1
|
Sørensen ES, Christensen B. Milk Osteopontin and Human Health. Nutrients 2023; 15:nu15112423. [PMID: 37299387 DOI: 10.3390/nu15112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein found in all vertebrates. OPN is expressed in many different cell types, and is consequently found in most tissues and physiological secretions. OPN is involved in a multitude of biological processes, such as activation and regulation of the immune system; biomineralization; tissue-transformative processes, including growth and development of the gut and brain; interaction with bacteria; and many more. OPN is found in the highest concentrations in milk, where it is believed to initiate and regulate developmental, immunological and physiological processes in infants who consume milk. Processes for the isolation of bovine OPN for use in infant formula have been developed, and in recent years, many studies have investigated the effects of the intake of milk OPN. The purpose of this article is to review and compare existing knowledge about the structure and function of milk OPN, with a particular focus on the effects of milk OPN on human health and disease.
Collapse
Affiliation(s)
- Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
2
|
Li L, Wu J, Lyon CJ, Jiang L, Hu TY. Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications. BME FRONTIERS 2023; 4:0019. [PMID: 37849662 PMCID: PMC10521655 DOI: 10.34133/bmef.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 10/19/2023] Open
Abstract
Extensive effort has been devoted to the discovery, development, and validation of biomarkers for early disease diagnosis and prognosis as well as rapid evaluation of the response to therapeutic interventions. Genomic and transcriptomic profiling are well-established means to identify disease-associated biomarkers. However, analysis of disease-associated peptidomes can also identify novel peptide biomarkers or signatures that provide sensitive and specific diagnostic and prognostic information for specific malignant, chronic, and infectious diseases. Growing evidence also suggests that peptidomic changes in liquid biopsies may more effectively detect changes in disease pathophysiology than other molecular methods. Knowledge gained from peptide-based diagnostic, therapeutic, and imaging approaches has led to promising new theranostic applications that can increase their bioavailability in target tissues at reduced doses to decrease side effects and improve treatment responses. However, despite major advances, multiple factors can still affect the utility of peptidomic data. This review summarizes several remaining challenges that affect peptide biomarker discovery and their use as diagnostics, with a focus on technological advances that can improve the detection, identification, and monitoring of peptide biomarkers for personalized medicine.
Collapse
Affiliation(s)
- Lin Li
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jing Wu
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Li Jiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
3
|
Venerando A, Bustos VH, Pinna LA, Cozza G. Editorial: Casein kinases in human diseases. Front Mol Biosci 2022; 9:1094922. [DOI: 10.3389/fmolb.2022.1094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
|
4
|
Deepika S, Gautam D, Meena S, Ali M, Meena AS, Vats A, Verma M, Rout PK, De S. Heterogeneity and diversified distribution of αS2 casein variants in Indian goats. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Occurrence of quantitative genetic polymorphism at the caprine β-CN locus, as determined by a proteomic approach. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Cesaro L, Pinna LA. Prevalence and significance of the commonest phosphorylated motifs in the human proteome: a global analysis. Cell Mol Life Sci 2020; 77:5281-5298. [PMID: 32052090 PMCID: PMC11105107 DOI: 10.1007/s00018-020-03474-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation is the most frequent post-translational modification by which the properties of eukaryotic proteins can be reversibly modified. In humans, over 500 protein kinases generate a huge phosphoproteome including more than 200,000 individual phosphosites, a figure which is still continuously increasing. The in vivo selectivity of protein kinases is the outcome of a multifaceted and finely tuned process where numerous factors play an integrated role. To gain information about the actual contribution to this process of local features that reflect the interaction of the protein targets with the catalytic site of the kinases, the prevalence of the commonest motifs determining the consensus sequence of Ser/Thr-specific kinases has been examined in the whole human phosphoproteome and in the phosphoproteomes generated by a panel of the 47 most pleiotropic protein kinases. Our analysis shows that: (1) most phosphosites do conform to at least one of the motifs considered, with a substantial proportion conforming to two or more of them; (2) some motifs, with special reference to the one recognized by protein kinase CK2 (pS/pT-x-x-E/D) are very promiscuous, being abundantly represented also at the phosphosites of all the other protein kinases considered; (3) by contrast, other phosphorylated motifs, notably pS/pT-P, pS/pT-Q and pS-x-E, are more discriminatory and selective, being nearly absent in the phosphosites that are not attributable to certain categories of kinases. The information provided will prove helpful to make reliable inferences based on the manual inspection of individual phosphosites.
Collapse
Affiliation(s)
- Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
- CNR Institute of Neurosciences, Viale G. Colombo 3, 35131, Padova, Italy.
| |
Collapse
|
7
|
Tibaldi E, Brocca A, Sticca A, Gola E, Pizzi M, Bordin L, Pagano MA, Mazzorana M, Donà G, Violi P, Marin O, Romano A, Angeli P, Carraro A, Brunati AM. Fam20C-mediated phosphorylation of osteopontin is critical for its secretion but dispensable for its action as a cytokine in the activation of hepatic stellate cells in liver fibrogenesis. FASEB J 2019; 34:1122-1135. [PMID: 31914633 DOI: 10.1096/fj.201900880r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein secreted into the extracellular matrix upon liver injury, acting as a cytokine stimulates the deposition of fibrillary collagen in liver fibrogenesis. In livers of mice subjected to bile duct ligation (BDL) and in cultured activated hepatic stellate cells (HSCs), we show that OPN, besides being overexpressed, is substantially phosphorylated by family with sequence similarity 20, member C (Fam20C), formerly known as Golgi casein kinase (G-CK), which is exclusively resident in the Golgi apparatus. In both experimental models, Fam20C becomes overactive when associated with a 500-kDa multiprotein complex, as compared with the negligible activity in livers of sham-operated rats and in quiescent HSCs. Fam20C knockdown not only confirmed the role of Fam20C itself in OPN phosphorylation, but also revealed that phosphorylation was essential for OPN secretion. However, OPN acts as a fibrogenic factor independently of its phosphorylation state, as demonstrated by the increased expression of Collagen-I by HSCs incubated with either a phosphorylated or nonphosphorylated form of recombinant OPN. Collectively, our results confirm that OPN promotes liver fibrosis and highlight Fam20C as a novel factor driving this process by favoring OPN secretion from HSCs, opening new avenues for deciphering yet unidentified mechanisms underlying liver fibrogenesis.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Elisabetta Gola
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Marco Pizzi
- General Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Luciana Bordin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Marco Mazzorana
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Gabriella Donà
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Violi
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, Verona, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Romano
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Paolo Angeli
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Amedeo Carraro
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, Verona, Italy
| | | |
Collapse
|
8
|
Cozza G, Moro E, Black M, Marin O, Salvi M, Venerando A, Tagliabracci VS, Pinna LA. The Golgi 'casein kinase' Fam20C is a genuine 'phosvitin kinase' and phosphorylates polyserine stretches devoid of the canonical consensus. FEBS J 2018; 285:4674-4683. [PMID: 30387551 DOI: 10.1111/febs.14689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023]
Abstract
