1
|
Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinformatics 2020; 21:255. [PMID: 32921311 PMCID: PMC7488683 DOI: 10.1186/s12859-020-03598-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The regulatory feedback loops that present in structural and functional organization of molecular-genetic systems and the phenomenon of the regulatory signal delay, a time period between the moment of signal reception and its implementation, provide natural conditions for complicated dynamic regimes in these systems. The delay phenomenon at the intracellular level is a consequence of the matrix principle of data transmission, implemented through the rather complex processes of transcription and translation.However, the rules of the influence of system structure on system dynamics are not clearly understood. Knowledge of these rules is particularly important for construction of synthetic gene networks with predetermined properties. RESULTS We study dynamical properties of models of simplest circular gene networks regulated by negative feedback mechanisms. We have shown existence and stability of oscillating trajectories (cycles) in these models. Two algorithms of construction and localization of these cycles have been proposed. For one of these models, we have solved an inverse problem of parameters identification. CONCLUSIONS The modeling results demonstrate that non-stationary dynamics in the models of circular gene networks with negative feedback loops is achieved by a high degree of non-linearity of the mechanism of the autorepressor influence on its own expression, by the presence of regulatory signal delay, the value of which must exceed a certain critical value, and transcription/translation should be initiated from a sufficiently strong promoter/Shine-Dalgarno site. We believe that the identified patterns are key elements of the oscillating construction design.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
| | - Vladimir P Golubyatnikov
- Laboratory of Inverse Problems of Mathematical Physics, Sobolev Institute of Mathematics Siberian Branch RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
3
|
Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J Proteomics 2015; 125:68-75. [DOI: 10.1016/j.jprot.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
|
4
|
Tsiganova MO, Gelfand MS, Ravcheev DA. Regulation of bacterial respiration: Comparison of microarray and comparative genomics data. Mol Biol 2007. [DOI: 10.1134/s0026893307030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ravcheev DA, Gerasimova AV, Mironov AA, Gelfand MS. Comparative genomic analysis of regulation of anaerobic respiration in ten genomes from three families of gamma-proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics 2007; 8:54. [PMID: 17313674 PMCID: PMC1805755 DOI: 10.1186/1471-2164-8-54] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 02/21/2007] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gamma-proteobacteria, such as Escherichia coli, can use a variety of respiratory substrates employing numerous aerobic and anaerobic respiratory systems controlled by multiple transcription regulators. Thus, in E. coli, global control of respiration is mediated by four transcription factors, Fnr, ArcA, NarL and NarP. However, in other Gamma-proteobacteria the composition of global respiration regulators may be different. RESULTS In this study we applied a comparative genomic approach to the analysis of three global regulatory systems, Fnr, ArcA and NarP. These systems were studied in available genomes containing these three regulators, but lacking NarL. So, we considered several representatives of Pasteurellaceae, Vibrionaceae and Yersinia spp. As a result, we identified new regulon members, functioning in respiration, central metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway, citrate cicle, metabolism of pyruvate and lactate), metabolism of carbohydrates and fatty acids, transcriptional regulation and transport, in particular: the ATP synthase operon atpIBEFHAGCD, Na+-exporting NADH dehydrogenase operon nqrABCDEF, the D-amino acids dehydrogenase operon dadAX. Using an extension of the comparative technique, we demonstrated taxon-specific changes in regulatory interactions and predicted taxon-specific regulatory cascades. CONCLUSION A comparative genomic technique was applied to the analysis of global regulation of respiration in ten gamma-proteobacterial genomes. Three structurally different but functionally related regulatory systems were described. A correlation between the regulon size and the position of a transcription factor in regulatory cascades was observed: regulators with larger regulons tend to occupy top positions in the cascades. On the other hand, there is no obvious link to differences in the species' lifestyles and metabolic capabilities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
| | | | - Andrey A Mironov
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| | - Mikhail S Gelfand
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| |
Collapse
|
6
|
Peercy BE, Cox SJ, Shalel-Levanon S, San KY, Bennett G. A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. J Theor Biol 2006; 242:547-63. [PMID: 16750836 DOI: 10.1016/j.jtbi.2006.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 03/20/2006] [Accepted: 04/05/2006] [Indexed: 11/16/2022]
Abstract
Recent experimental work has identified the principal components arrayed by Escherichia coli in its sensing of, and response to, varying levels of oxygen. This apparatus may be leveraged/modified by the metabolic engineer to identify nonuniform oxygen and glucose regimens that deliver better yields than their uniform counterparts. Toward this end we build and analyse a mathematical model that captures the role played by oxygen in the regulation of cytochrome production in E. coli.
