1
|
Yu H, He L, Li ZQ, Li N, Ou-Yang YY, Huang GH. Altering of host larval (Spodoptera exigua) calcineurin activity in response to ascovirus infection. PEST MANAGEMENT SCIENCE 2020; 76:1048-1059. [PMID: 31515935 DOI: 10.1002/ps.5615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Calcineurin (CaN) is involved in numerous cellular processes and Ca2+ -dependent signal transduction pathways. According to our previous transcriptome studies, thousands of host larval (Spodoptera exigua) transcripts were downregulated after the infection of Heliothis virescent ascovirus 3h (HvAV-3h), while the Spodoptera exigua calcineurin genes (SeCaNs) were significantly upregulated. To understand the regulation of SeCaNs in S. exigua larvae during the infection of HvAV-3h, the functions of CaN subunit A (SeCaN-SubA) and CaN binding protein (SeCaN-BP) were analysed. RESULTS The in vitro assays indicated that the bacterial expressed SeCaN-SubA is an acid phosphatase, but no phosphatase activity was detected with the purified SeCaN-BP. The transcription level of SeCaN-SubA was upregulated after HvAV-3h infection and the CaN activity was significantly increased after HvAV-3h infection in S. exigua larvae. Interestingly, the SeCaN-BP transcripts were only detectable in the HvAV-3h infected larvae. Further immunoblotting results consistently agree with those obtained by qPCR, indicating that the infection of HvAV-3h causes the upregulated expression of SeCaN-SubA and the appearance of SeCaN-BP. An interaction between the cleaved SeCaN-SubA and SeCaN-BP was detected by co-immunoprecipitation assays, and the expression of SeCaN-BP in Spodoptera frugiperda-9 (Sf9) cells can help to increase the CaN activity of SeCaN-SubA. Further investigations with CaN inhibitors suggested that HvAV-3h. Further investigations with CaN inhibitors suggested that the inhibition on host larval CaN activity can also inhibit the viral replication of HvAV-3h. CONCLUSION The increase in CaN activity caused by HvAV-3h infection might be due to the upregulation of SeCaN-SubA and the induced expression of SeCaN-BP, and increased CaN activity is essential for ascoviral replication. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| |
Collapse
|
2
|
Hsieh HY, Gu SH. Expression of calcineurin in relation to the embryonic diapause process in the silkworm, Bombyx mori. Comp Biochem Physiol A Mol Integr Physiol 2019; 228:35-42. [DOI: 10.1016/j.cbpa.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
|
3
|
Zarndt R, Walls SM, Ocorr K, Bodmer R. Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001706. [PMID: 28986453 PMCID: PMC5669044 DOI: 10.1161/circgenetics.117.001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia is often associated with cardiopulmonary diseases, which represent some of the leading causes of mortality worldwide. Long-term hypoxia exposures, whether from disease or environmental condition, can cause cardiomyopathy and lead to heart failure. Indeed, hypoxia-induced heart failure is a hallmark feature of chronic mountain sickness in maladapted populations living at high altitude. In a previously established Drosophila heart model for long-term hypoxia exposure, we found that hypoxia caused heart dysfunction. Calcineurin is known to be critical in cardiac hypertrophy under normoxia, but its role in the heart under hypoxia is poorly understood. METHODS AND RESULTS In the present study, we explore the function of calcineurin, a gene candidate we found downregulated in the Drosophila heart after lifetime and multigenerational hypoxia exposure. We examined the roles of 2 homologs of Calcineurin A, CanA14F, and Pp2B in the Drosophila cardiac response to long-term hypoxia. We found that knockdown of these calcineurin catalytic subunits caused cardiac restriction under normoxia that are further aggravated under hypoxia. Conversely, cardiac overexpression of Pp2B under hypoxia was lethal, suggesting that a hypertrophic signal in the presence of insufficient oxygen supply is deleterious. CONCLUSIONS Our results suggest a key role for calcineurin in cardiac remodeling during long-term hypoxia with implications for diseases of chronic hypoxia, and it likely contributes to mechanisms underlying these disease states.
