapse
Affiliation(s)
- Eva Schád
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, P.O. Box 7, Hungary
| | | | | | | | | |
Collapse
|
23
|
Gu X, Whipple-VanPatter G, O'Dwyer M, Zeece M. Capillary electrophoretic analysis of mu- and m-calpain using fluorescently labeled casein substrates. Electrophoresis 2001; 22:2336-42. [PMID: 11504070 DOI: 10.1002/1522-2683(20017)22:11<2336::aid-elps2336>3.0.co;2-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calpains are unique calcium-dependent thiol proteases that have been proposed to participate in a number of physiological processes including signal transduction and protein turnover in skeletal muscle. Calpains exist in two major forms. Interestingly, the two forms of protease show no significant difference in their action on various substrates. The only demonstrable difference in their activity involves the concentration of calcium required for activation. Both mu- and m-calpains typically achieve half maximal activation at 50 microM and 0.7 mM calcium, respectively. The focus of this study was to examine the action of both forms of calpain on casein substrates and assess whether any differences could be observed in the resulting peptide finger print using capillary electrophoresis. Purified mu- and m-calpain were incubated for various lengths of time with Oregon Green labeled alphas- and beta-casein. The reactions were stopped with sodium dodecyl sulfate (SDS) and products separated by capillary electrophoresis in micellar electrokinetic capillary chromatography (MEKC) mode using laser-induced fluorescence (LIF) detection. Comparison of the electropherograms showed no difference in the peptide profile for either enzyme. However, it was found that beta-casein was hydrolyzed more extensively than alphas-casein, by both enzymes. Capillary electrophoresis was found to be a very sensitive technique for detection of calpain activity. Using beta-casein as substrate, the CE approach was able to detect 2-3 ng of calpain activity. The results also suggest that capillary electrophoresis is a useful tool for proteolytic investigations of protein structure.
Collapse
Affiliation(s)
- X Gu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68583-0919, USA
| | | | | | | |
Collapse
|
24
|
Cottin P, Thompson VF, Sathe SK, Szpacenko A, Goll DE. Autolysis of mu- and m-calpain from bovine skeletal muscle. Biol Chem 2001; 382:767-76. [PMID: 11517929 DOI: 10.1515/bc.2001.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of autolysis of mu- and m-calpain from bovine skeletal muscle was measured by using densitometry of SDS polyacrylamide gels and determining the rate of disappearance of the 28 and 80 kDa subunits of the native, unautolyzed calpain molecules. Rate of autolysis of both the 28 and 80 kDa subunits of mu-calpain decreased when mu-calpain concentration decreased and when beta-casein, a good substrate for the calpains, was present. Hence, autolysis of both mu-calpain subunits is an intermolecular process at pH 7.5, 0 or 25.0 degrees C, and low ionic strength. The 78 kDa subunit formed in the first step of autolysis of m-calpain was not resolved from the 80 kDa subunit of the native, unautolyzed m-calpain by our densitometer, so autolysis of m-calpain was measured by determining rate of disappearance of the 28 kDa subunit and the 78/80 kDa complex. At Ca2+ concentrations of 1000 microM or higher, neither the m-calpain concentration nor the presence of beta-casein affected the rate of autolysis of m-calpain. Hence, m-calpain autolysis is intramolecular at Ca2+ concentrations of 1000 microM or higher and pH 7.5. At Ca2+ concentrations of 350 microM or less, the rate of m-calpain autolysis decreased with decreasing m-calpain concentration and in the presence of beta-casein. Thus, m-calpain autolysis is an intermolecular process at Ca2+ concentrations of 350 microM or less. If calpain autolysis is an intermolecular process, autolysis of a membrane-bound calpain would require selective participation of a second, cytosolic calpain, making it an inefficient process. By incubating the calpains at Ca2+ concentrations below those required for half-maximal activity, it is possible to show that unautolyzed calpains degrade a beta-casein substrate, proving that unautolyzed calpains are active proteases.
