1
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
2
|
Cruz J, Suárez-Barrera M, Rondón-Villarreal P, Olarte-Diaz A, Guzmán F, Visser L, Rueda-Forero N. Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colorectal cancer cells. Biosci Rep 2021; 41:BSR20211964. [PMID: 34796903 PMCID: PMC8661510 DOI: 10.1042/bsr20211964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and β-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.
Collapse
Affiliation(s)
- Jenniffer Cruz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Miguel Orlando Suárez-Barrera
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
- Corporación Académica Ciencias Básicas Biomédicas Universidad de Antioquia, Medellín, Colombia
| | - Paola Rondón-Villarreal
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Andrés Olarte-Diaz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Fanny Guzmán
- NBC Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
| | - Nohora Juliana Rueda-Forero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| |
Collapse
|
3
|
Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules 2021; 26:molecules26247476. [PMID: 34946558 PMCID: PMC8706377 DOI: 10.3390/molecules26247476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a bacterium capable of producing Cry toxins, which are recognized for their bio-controlling actions against insects. However, a few Bt strains encode proteins lacking insecticidal activity but showing cytotoxic activity against different cancer cell lines and low or no cytotoxicity toward normal human cells. A subset of Cry anticancer proteins, termed parasporins (PSs), has recently arisen as a potential alternative for cancer treatment. However, the molecular receptors that allow the binding of PSs to cells and their cytotoxic mechanisms of action have not been well established. Nonetheless, their selective cytotoxic activity against different types of cancer cell lines places PSs as a promising alternative treatment modality. In this review, we provide an overview of the classification, structures, mechanisms of action, and insights obtained from genetic modification approaches for PS proteins.
Collapse
|
4
|
Butt S, Saleh M, Gagnon J. Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. Toxins (Basel) 2020; 12:E760. [PMID: 33276476 PMCID: PMC7761119 DOI: 10.3390/toxins12120760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces the heat-stable enterotoxin b (STb), which is responsible for secretory diarrhea in humans and animals. This toxin is secreted within the intestinal lumen of animals and humans following ETEC colonization, becoming active on enterocytes and altering fluid homeostasis. Several studies have outlined the nature of this toxin and its effects on gut health and the integrity of the intestinal epithelium. This review summarizes the mechanisms of how STb alters the gastrointestinal tract. These include the manipulation of mucosal tight junction protein integrity, the formation of enterocyte cellular pores and toxin internalization and the stimulation of programmed cell death. We conclude with insights into the potential link between STb intoxication and altered gut hormone regulation, and downstream physiology.
Collapse
Affiliation(s)
| | | | - Jeffrey Gagnon
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (S.B.); (M.S.)
| |
Collapse
|
5
|
The Cytocidal Spectrum of Bacillus thuringiensis Toxins: From Insects to Human Cancer Cells. Toxins (Basel) 2020; 12:toxins12050301. [PMID: 32384723 PMCID: PMC7291302 DOI: 10.3390/toxins12050301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Collapse
|
6
|
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, Bokori-Brown M. The pore structure of Clostridium perfringens epsilon toxin. Nat Commun 2019; 10:2641. [PMID: 31201325 PMCID: PMC6572795 DOI: 10.1038/s41467-019-10645-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by Clostridium perfringens, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of β-PFTs (aβ-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double β-barrel, a common feature of the aβ-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications. Epsilon toxin (Etx) is a potent pore forming toxin (PFT) produced by Clostridium perfringens. Here authors show the cryo-EM structure of the Etx pore assembled on the membrane of susceptible cells and shed light on pore formation and mutant phenotypes.
Collapse
Affiliation(s)
- Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7HB, UK
| | - Alice R Clark
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Claire E Naylor
- Molecular Dimensions, Willie Snaith Road, Newmarket, CB8 7SQ, UK
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - David S Moss
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Ajit K Basak
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
7
|
Cressiot B, Ouldali H, Pastoriza-Gallego M, Bacri L, Van der Goot FG, Pelta J. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sens 2019; 4:530-548. [PMID: 30747518 DOI: 10.1021/acssensors.8b01636] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.
Collapse
Affiliation(s)
- Benjamin Cressiot
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | - Hadjer Ouldali
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Manuela Pastoriza-Gallego
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Laurent Bacri
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | | | - Juan Pelta
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| |
Collapse
|
8
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
9
|
Fennouri A, Ramiandrisoa J, Bacri L, Mathé J, Daniel R. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores ⋆. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:127. [PMID: 30338424 DOI: 10.1140/epje/i2018-11733-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and [Formula: see text]-hemolysin nanopores. We show that pores of similar channel length and diameter lead to distinct translocation behavior of the same macromolecules, due to different structural properties of the nanopores. When passing from the vestibule side of the nanopores, short hyaluronic acid oligosaccharides could be detected during their translocation across an aerolysin nanopore but not across an [Formula: see text]-hemolysin nanopore. We were however able to detect longer oligosaccharide fragments, resulting from the in situ enzymatic depolymerization of hyaluronic acid polysaccharides, with both nanopores, meaning that short oligosaccharides were crossing the [Formula: see text]-hemolysin nanopore with a speed too high to be detected. The translocation speed was an order of magnitude higher across [Formula: see text]-hemolysin compared to aerolysin. These results show that the choice of a nanopore to be used for resistive pulse sensing experiments should not rely only on the diameter of the channel but also on other parameters such as the charge repartition within the pore lumen.