Collapse
Affiliation(s)
- Rachel Zarndt
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Stanley M Walls
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Karen Ocorr
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| | - Rolf Bodmer
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| |
Collapse
|
4
|
Chen X, Zhang Y. Molecular cloning and characterization of the calcineurin subunit A from Plutella xylostella. Int J Mol Sci 2013; 14:20692-703. [PMID: 24132154 PMCID: PMC3821638 DOI: 10.3390/ijms141020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (or PP2B) has been reported to be involved in an array of physiological process in insects, and the calcineurin subunit A (CNA) plays a central role in calcineurin activity. We cloned the CNA gene from Plutella xylostella (PxCNA). This gene contains an ORF of 1488 bp that encodes a 495 amino acid protein, showing 98%, and 80% identities to the CNA of Bombyx mori, and humans respectively. The full-length of PxCNA and its catalytic domain (CNA(1-341), defined as PxCNα) were both expressed in Escherichia coli. Purified recombinant PxCNA displayed no phosphatase activity, whereas recombinant PxCNα showed high phosphatase activity with a Km of 4.6 mM and a kcat of 0.66 S(-1) against pNPP. It could be activated at different degrees by Mn2+, Ni2+, Mg2+, and Ca2+. The optimum reaction pH was about 7.5 and the optimum reaction temperature was around 45 °C. An in vitro inhibition assay showed that okadaic acid (OA) and cantharidin (CTD) competitively inhibited recombinant PxCNα activity with the IC50 values of 8.95 μM and 77.64 μM, respectively. However, unlike previous reports, pyrethroid insecticides were unable to inhibit recombinant PxCNα, indicating that the P. xylostella calcineurin appears not to be sensitive to class II pyrethroid insecticides.
Collapse
Affiliation(s)
- Xi'en Chen
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | | |
Collapse
|
5
|
Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly, Drosophila melanogaster. J Neurosci 2011; 31:13137-46. [PMID: 21917797 DOI: 10.1523/jneurosci.5860-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sleep is a unique physiological state, which is behaviorally defined, and is broadly conserved across species from mammals to invertebrates such as insects. Because of the experimental accessibility provided by various novel animal models including the fruit fly, Drosophila melanogaster, there have been significant advances in the understanding of sleep. Although the physiological functions of sleep have not been fully elucidated, accumulating evidence indicates that sleep is necessary to maintain the plasticity of neuronal circuits and, hence, is essential in learning and memory. Calcineurin (Cn) is a heterodimeric phosphatase composed of CnA and CnB subunits and known to function in memory consolidation in the mammalian brain, but its neurological functions in the fruit fly are largely unknown. Here, we show that Cn is an important regulator of sleep in Drosophila. A pan-neuronal RNA interference-mediated knockdown of Cn expression resulted in sleep loss, whereas misexpression of the constitutively active form of a CnA protein led to increased sleep. Furthermore, CnA knockdown also impaired the retention of aversive olfactory memory. These results indicate a role for Cn and calcium-dependent signal transduction in sleep and memory regulation and may bring insight into the relationship between them.
Collapse
|
6
|
Miskei M, Ádám C, Kovács L, Karányi Z, Dombrádi V. Molecular evolution of phosphoprotein phosphatases in Drosophila. PLoS One 2011; 6:e22218. [PMID: 21789237 PMCID: PMC3137614 DOI: 10.1371/journal.pone.0022218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022] Open
Abstract
Phosphoprotein phosphatases (PPP), these ancient and important regulatory enzymes are present in all eukaryotic organisms. Based on the genome sequences of 12 Drosophila species we traced the evolution of the PPP catalytic subunits and noted a substantial expansion of the gene family. We concluded that the 18–22 PPP genes of Drosophilidae were generated from a core set of 8 indispensable phosphatases that are present in most of the insects. Retropositons followed by tandem gene duplications extended the phosphatase repertoire, and sporadic gene losses contributed to the species specific variations in the PPP complement. During the course of these studies we identified 5, up till now uncharacterized phosphatase retrogenes: PpY+, PpD5+, PpD6+, Pp4+, and Pp6+ which are found only in some ancient Drosophila. We demonstrated that all of these new PPP genes exhibit a distinct male specific expression. In addition to the changes in gene numbers, the intron-exon structure and the chromosomal localization of several PPP genes was also altered during evolution. The G−C content of the coding regions decreased when a gene moved into the heterochromatic region of chromosome Y. Thus the PPP enzymes exemplify the various types of dynamic rearrangements that accompany the molecular evolution of a gene family in Drosophilidae.