Collapse
Affiliation(s)
- Bradford E Peercy
- Computational and Applied Mathematics, Rice University, 6100 Main Str., MS 134, Houstin, TX 77005, USA.
| | | | | | | | | |
Collapse
|
7
|
Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 2005; 281:4802-15. [PMID: 16377617 DOI: 10.1074/jbc.m512312200] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor FNR, the regulator of fumarate and nitrate reduction, regulates major changes as Escherichia coli adapts from aerobic to anaerobic growth. In an anaerobic glycerol/trimethylamine N-oxide/fumarate medium, the fnr mutant grew as well as the parental strain, E. coli K12 MG1655, enabling us to reveal the response to oxygen, nitrate, and nitrite in the absence of glucose repression or artifacts because of variations in growth rate. Hence, many of the discrepancies between previous microarray studies of the E. coli FNR regulon were resolved. The current microarray data confirmed 31 of the previously characterized FNR-regulated operons. Forty four operons not previously known to be included in the FNR regulon were activated by FNR, and a further 28 operons appeared to be repressed. For each of these operons, a match to the consensus FNR-binding site sequence was identified. The FNR regulon therefore minimally includes at least 103, and possibly as many as 115, operons. Comparison of transcripts in the parental strain and a narXL deletion mutant revealed that transcription of 51 operons is activated, directly or indirectly, by NarL, and a further 41 operons are repressed. The narP gene was also deleted from the narXL mutant to reveal the extent of regulation by phosphorylated NarP. Fourteen promoters were more active in the narP+ strain than in the mutant, and a further 37 were strongly repressed. This is the first report that NarP might function as a global repressor as well as a transcription activator. The data also revealed possible new defense mechanisms against reactive nitrogen species.
Collapse
|
8
|
Sawers RG. Expression of fnr is constrained by an upstream IS5 insertion in certain Escherichia coli K-12 strains. J Bacteriol 2005; 187:2609-17. [PMID: 15805507 PMCID: PMC1070394 DOI: 10.1128/jb.187.8.2609-2617.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FNR is a global transcriptional regulator that controls anaerobic gene expression in Escherichia coli. Through the use of a number of approaches it was shown that fnr gene expression is reduced approximately three- to fourfold in E. coli strain MC4100 compared with the results seen with strain MG1655. This reduction in fnr expression is due to the insertion of IS5 (is5F) in the regulatory region of the gene at position -41 relative to the transcription initiation site. Transcription of the fnr gene nevertheless occurs from its own promoter in strain MC4100, but transcript levels are reduced approximately fourfold compared with those seen with strain MG1655. Remarkably, in strains bearing is5F the presence of Hfq prevents IS5-dependent transcriptional silencing of fnr expression. Thus, an hfq mutant of MC4100 is devoid of FNR protein and has the phenotype of an fnr mutant. In strain MG1655, or a derivative of MC4100 lacking is5F, mutation of hfq had no effect on fnr transcript levels. This finding indicates that IS5 mediates the effect of Hfq on fnr expression in MC4100. Western blot analysis revealed that cellular levels of FNR were reduced threefold in strain MC4100 compared with strain MG1655 results. A selection of FNR-dependent genes fused to lacZ were analyzed for the effects of reduced FNR levels on anaerobic gene expression. Expression of some operons, e.g., focA-pfl and fdnGHJI, was unaffected by reduction in the level of FNR, while the expression of other genes such as ndh and nikA was clearly affected.