Egg yolk phosvitins, generated through the fragmentation of vitellogenins (VTGs), are among the most heavily phosphorylated proteins ever described. Despite the early discovery in 1900 that chicken phosvitin is a phosphoprotein and its subsequent employment as an artificial substrate for a number of protein kinases, the identity of the enzyme(s) responsible for its phosphorylation remained a matter of conjecture until present. Here, we provide evidence that phosvitin phosphorylation is catalyzed by a family with sequence similarity 20, member C (Fam20C), an atypical protein kinase recently identified as the genuine casein kinase and responsible for the phosphorylation of many other secreted proteins at residues specified by the S-x-E/pS consensus. Such a conclusion is grounded on the following observations: (a) the levels of Fam20C and phosphorylated VTG rise in parallel upon treatment of zebrafish with oestrogens; (b) zebrafish phosvitin is readily phosphorylated upon coexpression in U2OS cells with Fam20C, but not with its catalytically inactive mutant; (c) a peptide reproducing a stretch of 12 serines, which are phosphorylated in chicken phosvitin despite lacking the C-terminal priming motif S-x-E, is efficiently phosphorylated by both recombinant and native Fam20C. The last finding expands the repertoire of potential targets of Fam20C to include several proteins known to harbor (p-Ser)n clusters not specified by any known kinase consensus.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Italy
| | - Miles Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR, Institute of Neuroscience, Padova, Italy
| |
Collapse
|
9
|
Jeschke GR, Lou HJ, Weise K, Hammond CI, Demonch M, Brennwald P, Turk BE. Substrate priming enhances phosphorylation by the budding yeast kinases Kin1 and Kin2. J Biol Chem 2018; 293:18353-18364. [PMID: 30305396 DOI: 10.1074/jbc.ra118.005651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
Multisite phosphorylation of proteins is a common mechanism for signal integration and amplification in eukaryotic signaling networks. Proteins are commonly phosphorylated at multiple sites in an ordered manner, whereby phosphorylation by one kinase primes the substrate by generating a recognition motif for a second kinase. Here we show that substrate priming promotes phosphorylation by Saccharomyces cerevisiae Kin1 and Kin2, kinases that regulate cell polarity, exocytosis, and the endoplasmic reticulum (ER) stress response. Kin1/Kin2 phosphorylated substrates within the context of a sequence motif distinct from those of their most closely related kinases. In particular, the rate of phosphorylation of a peptide substrate by Kin1/Kin2 increased >30-fold with incorporation of a phosphoserine residue two residues downstream of the phosphorylation site. Recognition of phosphorylated substrates by Kin1/Kin2 was mediated by a patch of basic residues located in the region of the kinase αC helix. We identified a set of candidate Kin1/Kin2 substrates reported to be dually phosphorylated at sites conforming to the Kin1/Kin2 consensus sequence. One of these proteins, the t-SNARE protein Sec9, was confirmed to be a Kin1/Kin2 substrate both in vitro and in vivo Sec9 phosphorylation by Kin1 in vitro was enhanced by prior phosphorylation at the +2 position. Recognition of primed substrates was not required for the ability of Kin2 to suppress the growth defect of secretory pathway mutants but was necessary for optimal growth under conditions of ER stress. These results suggest that at least some endogenous protein substrates of Kin1/Kin2 are phosphorylated in a priming-dependent manner.
Collapse
Affiliation(s)
- Grace R Jeschke
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Hua Jane Lou
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Keith Weise
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Charlotte I Hammond
- the Department of Biology, Quinnipiac University, Hamden, Connecticut 06518, and
| | - Mallory Demonch
- the Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Patrick Brennwald
- the Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Benjamin E Turk
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520,.
| |
Collapse
|
10
|
Hareza A, Bakun M, Świderska B, Dudkiewicz M, Koscielny A, Bajur A, Jaworski J, Dadlez M, Pawłowski K. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58. PeerJ 2018; 6:e4599. [PMID: 29666759 PMCID: PMC5896498 DOI: 10.7717/peerj.4599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.
Collapse
Affiliation(s)
- Agnieszka Hareza
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Magda Bakun
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Anna Bajur
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland.,Current affiliation: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jacek Jaworski
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Cozza G, Salvi M, Tagliabracci VS, Pinna LA. Fam20C is under the control of sphingolipid signaling in human cell lines. FEBS J 2017; 284:1246-1257. [PMID: 28236661 DOI: 10.1111/febs.14052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 11/27/2022]
Abstract
Fam20C, also termed DMP-4 (dentin matrix protein 4) and G-CK (Golgi casein kinase) is an atypical protein kinase committed with the phosphorylation of casein and a plethora of other secreted proteins. Fam20C has been implicated in a number of human pathologies related to biomineralization, phosphate homeostasis, and neoplasia. The mode of regulation of Fam20C is still a matter of conjecture. In in vitro, Fam20C activity is stimulated several fold by sphingosine. To gain in vivo information about the physiological relevance of this observation, three cell lines expressing endogenous Fam20C, and one in which Fam20C has been knocked out with CRISPR/Cas9 technology have been examined for Fam20C activity under basal conditions and where sphingosine has been depleted by treatment with myriocin. In lysates and conditioned medium of the three wild-type cells, Fam20C activity was similar and comparably responsive to sphingosine and a panel of sphingosine analogs, while in knockout cells, Fam20C activity was undetectable either with or without sphingosine addition. Upon depletion of endogenous sphingosine by myriocin treatment, Fam20C activity drops to negligible values both in the lysate and in the conditioned medium; however, it can be partially restored if during myriocin treatment cells are supplemented with either exogenous sphingosine or ceramide, a sphingosine precursor. Alterations of Fam20C activity, promoted by myriocin and sphingolipids, are not accompanied by any significant change in Fam20C protein. These data provide the proof of concept that Fam20C activity is under the control of sphingolipid signaling.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences and CNR, Institute of Neuroscience, University of Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences and CNR, Institute of Neuroscience, University of Padova, Italy
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences and CNR, Institute of Neuroscience, University of Padova, Italy
| |
Collapse
|
12
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
13
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Fang ZH, Visker MHPW, Miranda G, Delacroix-Buchet A, Bovenhuis H, Martin P. The relationships among bovine αS-casein phosphorylation isoforms suggest different phosphorylation pathways. J Dairy Sci 2016; 99:8168-8177. [PMID: 27522420 DOI: 10.3168/jds.2016-11250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022]
Abstract
Casein (CN) phosphorylation is an important posttranslational modification and is one of the key factors responsible for constructing and stabilizing casein micelles. Variation in phosphorylation degree of αS-CN is of great interest because it is suggested to affect milk technological properties. This study aimed to investigate the variation in phosphorylation degree of αS-CN among milk of individual cows and to explore relationships among different phosphorylation isoforms of αS-CN. For this purpose, we analyzed morning milk samples from 529 French Montbéliarde cows using liquid chromatography coupled with electrospray ionization mass spectrometry. We detected 3 new phosphorylation isoforms: αS2-CN-9P, αS2-CN-14P, and αS2-CN-15P in bovine milk, in addition to the known isoforms αS1-CN-8P, αS1-CN-9P, αS2-CN-10P, αS2-CN-11P, αS2-CN-12P, and αS2-CN-13P. The relative concentrations of each αS-CN phosphorylation isoform varied considerably among individual cows. Furthermore, the phenotypic correlations and hierarchical clustering suggest at least 2 regulatory systems for phosphorylation of αS-CN: one responsible for isoforms with lower levels of phosphorylation (αS1-CN-8P, αS2-CN-10P, and αS2-CN-11P), and another responsible for isoforms with higher levels of phosphorylation (αS1-CN-9P, αS2-CN-12P, αS2-CN-13P, and αS2-CN-14P). Identifying all phosphorylation sites of αS2-CN and investigating the genetic background of different αS2-CN phosphorylation isoforms may provide further insight into the phosphorylation mechanism of caseins.