Collapse
Affiliation(s)
- Márton Miskei
- Centre for Agricultural and Applied Economic Sciences, Institute of Horticultural Sciences, Department of Plant Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Csaba Ádám
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Kovács
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zsolt Karányi
- First Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
7
|
Schulz RA, Yutzey KE. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 2004; 266:1-16. [PMID: 14729474 DOI: 10.1016/j.ydbio.2003.10.008] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcineurin signaling has been implicated in a broad spectrum of developmental processes in a variety of organ systems. Calcineurin is a calmodulin-dependent, calcium-activated protein phosphatase composed of catalytic and regulatory subunits. The serine/threonine-specific phosphatase functions within a signal transduction pathway that regulates gene expression and biological responses in many developmentally important cell types. Calcineurin signaling was first defined in T lymphocytes as a regulator of nuclear factor of activated T cells (NFAT) transcription factor nuclear translocation and activation. Recent studies have demonstrated the vital nature of calcium/calcineurin/NFAT signaling in cardiovascular and skeletal muscle development in vertebrates. Inhibition, mutation, or forced expression of calcineurin pathway genes result in defects or alterations in cardiomyocyte maturation, heart valve formation, vascular development, skeletal muscle differentiation and fiber-type switching, and cardiac and skeletal muscle hypertrophy. Conserved calcineurin genes are found in invertebrates such as Drosophila and Caenorhabditis elegans, and genetic studies have demonstrated specific myogenic functions for the phosphatase in their development. The ability to investigate calcineurin signaling pathways in vertebrates and model genetic organisms provides a great potential to more fully comprehend the functions of calcineurin and its interacting genes in heart, blood vessel, and muscle development.
Collapse
Affiliation(s)
- Robert A Schulz
- Department of Biochemistry and Molecular Biology, Graduate Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
8
|
Sullivan KMC, Rubin GM. The Ca(2+)-calmodulin-activated protein phosphatase calcineurin negatively regulates EGF receptor signaling in Drosophila development. Genetics 2002; 161:183-93. [PMID: 12019233 PMCID: PMC1462097 DOI: 10.1093/genetics/161.1.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin is a Ca(2+)-calmodulin-activated, Ser-Thr protein phosphatase that is essential for the translation of Ca(2+) signals into changes in cell function and development. We carried out a dominant modifier screen in the Drosophila eye using an activated form of the catalytic subunit to identify new targets, regulators, and functions of calcineurin. An examination of 70,000 mutagenized flies yielded nine specific complementation groups, four that enhanced and five that suppressed the activated calcineurin phenotype. The gene canB2, which encodes the essential regulatory subunit of calcineurin, was identified as a suppressor group, demonstrating that the screen was capable of identifying genes relevant to calcineurin function. We demonstrated that a second suppressor group was sprouty, a negative regulator of receptor tyrosine kinase signaling. Wing and eye phenotypes of ectopic activated calcineurin and genetic interactions with components of signaling pathways suggested a role for calcineurin in repressing Egf receptor/Ras signal transduction. On the basis of our results, we propose that calcineurin, upon activation by Ca(2+)-calmodulin, cooperates with other factors to negatively regulate Egf receptor signaling at the level of sprouty and the GTPase-activating protein Gap1.
Collapse
Affiliation(s)
- Kathleen M C Sullivan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
9
|
Yoshiga T, Yokoyama N, Imai N, Ohnishi A, Moto K, Matsumoto S. cDNA cloning of calcineurin heterosubunits from the pheromone gland of the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:477-486. [PMID: 11886782 DOI: 10.1016/s0965-1748(01)00125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pheromone biosynthesis activating neuropeptide (PBAN) stimulates the step of fatty acyl reduction in the pheromone biosynthetic pathway of the silkmoth, Bombyx mori. It has been suggested that the intracellular signal transduction of PBAN in B. mori involves Ca(2+), calmodulin, and calcineurin (also known as protein phosphatase 2B). We have cloned two cDNAs encoding calcineurin heterosubunits from a pheromone gland cDNA library of B. mori. The 2,996-bp clone predicts a 495-amino acid protein homologous to the catalytic subunit calcineurin A (CnA) with a molecular mass of 55,968. The deduced amino acid sequence well conserves the calcineurin B (CnB)-binding domain and two subdomains, a calmodulin-binding and an autoinhibitory domain, showing 77-85% and 82% identities to the isoforms of Drosophila melanogaster CnA and human CnA, respectively. On the other hand, the 820-bp clone predicts a 170-amino acid protein homologous to the regulatory subunit CnB with a molecular mass of 19,357. The deduced amino acid sequence well conserves four EF-hand type calcium-binding structures, showing 95% and about 85% identities to D. melanogaster CnB and mammalian CnBs, respectively. A yeast two-hybrid system has demonstrated the molecular interaction between B. mori CnA and CnB. Northern blot analyses revealed that both CnA and CnB genes were expressed in various larval and adult tissues of B. mori. Both transcripts detected in the pheromone gland three days before adult eclosion increased by the day before eclosion and the mRNA levels were found to be high even two days after adult eclosion. Immunohistochemical analysis has revealed that B. mori calcineurin is localized in the cytoplasm of the pheromone-producing cells.