Collapse
Affiliation(s)
- P Cottin
- Muscle Biology Group, University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|
25
|
Koh TJ, Tidball JG. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am J Physiol Cell Physiol 2000; 279:C806-12. [PMID: 10942731 DOI: 10.1152/ajpcell.2000.279.3.c806] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.
Collapse
Affiliation(s)
- T J Koh
- Department of Physiological Science, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
26
|
Ertbjerg P, Lawson MA, Purslow PP. Epinephrine upregulates calpain activity in cultured C2C12 muscle cells. Biochimie 2000; 82:197-201. [PMID: 10863002 DOI: 10.1016/s0300-9084(00)00207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
C2C12 cells were grown to confluence at 37 degrees C under a continuous 5% CO(2) stream and myotube formation was stimulated. The cultures were then incubated with or without 2 microg/mL epinephrine for 18 h prior to harvesting and calpain extraction. Epinephrine treatment resulted in a three-fold increase in extractable mu-calpain activity (P < 0.05), a three-fold increase in extractable m-calpain activity (P < 0.05), a 36% increase in calpastatin activity (P < 0.001), and a 16% decrease (P < 0.05) in the total protein content in the C2C12 cell homogenate. These results suggest that calpains may play a role in protein metabolism and that the hormone epinephrine may be directly involved in the regulation of their cellular expression.
Collapse
Affiliation(s)
- P Ertbjerg
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | |
Collapse
|
27
|
Abstract
Although protein degradation is enhanced in muscle-wasting conditions and limits the rate of muscle growth in domestic animals, the proteolytic system responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The goals of this study were to evaluate the roles of the calpains (calcium-activated cysteine proteases) in mediating muscle protein degradation and the extent to which these proteases participate in protein turnover in muscle. Two strategies to regulate intracellular calpain activities were developed: overexpression of dominant-negative m-calpain and overexpression of calpastatin inhibitory domain. To express these constructs, L8 myoblast cell lines were transfected with LacSwitch plasmids, which allowed for isopropyl beta-D-thiogalactoside-dependent expression of the gene of interest. Inhibition of calpain stabilized fodrin, a well characterized calpain substrate. Under conditions of accelerated degradation (serum withdrawal), inhibition of m-calpain reduced protein degradation by 30%, whereas calpastatin inhibitory domain expression reduced degradation by 63%. Inhibition of calpain also stabilized nebulin. These observations indicate that calpains play key roles in the disassembly of sarcomeric proteins. Inhibition of calpain activity may have therapeutic value in treatment of muscle-wasting conditions and may enhance muscle growth in domestic animals.
Collapse
Affiliation(s)
- J Huang
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA
| | | |
Collapse
|
28
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
29
|
Hitomi K, Uchiyama Y, Ohkubo I, Kunimatsu M, Sasaki M, Maki M. Purification and characterization of the active-site-mutated recombinant human mu-calpain expressed in baculovirus-infected insect cells. Biochem Biophys Res Commun 1998; 246:681-5. [PMID: 9618272 DOI: 10.1006/bbrc.1998.8686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant human mu-calpain whose active site Cys-115 was substituted with Ser was expressed in insect cells using baculovirus system. The mutant mu-calpain, purified using an affinity-column of calpastatin oligopeptides, had no proteolytic activities of autolysis and caseinolysis. The large subunit of the mutant mu-calpain was processed from the 80 kDa form to the 76 kDa form by the wild type calpain, supporting the intermolecular cleavage mechanism of procalpain during activation. Fluorescence polarization analysis revealed that the mutant mu-calpain retained high affinity toward fluorescein-labeled calpastatin domain 1. Fragmentation of the full-length calpastatin by the wild type calpain was enhanced by pre-incubating the inhibitor with the mutant calpain. The recombinant mutant calpain was suggested to retain the integrity of the high ordered structure of the wild type calpain.