Collapse
Affiliation(s)
- R Gary Sawers
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
9
|
Mazoch J, Kucera I. Control of gene expression by FNR-like proteins in facultatively anaerobic bacteria. Folia Microbiol (Praha) 2003; 47:95-103. [PMID: 12058404 DOI: 10.1007/bf02817665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Facultatively anaerobic bacteria are able to adapt to many different growth conditions. Their capability to change their metabolism optimally is often ensured by FNR-like proteins. The FNR protein of Escherichia coli functions as the main regulator during the aerobic-to-anaerobic switch. Low oxygen tensions activate this protein which is expressed constitutively and is inactive under aerobic conditions. The active form is dimeric and contains a [4Fe-4S]2+ cluster. The direct dissociation of the cluster to the [2Fe-2S]2+ cluster by the effect of oxygen leads to destabilization of the FNR dimer and to loss of its activity. The active FNR induces the expression of many anaerobic genes; the set comprises over 100 of controlled genes. Many other bacteria contain one or more FNR analogues. All these proteins form the FNR family of regulatory proteins. Properties of these proteins are very distinct, sometimes even among representatives of different strains of the same bacterial species. FNR-like proteins together with other regulators (e.g., two-component system ArcBA, nitrate-sensing system NarXL, etc.) control a complicated network of modulons that is characteristic for every species or even strain and enables fine tuning of gene expression.
Collapse
Affiliation(s)
- J Mazoch
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czechia.
| | | |
Collapse
|
10
|
Abstract
BACKGROUND Regulating mRNA stability is one of the essential mechanisms in gene expression. In order to identify genes from Escherichia coli whole genome whose expression is effectively modulated during the process of mRNA decay, we previously performed differential display-PCR as the first step. In the screening, it was suggested that two mRNAs from the histidine kinase genes, narX and yojN, in a two-component signal transduction system, were extremely unstable. In this study we analysed the stability of sensory kinase mRNAs, e.g. arcB, barA, rcsC, narQ, narX and evgS mRNA. RESULTS The cellular level of the histidine kinase mRNAs was very low and the mRNAs were rapidly degraded in wild-type cells cultured at 37 degrees C in LB medium. Additional experiments using RNase E deficient cells indicated that the mRNAs existed abundantly and expressed a prolonged half-life in the cells. Monocistronic transcripts of the cognate response regulator genes, arcA, rcsB, narP and narL have a half-life of 1.5-3.4 min. CONCLUSIONS mRNAs of the six histidine kinase genes in E. coli are synthesized efficiently, but rapidly degraded in wild-type cells.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachioji, Tokyo 192-8508, Japan
| | | |
Collapse
|
11
|
Govantes F, Albrecht JA, Gunsalus RP. Oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon: roles of multiple promoters and the Fnr-1 and Fnr-2 binding sites. Mol Microbiol 2000; 37:1456-69. [PMID: 10998176 DOI: 10.1046/j.1365-2958.2000.02100.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli cydAB operon encodes the high-affinity terminal oxidase of the oxygen respiratory chain, cytochrome d oxidase. The sensor-regulator pair, ArcB-ArcA, is responsible for the microaerobic activation of the cydAB operon, whereas the anaerobic regulator Fnr represses its expression in the absence of oxygen. Fnr binds in vitro at two sites within the cydAB promoter element. To discern whether these two regions have an in vivo function in the anaerobic regulation of cydAB, the Fnr-binding motifs were mutagenized individually and in combination. The effects of these mutations on in vivo gene expression were determined by lac fusion and primer extension analysis. Our results show that the Fnr-2 site is critical for Fnr-mediated anaerobic repression of the two main cydAB promoters, P1 and P2. In contrast, the Fnr-1 site has an auxiliary role in the anaerobic repression of P1, but not of P2. Transcription from P1 did not affect ArcA-mediated activation or Fnr-mediated repression of P2, indicating that oxygen regulation is exerted on both promoters in an independent fashion. In addition, three new promoters were identified in the cydAB control region, and the 5' ends of the corresponding transcripts were mapped. Two of these promoters, designated P3 and P4, are co-ordinately regulated with P1 and P2 in response to oxygen, ArcA and Fnr. The P5 promoter is not Fnr regulated and is only weakly activated by ArcA. The contribution of these three additional promoters to the overall cydAB expression is most relevant under aerobic conditions. Our results suggest a unique repression model, in which one Fnr dimer bound to one single site (Fnr-2) is sufficient to downregulate transcription from four cydAB promoters. In conclusion, transcription of the cydAB operon is driven by a complex regulatory element containing at least five promoters that act in unison to provide adequate oxygen control of gene expression.