Collapse
Affiliation(s)
- T Yoshiga
- Laboratory of Molecular Entomology and Baculovirology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, 351-0198, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Saneyoshi T, Kume S, Natsume T, Mikoshiba K. Molecular cloning and expression profile of Xenopus calcineurin A subunit(1). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:164-170. [PMID: 11118649 DOI: 10.1016/s0167-4889(00)00083-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAalpha isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca(2+). Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium.
Collapse
Affiliation(s)
- T Saneyoshi
- Department of Molecular Neurobiology, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
12
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Xu XZ, Wes PD, Chen H, Li HS, Yu M, Morgan S, Liu Y, Montell C. Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem 1998; 273:31297-307. [PMID: 9813038 DOI: 10.1074/jbc.273.47.31297] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ influxes regulate multiple events in photoreceptor cells including phototransduction and synaptic transmission. An important Ca2+ sensor in Drosophila vision appears to be calmodulin since a reduction in levels of retinal calmodulin causes defects in adaptation and termination of the photoresponse. These functions of calmodulin appear to be mediated, at least in part, by four previously identified calmodulin-binding proteins: the TRP and TRPL ion channels, NINAC and INAD. To identify additional calmodulin-binding proteins that may function in phototransduction and/or synaptic transmission, we conducted a screen for retinal calmodulin-binding proteins. We found eight additional calmodulin-binding proteins that were expressed in the Drosophila retina. These included six targets that were related to proteins implicated in synaptic transmission. Among these six were a homolog of the diacylglycerol-binding protein, UNC13, and a protein, CRAG, related to Rab3 GTPase exchange proteins. Two other calmodulin-binding proteins included Pollux, a protein with similarity to a portion of a yeast Rab GTPase activating protein, and Calossin, an enormous protein of unknown function conserved throughout animal phylogeny. Thus, it appears that calmodulin functions as a Ca2+ sensor for a broad diversity of retinal proteins, some of which are implicated in synaptic transmission.
Collapse
Affiliation(s)
- X Z Xu
- Departments of Biological Chemistry and Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Armstrong CG, Dombradi V, Mann DJ, Cohen PT. Cloning of a novel testis specific protein serine/threonine phosphatase, PPN 58A, from Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:234-8. [PMID: 9765603 DOI: 10.1016/s0167-4781(98)00117-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A gene encoding a novel member of the PPP family of protein serine/threonine phosphatases, termed PPN 58A, was cloned from Drosophila melanogaster. The deduced amino acid sequence of PPN 58A exhibits 59-62% identity to D. melanogaster PP1 isoforms, 51% identity to D. melanogaster PPY 55A and < or = 40% identity to other members of the PPP family. The single copy gene PPN 58A maps to chromosome 2 locus 58A. Analysis of PPN 58A mRNA reveals that, like PPY 55A, PPN 58A is a testis specific enzyme.