Collapse
Affiliation(s)
- Z H Fang
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M H P W Visker
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - G Miranda
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - A Delacroix-Buchet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - H Bovenhuis
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - P Martin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
15
|
Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 2016; 113:E2589-97. [PMID: 27118846 DOI: 10.1073/pnas.1519458113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development.
Collapse
|
16
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
17
|
Cozza G, Salvi M, Banerjee S, Tibaldi E, Tagliabracci VS, Dixon JE, Pinna LA. A new role for sphingosine: Up-regulation of Fam20C, the genuine casein kinase that phosphorylates secreted proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1718-26. [DOI: 10.1016/j.bbapap.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
18
|
Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, Xiao J, Cui J, Nguyen KB, Engel JL, Coon JJ, Grishin N, Pinna LA, Pagliarini DJ, Dixon JE. A Single Kinase Generates the Majority of the Secreted Phosphoproteome. Cell 2015; 161:1619-32. [PMID: 26091039 DOI: 10.1016/j.cell.2015.05.028] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/05/2015] [Accepted: 05/06/2015] [Indexed: 01/12/2023]
Abstract
The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.
Collapse
Affiliation(s)
- Vincent S Tagliabracci
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sandra E Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiao Guo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa N Kinch
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Eric Durrant
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jianzhong Wen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Junyu Xiao
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jixin Cui
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim B Nguyen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James L Engel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nick Grishin
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9050, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Bijl E, van Valenberg HJF, Huppertz T, van Hooijdonk ACM, Bovenhuis H. Phosphorylation of αS1-casein is regulated by different genes. J Dairy Sci 2014; 97:7240-6. [PMID: 25200775 DOI: 10.3168/jds.2014-8061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022]
Abstract
Casein phosphorylation is a posttranslational modification catalyzed by kinase enzymes that attach phosphate groups to specific AA in the protein sequence. This modification is one of the key factors responsible for the stabilization of calcium phosphate nanoclusters in casein micelles and for the internal structure of the casein micelles. α(S1)-Casein (α(s1)-CN) is of special interest because it constitutes up to 40% of the total casein fraction in milk, and it has 2 common phosphorylation states, with 8 (α(S1)-CN-8P) and 9 (α(S1)-CN-9P) phosphorylated serine residues. Factors affecting this variation in the degree of phosphorylation are not currently known. The objective of this research was to determine the genetic background of α(S1)-CN-8P and α(S1)-CN-9P. The genetic and phenotypic correlation between α(S1)-CN-8P and α(S1)-CN-9P was low (0.18 and 0.19, respectively). This low genetic correlation suggests a different genetic background. These differences were further investigated by means of a genome-wide association study, which showed that both α(S1)-CN-8P and α(S1)-CN-9P were affected by a region on Bos taurus autosome (BTA) 6, but only α(S1)-CN-8P was affected by a region on BTA11 that contains the gene that encodes for β-lactoglobulin (β-LG), and only α(S1)-CN-9P was affected by a region on BTA14 that contains the diacylglycerol acyltransferase 1 (DGAT1) gene. Estimated effects of β-LG protein genotypes showed that only α(S1)-CN-8P was associated with the β-LG A/B polymorphism (g.1772G>A and g.3054C>T); the AA genotype of β-LG was associated with a lower concentration of α(S1)-CN-8P (-0.32% wt/wt) than the BB genotype (+0.41% wt/wt). Estimated effects of DGAT1 K232A genotypes showed that only α(S1)-CN-9P was associated with the DGAT1 gene polymorphism; DGAT1 AA genotype was associated with a higher α(S1)-CN-9P concentration (+0.53% wt/wt) than the DGAT1 KK genotype (-0.44% wt/wt). The results give insight in phosphorylation of α(S1)-CN-8P and α(S1)-CN-9P, which seem to be regulated by a different set of genes.
Collapse
Affiliation(s)
- E Bijl
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - H J F van Valenberg
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - T Huppertz
- NIZO Food Research, PO Box 20, 6710 BA, Ede, the Netherlands
| | - A C M van Hooijdonk
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - H Bovenhuis
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
20
|
Abstract
The term 'casein kinase' has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term 'casein kinase' is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40-50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.
Collapse
|
21
|
Rohrbeck A, von Elsner L, Hagemann S, Just I. Binding of Clostridium botulinum C3 exoenzyme to intact cells. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:523-32. [PMID: 24584821 DOI: 10.1007/s00210-014-0963-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/12/2014] [Indexed: 12/15/2022]
Abstract
C3 from Clostridium botulinum (C3) specifically modifies Rho GTPases RhoA, RhoB, and RhoC by mono-ADP-ribosylation. The confined substrate profile of C3 is the basis for its use as pharmacological tool in cell biology to study cellular functions of Rho GTPases. Although C3 exoenzyme does not possess a cell-binding/-translocation domain, C3 is taken up by intact cells via an unknown mechanism. In the present work, binding of C3 to the hippocampus-derived HT22 cells and J774A.1 macrophages was characterized. C3 bound concentration-dependent to HT22 and J774A.1 cells. Pronase treatment of intact cells significantly reduced both C3 binding and C3 cell entry. Removal of sugar residues by glycosidase F treatment resulted in an increased binding of C3, but a reduced cell entry. To explore the involvement of phosphorylation in the binding process of C3, intact HT22 and J774A.1 cells were pre-treated with vanadate prior to incubation with C3. Inhibition of de-phosphorylation by vanadate resulted in an increased binding of C3. To differentiate between intracellular and extracellular phosphorylation, intact cells were treated with CIP (calf intestine phosphatase) to remove extracellular phosphate residues. The removal of phosphate residues resulted in a strong reduction in binding of C3 to cells. In sum, the C3 membranous binding partner is proteinaceous, and the glycosylation as well as the phosphorylation state is critical for efficient binding of C3.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany,
| | | | | | | |
Collapse
|
22
|
Abstract
Since the discovery of protein kinases, protein phosphorylation has emerged as a key regulatory mechanism. The majority of phosphoproteins reside within the nucleus and cytoplasm; however, many secreted proteins are phosphorylated by unknown kinases located within the secretory pathway and/or in the extracellular space. The Fam20 kinases are emerging as the enzymes responsible for phosphorylating secreted proteins and proteoglycans. Evolutionary analysis reveals that these kinases are exclusively present in metazoans and contain conserved features that are common among all eukaryotic protein kinases. Mutations in the Fam20 family members cause disorders of biomineralization in humans that highlight the physiological significance of secreted protein phosphorylation.