Collapse
Affiliation(s)
- F Govantes
- Department of Microbiology, Immunology and Molecular Genetics, and the Molecular Biology Institute, 1602 Molecular Sciences Building, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
12
|
Green J, Marshall FA. Identification of a surface of FNR overlapping activating region 1 that is required for repression of gene expression. J Biol Chem 1999; 274:10244-8. [PMID: 10187810 DOI: 10.1074/jbc.274.15.10244] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A library of Escherichia coli fnr mutants has been screened to identify FNR (regulator of fumarate and nitrate reduction) variants that are defective repressors, but competent activators. All but one of seventeen variants had substitutions close to or within the face of FNR that contains activating region 1 (AR1). Activating region 1 is known to contact the alpha subunit of RNA polymerase to facilitate transcription activation. It is now evident that this face also has a role in FNR-mediated repression. Single amino acid substitutions at Lys54, Gly74, Ala95, Met147, Leu193, Arg197, or Leu239, and double substitutions at Ser13 and Ser145, Cys16 and Ile45, Tyr69 and Ser133, or Lys164 and Phe191, impaired FNR-mediated repression of ndh without greatly affecting activation from model Class I (FNR site at -71.5) and Class II (FNR site at -41.5) FNR-activated promoters. Although repression was impaired in a second group of FNR variants with substitutions at Leu34, Arg72 and Leu193, Phe92, or Ser178, transcription activation from the simple FNR-dependent promoters was severely reduced. However, expression from pyfiD (FNR sites at -40.5 and -93.5) and a derivative lacking the site at -93.5, pyfiD-/+, remained relatively high indicating that this second group have a context-dependent activation defect as well as a repression defect. The prediction that the substitutions affecting repression were likely to be in solvent exposed regions of FNR was supported by analysis of peptides produced by partial proteolysis of FNR. Thus, FNR-mediated repression at promoters with multiple FNR sites requires regions of FNR that are different from, but overlap, AR1.
Collapse
Affiliation(s)
- J Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | |
Collapse
|
13
|
Williams SM, Wing HJ, Busby SJ. Repression of transcription initiation by Escherichia coli FNR protein: repression by FNR can be simple. FEMS Microbiol Lett 1998; 163:203-8. [PMID: 9673023 DOI: 10.1111/j.1574-6968.1998.tb13046.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Naturally occurring promoters that are repressed by the Escherichia coli FNR protein are complex. In this work, we have constructed a simple semi-synthetic promoter that is repressed by FNR binding to a single site that overlaps the promoter -35 element. Our results show that a single site for FNR is sufficient for effective repression. This semi-synthetic promoter provides a simple tool for monitoring FNR binding to target sites in the absence of its activation function. We have exploited this to study FNR mutants that are defective in repressing the ndh promoter, a complex naturally occurring promoter that is repressed by FNR.