Collapse
Affiliation(s)
- K Hitomi
- Laboratory of Molecular and Cellular Regulation, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
In this study, the effects of oxidative stress on calpain-mediated proteolysis and calpain I autolysis in situ were examined. Calpain activity was stimulated in SH-SY5Y human neuroblastoma cells with the calcium ionophore, ionomycin. Calpain-mediated proteolysis of the membrane-permeable fluorescent substrate N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4-methylcouma rin, as well as the endogenous protein substrates microtubule-associated protein 2, tau and spectrin, was measured. Oxidative stress, induced by addition of either doxorubicin or 2-mercaptopyridine N-oxide, resulted in a significant decrease in the extent of ionophore-stimulated calpain activity of both the fluorescent compound and the endogenous substrates compared with control, normoxic conditions. Addition of glutathione ethyl ester, as well as other antioxidants, resulted in the retention/recovery of calpain activity, indicating that oxidation-induced calpain inactivation was preventable/reversible. The rate of autolytic conversion of the large subunit of calpain I from 80 to 78 to 76 kDa was decreased during oxidative stress; however, the extent of calpain autolysis was not altered. These data indicate that oxidative stress may reversibly inactivate calpain I in vivo.
Collapse
Affiliation(s)
- R P Guttmann
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
31
|
Inomata M, Nomura K, Takehana M, Saido TC, Kawashima S, Shumiya S. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR). BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1362:11-23. [PMID: 9434095 DOI: 10.1016/s0925-4439(97)00050-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Shumiya cataract rat (SCR) is a hereditary cataract model in which lens opacity appears spontaneously in the nuclear and perinuclear portions at 11-12 weeks of age. It was found that the proteolysis of some crystallins and cytoskeletal proteins is significantly enhanced in cataractous SCR lenses. The calcium concentrations in cataractous lenses rise markedly with age as compared with control lenses and the autolytic product of calpain is also detected in cataractous lenses. In order to provide direct evidence for the involvement of calpain in the proteolytic modification of lens proteins, we developed antibodies exclusively specific to the proteolytic products of some lens proteins produced by the action of calpain and analyzed their degradation during cataractogenesis in SCR by Western blotting and immunohistochemical staining. The results demonstrate that calpain participates in the proteolytic modification of lens proteins, at least alpha-crystallin (A and B chain), betaB1-crystallin, and alpha-fodrin. The proteolytic products formed by the action of calpain on these proteins are detected in cataractous lenses of SCR as young as 8 weeks of age and accumulate with age. It was also found that betaB1-crystallin, originally a soluble protein, is converted to an insoluble form by limited calpain proteolysis. The chaperon-like activity of alpha-crystallin from control lens is markedly reduced by calpain proteolysis in vitro, and alpha-crystallin in opaque lens that has already undergone proteolysis by calpain shows significantly reduced chaperon-like activity. Immunohistochemical studies reveal that the area where the calpain-mediated alpha-crystallin proteolysis is in progress coincides well with the area developing and destined to develop the opacification. These results strongly suggest that calpain may contribute to lens opacification during cataract formation in SCR.
Collapse
Affiliation(s)
- M Inomata
- Department of Enzyme Biochemistry, Tokyo Metropolitan Institute of Gerontology, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Resumption of meiosis at fertilization is mediated by increased levels of calcium which activate several calcium-dependent enzymes. Calpain, a neutral calcium-activated thiol protease, is present in the cytoplasm of many cells. Its activation is associated with limited autolysis and relocalization in the cell. Calpain is thought to participate in the regulation of mitosis and resumption of meiosis in Xenopus oocytes. In this study we followed the activation and localization of calpain during maturation and fertilization in rat eggs using a polyclonal antibody raised against chicken muscle calpain. A band of 80 kDa was detected in GV oocytes and its level increased in unfertilized MII eggs. At the early stages of fertilization, we observed a transient decrease in the level of calpain which was regained at the pronuclear stage. Adding Ca2+ to lysate of MII eggs resulted in an additional band, representing the degraded fragment of the activated protein. In eggs activated by ionomycin, calpain level decreased, followed by an increase in a dynamic similar to that observed in fertilized eggs. Egg activation also led to changes in calpain localization. A homogenous distribution was observed in GV and in MII eggs, while in activated eggs it was localized predominantly overlying the metaphase plate. In the current study we demonstrate the presence of calpain in the rat egg. During maturation, calpain level increases; however, during egg activation, in response to [Ca2+]i changes, calpain undergoes autolysis, translocaton, and fluctuation in its level. We therefore suggest a correlation between calpain activation and fertilization.