Collapse
Affiliation(s)
- C G Armstrong
- Department of Biochemistry, University of Dundee, UK
| | | | | | | |
Collapse
|
15
|
Kuromi H, Yoshihara M, Kidokoro Y. An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae. Neurosci Res 1997; 27:101-13. [PMID: 9100252 DOI: 10.1016/s0168-0102(96)01132-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we tested a hypothesis that activation of calcineurin, Ca2+/calmodulin-dependent protein phosphatase 2B, is an initiating signal for synaptic vesicle endocytosis. We examined effects of calcineurin inhibitors, cyclosporin A or FK506 and calmodulin inhibitors on stimulus-induced FM1-43 uptake into nerve terminals of Drosophila larvae. Fluorescent FM1-43 labels recycling synaptic vesicles in nerve terminals. Pretreatment with cyclosporin A (5-40 microM) or with FK506 (5-10 microM) enhanced FM1-43 uptake induced by high (60 mM) K+ in a dose-dependent manner. The effect required some preincubation time of about 10 min. The nerve terminals loaded with FM1-43 were destained by electrical nerve stimulation in the cyclosporin A-pretreated preparations, confirming that FM1-43 was taken up into synaptic vesicles. Pretreatment with rapamycin (2 or 20 microM), a structural analog of FK506 which has no effect on calcineurin, or calyculin A (0.3-50 nM), an inhibitor of protein phosphatase 1 and 2A, had no detectable effect on FM1-43 uptake. On the other hand, pretreatment with trifluoperazine (1-50 microM) or with phenoxybenzamine (100 microM), inhibitors of calmodulin, enhanced FM1-43 uptake. Since endocytosis is coupled with exocytosis, it is possible that the enhancement of FM1-43 uptake results from facilitation of exocytosis. However, the frequency of spontaneous junctional potentials and the mean amplitude of evoked potentials did not change after the cyclosporin A treatment, suggesting that the exocytosis process was not significantly affected by the drug. Furthermore, we can temporally separate synaptic vesicle exocytosis and endocytosis in a Drosophila mutant, shibire (shi(ts1)). By taking advantage of this mutation, we showed that cyclosporin A and trifluoperazine enhanced synaptic vesicle recycling by directly acting on the endocytotic process. Present results are not compatible with the hypothesis, but suggest that calcineurin inhibits synaptic vesicle recycling.
Collapse
Affiliation(s)
- H Kuromi
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
16
|
Abstract
We have used the immunosuppressants cyclosporin A and FK506 to investigate the involvement of the Ca2+/CaM-dependent protein phosphatase calcineurin in Dictyostelium discoideum development. We found that CsA had little effect on cell growth, or on the aggregation of developing amoebae, suggesting that calcineurin does not play a significant role at these stages of the D. discoideum life cycle. In contrast, when cells were allowed to differentiate under buffer in the presence of cAMP, addition of CsA and FK506 strongly inhibited stalk cell formation in the wild-type and spore formation in a sporogenous derivative of D. discoideum strain V12. These agents also reduced the expression of prestalk-and prespore-specific transcripts in both strains. These results indicate a requirement for calcineurin activity in both pathways of cell differentiation. In addition, time-course experiments suggest that calcineurin is required early in the differentiation processes, but that the maturation of the two cell types is resistant to calcineurin inhibition. We also found that CsA and FK506 were unable to affect spore formation in rapidly developing/sporogenous rdeC mutants of strain NC4, showing that constitutive cAMP-dependent protein kinase activity renders the spore pathway resistant to calcineurin inhibition.
Collapse
Affiliation(s)
- F Horn
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
17
|
Cohen PT, Chen MX, Armstrong CG. Novel protein phosphatases that may participate in cell signaling. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:67-89. [PMID: 8783555 DOI: 10.1016/s1054-3589(08)60577-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P T Cohen
- Medical Research Council Phosphorylation Unit, The University, Dundee, Scotland, United Kingdom
| | | | | |
Collapse
|
18
|
Theopold U, Dal Zotto L, Hultmark D. FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene 1995; 156:247-51. [PMID: 7538962 DOI: 10.1016/0378-1119(95)00019-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A cDNA, coding for the first Drosophila melanogaster homolog of a family of proteins (FK506-binding proteins, FKBPs) which bind to the immunosuppressive drug FK506, was isolated. The deduced aa sequence corresponds to a 39-kDa product (FKBP39) which, besides a domain with similarity to FKBPs, has a highly charged domain with two strongly acidic stretches. The transcript could be detected in all developmental stages, with the highest expression in the embryo. In adult flies, the strongest signal was detected in the ovaries. Although the FKBP39 gene is expressed in the immunocompetent D. melanogaster blood cell line, mbn-2, the antibacterial defense reaction of these cells is unaffected by FK506.
Collapse
Affiliation(s)
- U Theopold
- Department of Molecular Biology, Stockholm University, Sweden
| | | | | |
Collapse
|