Collapse
Affiliation(s)
- S M Williams
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
14
|
Green J, Anjum MF, Guest JR. The ndh-binding protein (Nbp) regulates the ndh gene of Escherichia coli in response to growth phase and is identical to Fis. Mol Microbiol 1996; 20:1043-55. [PMID: 8809757 DOI: 10.1111/j.1365-2958.1996.tb02545.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ndh gene that encodes the non-proton-translocating NADH dehydrogenase II of Escherichia coli is anaerobically repressed by FNR. However, in the absence of FNR, ndh expression is enhanced by anaerobic growth in media containing amino acids. Two potential regulatory proteins that may be associated with this activation have previously been detected, Arr (amino acid response regulator) and Nbp (ndh-binding protein). Studies with the heat-stable Nbp have now shown that it is present in E. coli grown both aerobically and anaerobically in rich and minimal media, indicating that it is not specifically associated with the anaerobic enhancement of ndh expression. The Nbp activity of aerobic cultures was maximal during exponential growth phase (when ndh promoter activity is minimal) but fell rapidly as cultures entered stationary phase and ndh expression increased. Protein purification and mutant studies have further shown that Nbp is identical to the Fis protein (factor for inversion stimulation). Three major and two minor Nbp (Fis)-binding sites have been identified in the ndh promoter by gel retardation and DNase I footprinting. The major sites are centred at -123, -72 and +51, in decreasing order of binding affinity. At low concentrations, Nbp (Fis) increased transcription from the ndh promoter by up to 25%, whereas at higher concentrations it prevented RNA polymerase (RNAP) binding and open complex formation. Consequently, Nbp (Fis) can both activate and repress transcription from the ndh promoter. The results suggest that Nbp (Fis) serves to ensure that the energetically efficient proton-translocating NADH dehydrogenase I is used in preference to the non-proton translocating NADH dehydrogenase II during periods of rapid growth, by repressing expression of the ndh gene.
Collapse
Affiliation(s)
- J Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | |
Collapse
|
15
|
Hattori T, Takahashi K, Nakanishi T, Ohta H, Fukui K, Taniguchi S, Takigawa M. Novel FNR homologues identified in four representative oral facultative anaerobes: Capnocytophaga ochracea, Capnocytophaga sputigena, Haemophilus aphrophilus, and Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 1996; 137:213-20. [PMID: 8998988 DOI: 10.1111/j.1574-6968.1996.tb08108.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based upon DNA sequence data and positive immunochemical reactivity of expressed protein, novel homologues of the FNR family were identified in four representative oral facultative anaerobes: Capnocytophaga ochracea, Capnocytophaga sputigena, Haemophilus aphrophilus, and Actinobacillus actinomycetemcomitans. The similarity to E. coli FNR and to HlyX (itself 71% similar to E. coli FNR, while regulating expression of hemolysin operon in Actinobacillus pleuropneumoniae) was estimated from the deduced partial amino acid sequence to be, in the above order of tested species, 98, 98, 86, and 85%, and 75, 75, 88, and 88%, respectively. The phylogenetic relatedness indicates a rather closer link of HlyX to the FNR homologues from both pathogens, H. aphrophilus and A. actinomycetemcomitans. The possibility that the A. actinomycetemcomitans FNR homologue functions as a redox-sensing transcriptional factor to regulate, in addition to anaerobic respiration, microaerobic expression of the leukotoxin operon (ltx gene) is suggested.
Collapse
Affiliation(s)
- T Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Guest JR. The Leeuwenhoek Lecture, 1995. Adaptation to life without oxygen. Philos Trans R Soc Lond B Biol Sci 1995; 350:189-202. [PMID: 8577859 DOI: 10.1098/rstb.1995.0152] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Earth was populated by anaerobic organisms for at least a thousand million years before the atmosphere became oxygenated and aerobes could evolve. Many bacteria like Escherichia coli retain the ability to grow under both aerobic and anaerobic conditions. Recent studies have revealed some global regulatory mechanisms for activating or repressing the expression of relevant genes in response to oxygen availability. These mechanisms ensure that the appropriate metabolic mode is adopted when bacteria switch between aerobic and anaerobic environments.
Collapse
Affiliation(s)
- J R Guest
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| |
Collapse
|
17
|
Unden G, Becker S, Bongaerts J, Holighaus G, Schirawski J, Six S. O2-Sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 1995. [DOI: 10.1007/bf02525312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|