Collapse
Affiliation(s)
- M Malcov
- Department of Embryology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
33
|
Elce JS, Davies PL, Hegadorn C, Maurice DH, Arthur JS. The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochem J 1997; 326 ( Pt 1):31-8. [PMID: 9337847 PMCID: PMC1218633 DOI: 10.1042/bj3260031] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to study subunit interactions in calpain, the effects of small subunit truncations on m-calpain activity and heterodimer formation have been measured. It has been shown previously that active calpain is formed by co-expression of the large subunit (80 kDa) of rat m-calpain with a delta 86 form (21 kDa) of the small subunit. cDNA for the full-length 270 amino acid (28.5 kDa) rat calpain small subunit has now been cloned, both with and without an N-terminal histidine tag (NHis10). The full-length small subunit constructs yielded active calpains on co-expression with the large subunit, and the small subunit was autolysed to 20 kDa on exposure of these calpains to Ca2+. A series of deletion mutants of the small subunit, NHis10-delta 86, -delta 99, -delta 107, and -delta 116, gave active heterodimeric calpains with unchanged specific activities, although in decreasing yield, and with a progressive decrease in stability. NHis10-delta 125 formed a heterodimer which was inactive and unstable. Removal of 25 C-terminal residues from delta 86, leaving residues 87-245, abolished both activity and heterodimer formation. The results show that: (a) generation of active m-calpain in Escherichia coli requires heterodimer formation; (b) small subunit residues between 94 and 116 contribute to the stability of the active heterodimer but do not directly affect the catalytic mechanism; (c) residues in the region 245-270 are essential for subunit binding. Finally, it was shown that an inactive mutant Cys103-->Ser-80k/delta 86 calpain, used in order to preclude autolysis, did not dissociate in the presence of Ca2+, a result which does not support the proposal that Ca(2+)-induced dissociation is involved in calpain activation.
Collapse
Affiliation(s)
- J S Elce
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res 1997; 763:145-58. [PMID: 9296555 DOI: 10.1016/s0006-8993(97)00384-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calpain proteases influence intracellular signaling pathways and regulate cytoskeleton organization, but the neuronal and pathological roles of individual isoenzymes are unknown. In Alzheimer's disease (AD), the activated form of calpain I is significantly increased while the fate of calpain II has been more difficult to address. Here, calpain II antibodies raised to different sequences within a cryptic region around the active site, which becomes exposed during protease activation, were shown immunohistochemically to bind extensively to neurofibrillary tangles (NFT), neuritic plaques, and neuropil threads in brains from individuals with AD. Additional 'pre-tangle' granular structures in neurons were also intensely immunostained, indicating calpain II mobilization at very early stages of NFT formation. Total levels of calpain II remained constant in the prefrontal cortex of AD patients but were increased 8-fold in purified NFT relative to levels of calpain I. These results implicate activated calpain II in neurofibrillary degeneration, provide further evidence for the involvement of the calpain system in AD pathogenesis, and imply that neuronal calcium homeostasis is altered in AD.
Collapse
Affiliation(s)
- F Grynspan
- Laboratories of Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178, USA
| | | | | | | | | |
Collapse
|
35
|
Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, Jin L, Yuen PW, Takano E, Hatanaka M, DeLucas LJ, Narayana SV. Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. NATURE STRUCTURAL BIOLOGY 1997; 4:539-47. [PMID: 9228946 DOI: 10.1038/nsb0797-539] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The three dimensional structure of calcium-bound domain VI of porcine calpain has been determined to 1.9 A resolution. The crystal structure reveals five EF-hands, one more than previously suggested. There are two EF-hand pairs, one pair (EF1-EF2) displays an 'open' conformation and the other (EF3-EF4) a 'closed' conformation. Unusually, a calcium atom is found at the C-terminal end of the calcium binding loop of EF4. With two additional residues in the calcium binding loop, the fifth EF-hand (EF5) is in a 'closed' conformation. EF5 pairs up with the corresponding fifth EF-hand of a non-crystallographically related molecule. Considering the EF5's role in a homodimer formation of domain VI, we suggest a model for the assembly of heterodimeric calpain. The crystal structure of a Ca2+ bound domain VI-inhibitor (PD150606) complex has been refined to 2.1 A resolution. A possible mode for calpain inhibition is discussed.