Collapse
|
23
|
Tagliabracci VS, Pinna LA, Dixon JE. Secreted protein kinases. Trends Biochem Sci 2012; 38:121-30. [PMID: 23276407 DOI: 10.1016/j.tibs.2012.11.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
Protein kinases constitute one of the largest gene families and control many aspects of cellular life. In retrospect, the first indication for their existence was reported 130 years ago when the secreted protein, casein, was shown to contain phosphate. Despite its identification as the first phosphoprotein, the responsible kinase has remained obscure. This conundrum was solved with the discovery of a novel family of atypical protein kinases that are secreted and appear to phosphorylate numerous extracellular proteins, including casein. Fam20C, the archetypical member, phosphorylates secreted proteins within Ser-x-Glu/pSer motifs. This discovery has solved a 130-year-old mystery and has shed light on several human disorders of biomineralization.
Collapse
|
24
|
Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One 2012; 7:e42988. [PMID: 22900076 PMCID: PMC3416761 DOI: 10.1371/journal.pone.0042988] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C’s kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome.
Collapse
Affiliation(s)
- Hiroyuki O. Ishikawa
- Graduate School of Science, Chiba University, Chiba-shi, Chiba, Japan
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aiguo Xu
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Eri Ogura
- Graduate School of Science, Chiba University, Chiba-shi, Chiba, Japan
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 2012; 336:1150-3. [PMID: 22582013 PMCID: PMC3754843 DOI: 10.1126/science.1217817] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.
Collapse
Affiliation(s)
- Vincent S. Tagliabracci
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - James L. Engel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Jianzhong Wen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Sandra E. Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Carolyn A. Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Lisa N. Kinch
- University of Texas, Southwestern Medical Center, Dallas, TX 75390–9050, USA
| | - Junyu Xiao
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Nick V. Grishin
- University of Texas, Southwestern Medical Center, Dallas, TX 75390–9050, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815–6789, USA
| | - Jack E. Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815–6789, USA
| |
Collapse
|
26
|
Salvi M, Trashi E, Marin O, Negro A, Sarno S, Pinna LA. Superiority of PLK-2 as α-synuclein phosphorylating agent relies on unique specificity determinants. Biochem Biophys Res Commun 2012; 418:156-60. [PMID: 22248692 DOI: 10.1016/j.bbrc.2011.12.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022]
Abstract
Phosphorylation of α-synuclein at Ser-129 is of crucial relevance to Parkinson's disease and related synucleinopathies. Here we provide biochemical evidence that PLK2 and to a lesser extent PLK3 are superior over CK2, as catalysts of Ser-129 phosphorylation both in full length α-synuclein and in a peptide reproducing the C-terminal segment of the protein. By using substituted peptides we also show that the sequence surrounding Ser-129 is optimally shaped for undergoing phosphorylation by PLK2, with special reference to the two acidic residues at positions n-3 (Glu-126) and n+2 (Glu-131) whose replacement with alanine abrogates phosphorylation.
Collapse
Affiliation(s)
- Mauro Salvi
- Department of Biological Chemistry and CNR Institute of Neurosciences, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:774-87. [PMID: 22079671 DOI: 10.1016/j.bbamcr.2011.10.013] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/06/2023]
Abstract
Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
28
|
Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomol Concepts 2010; 1:185-95. [DOI: 10.1515/bmc.2010.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn an attempt to evaluate the contribution of individual protein kinases to the generation of the human phosphoproteome, we performed a global weblogo analysis exploiting a database of 45641 phosphosites (80% pSer, 11% pTyr, 9% pThr). The outcome of this analysis was then interpreted by comparison with similar logos constructed from bona fide phospoacceptor sites of individual pleiotropic kinases. The main conclusions that were drawn are as follows: (i) the hallmarks surrounding phosphorylated Ser/Thr residues are more pronounced than and sharply different from those found around phosphorylated Tyr, which is consistent with the view that local consensus sequences are particularly important for substrate recognition by Ser/Thr protein kinases. (ii) Only six residues are positively selected around phosphorylated Ser/Thr residues, notably Pro (particularly at n+1), Glu, and to a lesser extent Asp, at various positions with special reference to n+3, Arg (and to a much lesser extent Lys), particularly at n-3 and n-5, and Ser, at various positions, particularly n+4 and n-4. (iii) This composite signature reflects the contribution of kinases whose bona fide substrates exhibit logos partially overlapping that of the whole phosphoproteome. These are Pro-directed kinases belonging to the CMGC group, some basophilic kinases belonging to the ACG and CAMK groups, phosphate-directed kinases such as GSK3 and members of the CK1 group and the individual highly acidophilic CK2. Collectively taken our data support the concept that a relatively small number of highly pleiotropic kinases contribute to the generation of the great majority of the human Ser/Thr phosphoproteome.
Collapse
|
29
|
Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem J 2010; 428:385-95. [PMID: 20377527 DOI: 10.1042/bj20091864] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acidic phosphoproteins of mineralized tissues such as bone and dentin are believed to play important roles in HA (hydroxyapatite) nucleation and growth. BSP (bone sialoprotein) is the most potent known nucleator of HA, an activity that is thought to be dependent on phosphorylation of the protein. The present study identifies the role phosphate groups play in mineral formation. Recombinant BSP and peptides corresponding to residues 1-100 and 133-205 of the rat sequence were phosphorylated with CK2 (protein kinase CK2). Phosphorylation increased the nucleating activity of BSP and BSP-(133-205), but not BSP-(1-100). MS analysis revealed that the major site phosphorylated within BSP-(133-205) was Ser136, a site adjacent to the series of contiguous glutamate residues previously implicated in HA nucleation. The critical role of phosphorylated Ser136 in HA nucleation was confirmed by site-directed mutagenesis and functional analyses. Furthermore, peptides corresponding to the 133-148 sequence of rat BSP were synthesized with or without a phosphate group on Ser136. As expected, the phosphopeptide was a more potent nucleator. The mechanism of nucleation was investigated using molecular-dynamics simulations analysing BSP-(133-148) interacting with the {100} crystal face of HA. Both phosphorylated and non-phosphorylated sequences adsorbed to HA in extended conformations with alternating residues in contact with and facing away from the crystal face. However, this alternating-residue pattern was more pronounced when Ser136 was phosphorylated. These studies demonstrate a critical role for Ser136 phosphorylation in BSP-mediated HA nucleation and identify a unique mode of interaction between the nucleating site of the protein and the {100} face of HA.