Collapse
Affiliation(s)
- G D Lin
- Center for Macromolecular Crystallography, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grynspan F, Griffin W, Mohan P, Shea T, Nixon R. Calpains and calpastatin in SH-SY5Y neuroblastoma cells during retinoic acid-induced differentiation and neurite outgrowth: Comparison with the human brain calpain system. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970501)48:3<181::aid-jnr1>3.0.co;2-b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Elce JS, Hegadorn C, Arthur JS. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain. J Biol Chem 1997; 272:11268-75. [PMID: 9111030 DOI: 10.1074/jbc.272.17.11268] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The roles of N-terminal autolysis of the large (80 kDa) and small (28 kDa) subunits in activation of rat m-calpain, in lowering its Ca2+ requirement, and in reducing its stability have been investigated with heterodimeric recombinant calpains containing modified subunits. Both autolysis and [Ca2+]0.5 were influenced by the ionic strength of the buffers, which accounts for the wide variations in previous reports. Autolysis of the small subunit (from 28 to 20 kDa) was complete within 1 min but did not alter either the Ca2+ requirement ([Ca2+]0.5) or the stability of the enzyme. Autolysis of the NHis10-80k large subunit at Ala9-Lys10 is visible on gels, was complete within 1 min, and caused a drop in [Ca2+]0.5 from 364 to 187 microM. The lower value of [Ca2+]0.5 is therefore a property of the Delta9-80k large subunit. Autolysis at Ala9-Lys10 of the unmodified 80-kDa large subunit is not detectable on gels but was assayed by means of the fall in [Ca2+]0.5. This autolysis was complete in 3.5 min and was inhibited by high [NaCl]. The autolysis product of these calpains, which is essentially identical to that of natural m-calpain, was unstable in buffers of high ionic strength. Calpain in which the large subunit autolysis site had been mutated was fully active but did not undergo a drop in [Ca2+]0.5, showing that m-calpain is active prior to autolysis. The main physiological importance of autolysis of calpain is probably to generate an active but unstable enzyme, thus limiting the in vivo duration of calpain activity.
Collapse
Affiliation(s)
- J S Elce
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
38
|
|
39
|
Guttmann RP, Elce JS, Bell PD, Isbell JC, Johnson GV. Oxidation inhibits substrate proteolysis by calpain I but not autolysis. J Biol Chem 1997; 272:2005-12. [PMID: 8999893 DOI: 10.1074/jbc.272.3.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, the effects of oxidation on calpain I autolysis and calpain-mediated proteolysis were examined. Calpain I was incubated with increasing concentrations of free calcium in the presence or absence of oxidant, and autolytic conversion of both the 80- and 30-kDa subunits was measured by immunoblotting utilizing monoclonal antibodies which recognize both autolyzed and non-autolyzed forms of each subunit, respectively. Autolytic conversion of the 80-kDa subunit of calpain I was not detected until free calcium concentration was greater than 40 microM, whereas autolysis of the 30-kDa subunit did not occur until the free calcium concentration was greater than 100 microM. In addition, autolytic conversion of either the 80- or 30-kDa subunit was not inhibited by the presence of oxidant. Calpain I activity was measured using the fluorescent peptide N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4- methylcoumarin or the microtubule-associated protein tau as substrate. Calpain I was found to have proteolytic activity at free calcium concentrations below that required for autolysis. Calpain I activity was strongly inhibited by oxidant at all calcium concentrations studied, suggesting that proteolytic activity of both the non-autolyzed 80-kDa and autolyzed 76-kDa forms was susceptible to oxidation. Interestingly, whereas oxidation did not inhibit autolytic conversion, the presence of high substrate concentrations did result in a significant reduction of autolysis without altering calpain proteolytic activity. Calpain I activity that had been inhibited by the presence of oxidant was recovered immediately by addition of the reducing agent dithiothreitol.
Collapse
Affiliation(s)
- R P Guttmann
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | | | | | |
Collapse
|
40
|
Tompa P, Baki A, Schád E, Friedrich P. The calpain cascade. Mu-calpain activates m-calpain. J Biol Chem 1996; 271:33161-4. [PMID: 8969168 DOI: 10.1074/jbc.271.52.33161] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
m-Calpain, which usually requires near-millimolar Ca2+ for activation, undergoes autolysis at 25 microM Ca2+ in the presence of mu-calpain. m-Calpain in itself exhibits no sign of autolysis around this Ca2+ concentration. Half-maximal rate of the reaction occurs at 30 microM Ca2+, showing that it is mu-calpain that catalyzes the limited proteolysis of m-calpain in an intermolecular reaction ("heterolysis"). This heterolytic step is accompanied by the activation of m-calpain: mu- and m-calpain preincubated together at 25 microM Ca2+ show significantly higher activity than the sum of activities of mu- and m-calpains preincubated separately. m-Calpain is sensitized to Ca2+ by mu-calpain-mediated activation: the half-maximal value of 160 microM for activation is lowered to 64 microM, which is similar to the shift found in m-calpain autoactivation. We suggest that these in vitro observations are relevant in vivo and the calpain cascade may play an important role in coordinating the functioning of calpains in living cells.
Collapse
Affiliation(s)
- P Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, Hungary.
| | | | | | | |
Collapse
|
41
|
Abstract
Calpain, an intracellular calcium-dependent protease, is activated at cell membranes and cleaves cytoskeletal and submembranous proteins. Calpain is inferred to be a calcium-dependent regulator for cytoskeletal reorganization. Calpastatin, an endogenous calpain inhibitor, inhibits not only the proteolytic activity of calpain but also the binding of calpain to membranes. Calpain activity is strictly regulated by calcium and calpastatin. Calpain has two distinct sites for interaction with calpastatin, one the active site and the other an EF-hand domain. It is believed that calpain interacts with substrates through the same two sites. We discuss the regulation of membrane binding and the activity of calpain through these two sites.
Collapse
Affiliation(s)
- H Kawasaki
- Department of Molecular Biology, Tokyo Metropolitan Institute of Medical Science, Bunkyo-Ku, Japan
| | | |
Collapse
|
42
|
Blanchard H, Li Y, Cygler M, Kay CM, Simon J, Arthur C, Davies PL, Elce JS. Ca(2+)-binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies. Protein Sci 1996; 5:535-7. [PMID: 8868491 PMCID: PMC2143359 DOI: 10.1002/pro.5560050317] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 21-kDa calcium-binding domain (VI) of the small subunit of rat calpain II has been expressed in Escherichia coli, purified, and crystallized. Two orthorhombic crystal forms have been obtained: space group P2(1)2(1)2(1) with a = 50.3, b = 56.5, c = 141.3 A; and space group C222(1) with a = 69.4, b = 73.9, c = 157.4 A. Diffraction data have been collected to 2.4 A. Sedimentation equilibrium, dynamic light scattering, and gel-permeation chromatography indicate that domain VI exists as a homodimer in solution. In accordance with the protein's behavior in solution, each crystal form contains two molecules per asymmetric unit. Screening for heavy-atom derivatives is in progress. To decrease the sensitivity to mercurials and to aid in the search for useful derivatives, Cys-to-Ser mutants have been prepared, expressed, and crystallized.