Collapse
|
30
|
Salvi M, Cesaro L, Tibaldi E, Pinna LA. Motif Analysis of Phosphosites Discloses a Potential Prominent Role of the Golgi Casein Kinase (GCK) in the Generation of Human Plasma Phospho-Proteome. J Proteome Res 2010; 9:3335-8. [DOI: 10.1021/pr100058r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mauro Salvi
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Luca Cesaro
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Elena Tibaldi
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Lorenzo A. Pinna
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| |
Collapse
|
31
|
Manconi B, Cabras T, Vitali A, Fanali C, Fiorita A, Inzitari R, Castagnola M, Messana I, Sanna MT. Expression, purification, phosphorylation and characterization of recombinant human statherin. Protein Expr Purif 2010; 69:219-25. [DOI: 10.1016/j.pep.2009.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
32
|
Tibaldi E, Arrigoni G, Martinez HM, Inagaki K, Shimasaki S, Pinna LA. Golgi apparatus casein kinase phosphorylates bioactive Ser-6 of bone morphogenetic protein 15 and growth and differentiation factor 9. FEBS Lett 2010; 584:801-5. [PMID: 20067794 DOI: 10.1016/j.febslet.2009.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/18/2009] [Accepted: 12/26/2009] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are oocyte-secreted factors that play essential roles in human folliculogenesis and ovulation. Their bioactivity is tightly regulated through phosphorylation, likely to occur within the Golgi apparatus of the secretory pathway. Here we show that Golgi apparatus casein kinase (G-CK) catalyzes the phosphorylation of rhBMP-15 and rhGDF-9. rhBMP-15, in particular, is an excellent substrate for G-CK. In each protein a single residue is phosphorylated by G-CK, corresponding to the serine residue at the sixth position of the mature region of both rhBMP-15 and rhGDF-9, whose phosphorylation is required for biological activity.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Biological Chemistry, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Calvel P, Kervarrec C, Lavigne R, Vallet-Erdtmann V, Guerrois M, Rolland AD, Chalmel F, Jégou B, Pineau C. CLPH, a novel casein kinase 2-phosphorylated disordered protein, is specifically associated with postmeiotic germ cells in rat spermatogenesis. J Proteome Res 2009; 8:2953-65. [PMID: 19271754 DOI: 10.1021/pr900082m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent proteomic study of rat spermatogenesis, we identified CLPH (for Casein-Like PHosphoprotein), a new testis-specific protein expressed exclusively in postmeiotic germ cells. In situ hybridization showed that the CLPH transcript was mainly present in round spermatids, whereas the protein was specifically detected by immunohistochemistry in elongated spermatids and in residual bodies. Electron microscopy showed the protein to be mostly cytoplasmic, but also frequently associated with the mitochondrial inner membrane during the last steps of spermatid differentiation. The Clph gene was found to be present solely in mammalian genomes, in a chromosomal region syntenic to the mammalian cluster of secretory calcium-binding phosphoprotein (SCPP) genes. CLPH has several distinctive properties in common with SCPPs: calcium overlay experiments showed that CLPH was a calcium-binding protein, whereas trypsin digestion assay, circular dichroism and fluorescence experiments demonstrated its intrinsically disordered structure. We also showed that CLPH was phosphorylated in vitro and in vivo by casein kinase 2, an enzyme critical for spermatid elongation. Given the specific and strong production of CLPH during rat spermiogenesis, together with the particular biochemical properties of this protein, we suggest that CLPH is involved in the extremely complex structural rearrangements occurring in haploid germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, Rennes, Universite Rennes I, Campus de Beaulieu, IFR-140, GERHM, Rennes, F-35042, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Poth AG, Deeth HC, Alewood PF, Holland JW. Analysis of the Human Casein Phosphoproteome by 2-D Electrophoresis and MALDI-TOF/TOF MS Reveals New Phosphoforms. J Proteome Res 2008; 7:5017-27. [DOI: 10.1021/pr800387s] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aaron G. Poth
- Institute for Molecular Bioscience and School of Land, Crop and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Hilton C. Deeth
- Institute for Molecular Bioscience and School of Land, Crop and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience and School of Land, Crop and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John W. Holland
- Institute for Molecular Bioscience and School of Land, Crop and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
35
|
Ishikawa HO, Takeuchi H, Haltiwanger RS, Irvine KD. Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 2008; 321:401-4. [PMID: 18635802 PMCID: PMC2562711 DOI: 10.1126/science.1158159] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.
Collapse
Affiliation(s)
- Hiroyuki O Ishikawa
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
36
|
Saito S, Yano K, Sharma S, McMahon HE, Shimasaki S. Characterization of the post-translational modification of recombinant human BMP-15 mature protein. Protein Sci 2008; 17:362-70. [PMID: 18227435 DOI: 10.1110/ps.073232608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bone morphogenetic protein-15 (BMP-15) is an oocyte-secreted factor critical for the regulation of ovarian physiology. When recombinant human BMP-15 (rhBMP-15) produced in human embryonic kidney 293 cells was subjected to SDS-PAGE analysis, two mature protein forms corresponding to 16 kDa (P16) and 17 kDa (P17) were observed. Despite the physiological relevance and critical function of BMP-15 in female reproduction, little is known about the structure of rhBMP-15. Here, we have analyzed the structure of the rhBMP-15 mature proteins (P16 and P17) using state-of-the-art proteomics technology. Our findings are as follows: (1) the N-terminal amino acid of P16 and P17 is pyroglutamic acid; (2) the Ser residue at the sixth position of P16 is phosphorylated; (3) P17 is O-glycosylated at Thr10; and (4) the C-terminal amino acid of P16 and P17 is truncated. These findings are the first knowledge of the structure of rhBMP-15 mature protein toward understanding the molecular basis of BMP-15 function and could provide an important contribution to the rapidly progressing research area involving oocyte-specific growth factors in modulation of female fertility.