Collapse
Affiliation(s)
- H Blanchard
- Biotechnology Research Institute, NRC, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Eto A, Akita Y, Saido TC, Suzuki K, Kawashima S. The role of the calpain-calpastatin system in thyrotropin-releasing hormone-induced selective down-regulation of a protein kinase C isozyme, nPKC epsilon, in rat pituitary GH4C1 cells. J Biol Chem 1995; 270:25115-20. [PMID: 7559644 DOI: 10.1074/jbc.270.42.25115] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have examined the mechanism for the selective down-regulation of protein kinase C epsilon (nPKC epsilon) in rat pituitary GH4C1 cells responding to thyrotropin-releasing hormone (TRH) stimulation. Among various low molecular weight protease inhibitors examined, only a cysteine protease inhibitor (calpain inhibitor I, N-acetyl-Leu-Leu-norleucinal) blocked the down-regulation of nPKC epsilon. Furthermore, the introduction of a synthetic calpastatin peptide, an exclusively specific inhibitor of calpain, into the cells also reduced the down-regulation, suggesting the involvement of calpain among all the intracellular cysteine proteases in this process. In accordance, we observed TRH-induced translocation of m-calpain from the cytosol to the membrane and the concomitant up-regulation of calpastatin isoforms; presumably, the former represents activation of the protease initiating the kinase degradation, while the latter constitutes a negative feedback system protecting the cells from activated calpain. These results suggest that in GH4C1 cells, TRH mobilizes both protease (m-calpain) and inhibitor (calpastatin) as a strictly regulating system for the nPKC epsilon pathway mediating TRH signals.
Collapse
Affiliation(s)
- A Eto
- Department of Molecular Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | |
Collapse
|
44
|
Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S. Calpain: novel family members, activation, and physiologic function. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1995; 376:523-9. [PMID: 8561910 DOI: 10.1515/bchm3.1995.376.9.523] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The current status of calpain research is summarized on the basis of the most recent results. The main points are as follows. (i) Calpain constitutes a large family. (ii) Ca2+ ions cause the dissociation of calpain into subunits and the resulting free 80 kDa subunit is the active form of the enzyme. This dissociation corresponds to the activation of calpain. (iii) Some powerful clues have been obtained that will be helpful for analyzing the physiological function.
Collapse
Affiliation(s)
- K Suzuki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Arthur JS, Gauthier S, Elce JS. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett 1995; 368:397-400. [PMID: 7635186 DOI: 10.1016/0014-5793(95)00691-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Site-directed mutagenesis was used to alter putative active site residues in the large subunit of calpain, and the activity of the mutants was measured following coexpression in E. coli of both calpain subunits and purification of the resultant dimers. Mutants Cys105Ser, His262Ala and Asn286Ala had no activity. Together with sequence comparisons among cysteine proteinases, the results suggest that these residues constitute the catalytic triad in calpain. Mutants Asn286Asp and Trp288Tyr had low activity, consistent with interaction of these residues with His262.
Collapse
Affiliation(s)
- J S Arthur
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada
| | | | | |
Collapse
|
46
|
Spencer MJ, Croall DE, Tidball JG. Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 1995; 270:10909-14. [PMID: 7738032 DOI: 10.1074/jbc.270.18.10909] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Death of dystrophin-deficient muscle purportedly results from increases in [Ca]in that cause the activation of calpains. We have tested whether calpains play a role in this process by assaying for changes in calpain concentration and activation in peak necrotic mdx mice (4 weeks of age) and in completely regenerated mdx mice (14 weeks of age). Biochemical fractionation and immunoblotting with epitope-specific antisera allowed measurement of the concentrations of m- and mu-calpains and the extent of autoproteolytic modification. Our findings show that total calpain concentration is elevated in both 4-week and 14-week mdx mice. This increase in concentration was shown to result primarily from a significant increase in m-calpain concentration at 4 weeks. Northern analysis demonstrated that neither m- nor mu-calpain mRNA concentrations differed between mdx and controls suggesting that the increased calpain concentration results from post-translational regulation. Immunoblotting with antibodies directed against amino-terminal peptides revealed an increase in autoproteolysis of mu-calpain, indicative of increased activation. The extent of autoproteolysis of mu-calpain returns to control levels during regeneration. This is not a consequence of increased calpastatin mRNA or protein. The findings reported here support a role for calpains in both the degenerative and regenerative aspects of mdx dystrophy.
Collapse
Affiliation(s)
- M J Spencer
- Department of Physiological Science, University of California, Los Angeles, USA
| | | | | |
Collapse
|