Collapse
Affiliation(s)
- Seiji Saito
- Antibody Research Laboratories, Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Ltd., Tokyo 194-8533, Japan
| | | | | | | | | |
Collapse
|
37
|
McMahon HE, Sharma S, Shimasaki S. Phosphorylation of bone morphogenetic protein-15 and growth and differentiation factor-9 plays a critical role in determining agonistic or antagonistic functions. Endocrinology 2008; 149:812-7. [PMID: 18006624 PMCID: PMC2219307 DOI: 10.1210/en.2007-1439] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two highly homologous oocyte-secreted growth factors, bone morphogenetic protein (BMP)-15 and growth and differentiation factor (GDF)-9, are known to control folliculogenesis and ovulation through direct effects on granulosa cells in the developing follicles. Although much is known about the expression and biology of these proteins, the impact of posttranslational modifications of BMP-15 and GDF-9 is unknown. Here, we report that: 1) recombinant human (rh) BMP-15 and rhGDF-9 are phosphorylated; 2) the phosphorylation is essential for bioactivity; and 3) the dephosphorylated forms of rhBMP-15 and rhGDF-9 can abolish the bioactivity of rhBMP-15, rhGDF-9, and rhBMP-7, but not rh activin A. These results indicate that the phosphorylation state of rhBMP-15 and rhGDF-9 is a determinant of their agonistic and antagonistic activities.
Collapse
Affiliation(s)
- Heather E McMahon
- Department of Reproductive Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0633, USA
| | | | | |
Collapse
|
38
|
Sowa G, Xie L, Xu L, Sessa WC. Serine 23 and 36 phosphorylation of caveolin-2 is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells. Biochemistry 2007; 47:101-11. [PMID: 18081315 DOI: 10.1021/bi701709s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, using a combination of reconstituted systems and endothelial cells endogenously expressing caveolins, we show that phosphorylation of caveolin-2 at serines 23 and 36 can be differentially regulated by caveolin-1 mediated subcellular targeting to lipid raft/caveolae and in endothelial cells synchronized in mitosis. Detergent insolubility and sucrose flotation gradient experiments revealed that serine 23 phosphorylation of caveolin-2 preferably occurs in detergent-resistant membranes (DRMs), while serine 36 phosphorylation takes place in non-DRMs. Furthermore, immunofluorescence microscopy studies determined that in the presence of caveolin-1, serine 23-phosphorylated caveolin-2 mostly localizes to plasma membrane, while serine 36-phosphorylated caveolin-2 primarily resides in intracellular compartments. To directly address the role of caveolin-1 in regulating phosphorylation of endogenous caveolin-2, we have used the siRNA approach. The specific knockdown of caveolin-1 in endothelial cells decreases caveolin-2 phosphorylation at serine 23 but not at serine 36. Thus, upregulation of serine 23 phosphorylation of caveolin-2 depends on caveolin-1-driven targeting to plasma membrane lipid rafts and caveolae. Interestingly, although serine 36 phosphorylation does not seem to be regulated in endothelial cells by caveolin-1, it can be selectively upregulated in endothelial cells synchronized in mitosis. The latter data suggests a possible involvement of serine 36-phosphorylated caveolin-2 in modulating mitosis.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA.
| | | | | | | |
Collapse
|
39
|
Kawasaki K, Weiss KM. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:295-316. [PMID: 16358265 DOI: 10.1002/jez.b.21088] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three principal mineralized tissues are present in teeth; a highly mineralized surface layer (enamel or enameloid), body dentin, and basal bone. Similar tissues have been identified in the dermal skeleton of Paleozoic jawless vertebrates, suggesting their ancient origin. These dental tissues form on protein matrix and their mineralization is controlled by distinctive proteins. We have shown that many secretory calcium-binding phosphoproteins (SCPPs) are involved in tetrapod tissue mineralization. These SCPPs all originated from the common ancestral gene SPARCL1 (secreted protein, acidic, cysteine-rich like 1) that initially arose from SPARC. The SCPP family also includes a bird eggshell matrix protein, mammalian milk casein, and salivary proteins. The eggshell SCPP plays crucial roles in rigid eggshell production, milk SCPPs in efficient lactation and in the evolution of complex dentition, and salivary SCPPs in maintaining tooth integrity. A comparative analysis of the mammalian, avian, and amphibian genomes revealed a tandem duplication history of the SCPP genes in tetrapods. Although these tetrapod SCPP genes are fewer in teleost genomes, independent parallel duplication has created distinct SCPP genes in this lineage. These teleost SCPPs are also used for enameloid and dentin mineralization, implying essential roles of SCPPs for dental tissue mineralization in osteichthyans. However, the SCPPs used for tetrapod enamel and teleost enameloid, as well as tetrapod dentin and teleost dentin, are all different. Thus, the evolution of vertebrate mineralized tissues seems to be explained by phenogenetic drift: while mineralized tissues are retained during vertebrate evolution, the underlying genetic basis has extensively drifted.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
40
|
Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 2007; 282:19463-72. [PMID: 17500062 DOI: 10.1074/jbc.m703055200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a highly modified integrin-binding protein found in all body fluids. Expression of OPN is strongly correlated with poor prognosis in many different human cancers, suggesting an important but poorly understood role for this protein in tumorigenesis and metastasis. The protein exists in a number of different isoforms differing in the degree of post-translational modifications that are likely to exhibit different functional properties. This study examines for the first time the post-translational modifications of OPN from transformed cells and the effects of these modifications on cell biology. We have characterized the complete phosphorylation and glycosylation patterns of OPN expressed by murine ras-transformed fibroblasts (FbOPN) and differentiating osteoblasts (ObOPN) by a combination of mass spectrometric analyses and Edman degradation. Mass spectrometric analysis showed masses of 34.9 and 35.9 kDa for FbOPN and ObOPN, respectively. Enzymatic dephosphorylation, sequence, and mass analyses demonstrated that FbOPN contains approximately four phosphate groups distributed over 16 potential phosphorylation sites, whereas ObOPN contains approximately 21 phosphate groups distributed over 27 sites. Five residues are O-glycosylated in both isoforms. These residues are fully modified in FbOPN, whereas one site is partially glycosylated in ObOPN. Although both forms of OPN mediated robust integrin-mediated adhesion of mouse ras-transformed fibroblasts, the less phosphorylated FbOPN mediated binding of MDA-MD-435 human tumor cells almost 6-fold more than the heavy phosphorylated ObOPN. These results strongly support the hypothesis that the degree of phosphorylation of OPN produced by different cell types can regulate its function.
Collapse
Affiliation(s)
- Brian Christensen
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Su R, Qi W, He Z, Yuan S, Zhang Y. Pancreatic hydrolysis of bovine casein: Identification and release kinetics of phosphopeptides. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Holland JW, Deeth HC, Alewood PF. Resolution and characterisation of multiple isoforms of bovine κ-casein by 2-DE following a reversible cysteine-tagging enrichment strategy. Proteomics 2006; 6:3087-95. [PMID: 16619295 DOI: 10.1002/pmic.200500780] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visualisation of multiple isoforms of kappa-casein on 2-D gels is restricted by the abundant alpha- and beta-caseins that not only limit gel loading but also migrate to similar regions as the more acidic kappa-casein isoforms. To overcome this problem, we took advantage of the absence of cysteine residues in alpha(S1)- and beta-casein by devising an affinity enrichment procedure based on reversible biotinylation of cysteine residues. Affinity capture of cysteine-containing proteins on avidin allowed the removal of the vast majority of alpha(S1)- and beta-casein, and on subsequent 2-D gel analysis 16 gel spots were identified as kappa-casein by PMF. Further analysis of the C-terminal tryptic peptide along with structural predictions based on mobility on the 2-D gel allowed us to assign identities to each spot in terms of genetic variant (A or B), phosphorylation status (1, 2 or 3) and glycosylation status (from 0 to 6). Eight isoforms of the A and B variants with the same PTMs were observed. When the casein fraction of milk from a single cow, homozygous for the B variant of kappa-casein, was used as the starting material, 17 isoforms from 13 gel spots were characterised. Analysis of isoforms of low abundance proved challenging due to the low amount of material that could be extracted from the gels as well as the lability of the PTMs during MS analysis. However, we were able to identify a previously unrecognised site, T(166), that could be phosphorylated or glycosylated. Despite many decades of analysis of milk proteins, the reasons for this high level of heterogeneity are still not clear.
Collapse
Affiliation(s)
- John W Holland
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
43
|
Christensen B, Nielsen M, Haselmann K, Petersen T, Sørensen E. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 2005; 390:285-92. [PMID: 15869464 PMCID: PMC1184582 DOI: 10.1042/bj20050341] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPN (osteopontin) is an integrin-binding highly phosphorylated glycoprotein, recognized as a key molecule in a multitude of biological processes such as bone mineralization, cancer metastasis, cell-mediated immune response, inflammation and cell survival. A significant regulation of OPN function is mediated through PTM (post-translational modification). Using a combination of Edman degradation and MS analyses, we have characterized the complete phosphorylation and glycosylation pattern of native human OPN. A total of 36 phosphoresidues have been localized in the sequence of OPN. There are 29 phosphorylations (Ser8, Ser10, Ser11, Ser46, Ser47, Thr50, Ser60, Ser62, Ser65, Ser83, Ser86, Ser89, Ser92, Ser104, Ser110, Ser113, Thr169, Ser179, Ser208, Ser218, Ser238, Ser247, Ser254, Ser259, Ser264, Ser275, Ser287, Ser292 and Ser294) located in the target sequence of MGCK (mammary gland casein kinase) also known as the Golgi kinase (S/T-X-E/S(P)/D). Six phosphorylations (Ser101, Ser107, Ser175, Ser199, Ser212 and Ser251) are located in the target sequence of CKII (casein kinase II) [S-X-X-E/S(P)/D] and a single phosphorylation, Ser203, is not positioned in the motif of either MGCK or CKII. The 36 phosphoresidues represent the maximal degree of modification since variability at many sites was seen. Five threonine residues are O-glycosylated (Thr118, Thr122, Thr127, Thr131 and Thr136) and two potential sites for N-glycosylation (Asn63 and Asn90) are not occupied in human milk OPN. The phosphorylations are arranged in clusters of three to five phosphoresidues and the regions containing the glycosylations and the RGD (Arg-Gly-Asp) integrin-binding sequence are devoid of phosphorylations. Knowledge about the positions and nature of PTMs in OPN will allow a rational experimental design of functional studies aimed at understanding the structural and functional interdependences in diverse biological processes in which OPN is a key molecule.
Collapse
Affiliation(s)
- Brian Christensen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Mette S. Nielsen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Kim F. Haselmann
- †Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Torben E. Petersen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Esben S. Sørensen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Zinzen KM, Hand AR, Yankova M, Ball WD, Mirels L. Molecular cloning and characterization of the neonatal rat and mouse submandibular gland protein SMGC. Gene 2004; 334:23-33. [PMID: 15256252 DOI: 10.1016/j.gene.2004.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
We report the molecular cloning and characterization of SMGC, a major secretory product and a marker of the type I (terminal tubule) cells of the neonatal rat and mouse submandibular gland. SMGC is expressed in the submandibular gland at high levels through postnatal day 20, but in the adult is present only in some intercalated duct cells. Rat and mouse SMGC have deduced molecular weights of 67.8 and 74.4 kDa, respectively, are 37% Ser+Gly+Thr, and contain tandem repeats of between 8 and 60 amino acids. Secreted SMGC visualized by SDS-PAGE and silver staining is 89 kDa in rat and 105 kDa in mouse, although Western blot analyses with anti-SMGC antisera demonstrate multiple additional lower molecular weight forms. Contributions to the heterogeneity of SMGC include alternate splicing, proteolysis and N-glycosylation. Smgc is localized on rat chromosome 7q34-35 and on mouse chromosome 15E3, both immediately upstream of the high molecular weight salivary mucin, Muc19. Amino acid sequence identity between the signal peptides of SMGC, human MUC19 and pig submaxillary mucin suggest that rat and mouse Smgc and Muc19 arose from a single ancestral mucin gene.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression Regulation, Developmental
- Genes/genetics
- Glycosylation
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Mucins/genetics
- Mucins/metabolism
- Rats
- Rats, Sprague-Dawley
- Sequence Analysis, DNA
- Submandibular Gland/chemistry
- Submandibular Gland/growth & development
- Submandibular Gland/metabolism
Collapse
Affiliation(s)
- Karen M Zinzen
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall #3204, Berkeley, CA 94720-3204, USA
| | | | | | | | | |
Collapse
|
45
|
Procino G, Carmosino M, Marin O, Brunati AM, Contri A, Pinna LA, Mannucci R, Nielsen S, Kwon TH, Svelto M, Valenti G. Ser-256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 2003; 17:1886-8. [PMID: 12897058 DOI: 10.1096/fj.02-0870fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aquaporin 2 (AQP2) phosphorylation at Ser-256 by protein kinase A (PKA) is a key signal for vasopressin-stimulated AQP2 insertion into the plasma membrane in renal cells. This study underscores the possible role of phosphorylation at Ser-256 in regulating AQP2 maturation. AQP2-transfected renal CD8 cells were incubated with brefeldin A (BFA) to accumulate newly synthesized AQP2 in the endoplasmic reticulum (ER), and AQP2 flow from ER to the vesicular compartment was analyzed after BFA washout. We found that a) in the ER, AQP2 is weakly phosphorylated; b) the amount of phosphorylated AQP2 (p-AQP2) at Ser-256 increased significantly during transit in the Golgi, even in the presence of the PKA inhibitor H89; and c) AQP2 transport from the Golgi to the vasopressin-regulated vesicular compartment occurred with a concomitant decrease in p-AQP2 at Ser-256. These results support the hypothesis that AQP2 transition in the Golgi apparatus is associated with a PKA-independent increase in AQP2 phosphorylation at Ser-256. Conversely, impaired constitutive phosphorylation in a Golgi-associated compartment occurring in cells expressing mutated S256A-AQP2 or E258K-AQP2 causes phosphorylation-defective AQP2 routing to lysosomes. This result might explain the molecular basis of the dominant form of nephrogenic diabetes insipidus caused by the mutation E258K-AQP2, in which the phenotype is caused by an impaired routing of AQP2.
Collapse
Affiliation(s)
- Giuseppe Procino
- Dipartimento di Fisiologia Generale ed Ambientale, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sørensen ES, Møller L, Vinther M, Petersen TE, Rasmussen LK. The phosphorylation pattern of human alphas1-casein is markedly different from the ruminant species. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3651-5. [PMID: 12919330 DOI: 10.1046/j.1432-1033.2003.03755.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caseins are highly phosphorylated milk proteins assembled in large colloidal structures termed micelles. In the milk of ruminants, alphas1-casein has been shown to be extensively phosphorylated. In this report we have determined the phosphorylation pattern of human alphas1-casein by a combination of matrix-assisted laser desorption mass spectrometry and amino acid sequence analysis. Three phosphorylation variants were identified. A nonphosphorylated form, a variant phosphorylated at Ser18 and a variant phosphorylated at Ser18 and Ser26. Both phosphorylation sites are located in the amino acid recognition sequence of the mammary gland casein kinase. Notably, no phosphorylations were observed in the conserved region covering residues Ser70-Glu78, which is extensively phosphorylated in the ruminant alphas1-caseins.
Collapse
Affiliation(s)
- Esben S Sørensen
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Lovisi P, Jolivet P, Jagic F, Dalgleish D, Chardot T. A protein kinase is located in the micellar fraction of fresh pasteurized skimmed farm milk. J Dairy Sci 2003; 86:1147-56. [PMID: 12741538 DOI: 10.3168/jds.s0022-0302(03)73697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant protein kinase CK2 from the yeast Schizosaccharomyces pombe is able to phosphorylate casein in skimmed pasteurized milk. We could incorporate up to 540 pmol of phosphate into 50 microg milk proteins, i.e., 0.26 P/mol caseins. To better understand the action of protein kinase CK2 on milk proteins, we have compared the action of rspCK2alpha on milk, and on different casein micellar subfractions isolated from milk by ultracentrifugation. In contrast to the situation observed with phosphocaseinate, alpha(s) casein was the best substrate for rspCK2alpha, whether milk or micellar fractions were used as substrates. We have characterized the protein content of different micellar fractions obtained by ultracentrifugation of cow milk using capillary zone electrophoresis. We confirm that the kappa casein content of micelles largely decreases when their size increases. In contrast, the alpha(s) casein content slightly increased with micelles size and beta casein content remained constant. All of the micellar fractions were substrates for rspCK2alpha, but a significant amount of intrinsic protein kinase activity was also found. The intrinsic protein kinase used added ATP as phosphate donor, and was only slightly sensitive to high heparin concentration. It could phosphorylate micellar casein in milk ultrafiltrate, in the absence of addition of any metallic cofactor. Its activity was only slightly affected by the addition of either MgCl2 or MnCl2. CaCl2 activated the enzyme significantly. The intrinsic kinase lost its activity with time, and could incorporate from 9 to 26% of the total phosphate incorporated in the presence of rspCK2a. Alpha(s) casein was the best substrate of the intrinsic kinase, followed by beta casein. In the presence of CaCl2, the intrinsic kinase was found to incorporate up to 470 pmol of phosphate into 50 microg of milk proteins.
Collapse
Affiliation(s)
- P Lovisi
- Unité Mixte de Recherche de Chimie Biologique INRA INA-PG, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France
| | | | | | | | | |
Collapse
|
48
|
Tauzin J, Miclo L, Roth S, Mollé D, Gaillard JL. Tryptic hydrolysis of bovine αS2-casein: identification and release kinetics of peptides. Int Dairy J 2003. [DOI: 10.1016/s0958-6946(02)00127-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Marin O, Burzio V, Boschetti M, Meggio F, Allende CC, Allende JE, Pinna LA. Structural features underlying the multisite phosphorylation of the A domain of the NF-AT4 transcription factor by protein kinase CK1. Biochemistry 2002; 41:618-27. [PMID: 11781102 DOI: 10.1021/bi0112309] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphorylation and dephosphorylation of the NF-AT family of transcription factors play a key role in the activation of T lymphocytes and in the control of the immune response. The mechanistic aspects of NF-AT4 phosphorylation by protein kinase CK1 have been studied in this work with the aid of a series of 27 peptides, reproducing with suitable modifications the regions of NF-AT4 that have been reported to be phosphorylated by this protein kinase. The largest parent peptide, representing the three regions A, Z, and L spanning amino acids 173-218, is readily phosphorylated by CK1 at seryl residues belonging to the A2 segment, none of which fulfill the canonical consensus sequence for CK1. An acidic cluster of amino acids in the linker region between domains A and Z is essential for high-efficiency phosphorylation of the A2 domain, as shown by the increase in K(m) caused by a deletion of the linker region or a substitution of the acidic residues with glycines. Individual substitutions with alanine of each of the five serines in the A2 domain (S-177, S-180, S-181, S-184, and S-186) reduce the phosphorylation rate, the most detrimental effect being caused by Ser177 substitution which results in a 10-fold drop in V(max). On the contrary, the replacement of Ser177 with phosphoserine triggers a hierarchical effect with a dramatic improvement in phosphorylation efficiency, which no longer depends on the linker region for optimal efficiency. These data are consistent with a two-phase phosphorylation mechanism of NF-AT4 by CK1, initiated by the linker region which provides a functional docking site for CK1 and allows the unorthodox phosphorylation of Ser177; once achieved, this phosphoserine residue primes the phosphorylation of other downstream seryl residues, according to a hierarchical mechanism typically exploited by CK1.
Collapse
Affiliation(s)
- Oriano Marin
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del CNR, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Salivary secretions contain phosphoproteins that contain phosphorylation sites composed of serine residues in acidic environments. The hypothesis of this study is that a protein kinase responsible for phosphorylating these proteins is similar to kinases that phosphorylate proteins in other glandular secretions. Homogenates and subfractions from macaque parotid glands were able to phosphorylate synthetic peptide substrates containing each of the phosphorylation sites in acidic proline-rich proteins, statherin, and histatin 1. Activity was purified from Golgi membranes to greater than 220-fold by extraction with Triton X-100 and affinity chromatography with the use of immobilized ATP. The enzyme preferred substrates containing serine residues in a specific acidic environment, particularly those containing the Ser-Xaa-acidic sequence, preferred ATP over GTP, and was sensitive to high concentrations of heparin. These characteristics are similar to those reported for Golgi casein kinase, which phosphorylates casein in vivo. Based on these observations, the parotid gland kinase may be related to other Golgi-localized serine kinases.
Collapse
Affiliation(s)
- M S Lamkin
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, MA 02118, USA
| | | |
Collapse
|