Collapse
Affiliation(s)
- Aziz Fennouri
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France
| | - Joana Ramiandrisoa
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France
| | - Laurent Bacri
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France
| | - Jérôme Mathé
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France
| | - Régis Daniel
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France.
| |
Collapse
|
10
|
Roman J, Le Pioufle B, Auvray L, Pelta J, Bacri L. From current trace to the understanding of confined media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:99. [PMID: 30159758 DOI: 10.1140/epje/i2018-11709-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Nanopores constitute devices for the sensing of nano-objects such as ions, polymer chains, proteins or nanoparticles. We describe what information we can extract from the current trace. We consider the entrance of polydisperse chains into the nanopore, which leads to a conductance drop. We describe the detection of these current blockades according to their shape. Finally, we explain how data analysis can be used to enhance our understanding of physical processes in confined media.
Collapse
Affiliation(s)
- Jean Roman
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, F-91025, Evry, France
| | - Bruno Le Pioufle
- ENS Paris-Saclay, CNRS, Institut d'Alembert, SATIE, Université Paris-Saclay, F-94230, Cachan, France
| | - Loïc Auvray
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Juan Pelta
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, F-91025, Evry, France
| | - Laurent Bacri
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, F-91025, Evry, France.
| |
Collapse
|
11
|
Oil Palm Phenolics Inhibit the In Vitro Aggregation of β-Amyloid Peptide into Oligomeric Complexes. Int J Alzheimers Dis 2018; 2018:7608038. [PMID: 29666700 PMCID: PMC5831689 DOI: 10.1155/2018/7608038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid-β peptide (Aβ) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of Aβ42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that Aβ42 aggregation is inhibited in vitro by oil palm phenolics (OPP), an aqueous extract from the oil palm tree (Elaeis guineensis). The data shows that OPP inhibits stacking of β-pleated sheets, which is essential for oligomerization. We demonstrate the inhibition of Aβ42 aggregation by (1) mass spectrometry; (2) Congo Red dye binding; (3) 2D-IR spectroscopy; (4) dynamic light scattering; (5) transmission electron microscopy; and (6) transgenic yeast rescue assay. In the yeast rescue assay, OPP significantly reduces the cytotoxicity of aggregating neuropeptides in yeast genetically engineered to overexpress these peptides. The data shows that OPP inhibits (1) the aggregation of Aβ into oligomers; (2) stacking of β-pleated sheets; and (3) fibrillar growth and coalescence. These inhibitory effects prevent the formation of neurotoxic oligomers and hold potential as a means to reduce neuroinflammation and neuronal death and thereby may play some role in the prevention or treatment of Alzheimer's disease.
Collapse
|
12
|
Jerga A, Chen D, Zhang C, Fu J, Kouadio JLK, Wang Y, Duff SMG, Howard JE, Rydel TJ, Evdokimov AG, Ramaseshadri P, Evans A, Bolognesi R, Park Y, Haas JA. Mechanistic insights into the first Lygus-active β-pore forming protein. Arch Biochem Biophys 2016; 600:1-11. [PMID: 27001423 DOI: 10.1016/j.abb.2016.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Abstract
The cotton pests Lygus hesperus and Lygus lineolaris can be controlled by expressing Cry51Aa2.834_16 in cotton. Insecticidal activity of pore-forming proteins is generally associated with damage to the midgut epithelium due to pores, and their biological specificity results from a set of key determinants including proteolytic activation and receptor binding. We conducted mechanistic studies to gain insight into how the first Lygus-active β-pore forming protein variant functions. Biophysical characterization revealed that the full-length Cry51Aa2.834_16 was a stable dimer in solution, and when exposed to Lygus saliva or to trypsin, the protein underwent proteolytic cleavage at the C-terminus of each of the subunits, resulting in dissociation of the dimer to two separate monomers. The monomer showed tight binding to a specific protein in Lygus brush border membranes, and also formed a membrane-associated oligomeric complex both in vitro and in vivo. Chemically cross-linking the β-hairpin to the Cry51Aa2.834_16 body rendered the protein inactive, but still competent to compete for binding sites with the native protein in vivo. Our study suggests that disassociation of the Cry51Aa2.834_16 dimer into monomeric units with unoccupied head-region and sterically unhindered β-hairpin is required for brush border membrane binding, oligomerization, and the subsequent steps leading to insect mortality.
Collapse
Affiliation(s)
| | | | | | - Jinping Fu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | | | | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
13
|
Cressiot B, Braselmann E, Oukhaled A, Elcock AH, Pelta J, Clark PL. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS NANO 2015; 9:9050-61. [PMID: 26302243 PMCID: PMC4835817 DOI: 10.1021/acsnano.5b03053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To evaluate the physical parameters governing translocation of an unfolded protein across a lipid bilayer, we studied protein transport through aerolysin, a passive protein channel, at the single-molecule level. The protein model used was the passenger domain of pertactin, an autotransporter virulence protein. Transport of pertactin through the aerolysin nanopore was detected as transient partial current blockades as the unfolded protein partially occluded the aerolysin channel. We compared the dynamics of entry and transport for unfolded pertactin and a covalent end-to-end dimer of the same protein. For both the monomer and the dimer, the event frequency of current blockades increased exponentially with the applied voltage, while the duration of each event decreased exponentially as a function of the electrical potential. The blockade time was twice as long for the dimer as for the monomer. The calculated activation free energy includes a main enthalpic component that we attribute to electrostatic interactions between pertactin and the aerolysin nanopore (despite the low Debye length), plus an entropic component due to confinement of the unfolded chain within the narrow pore. Comparing our experimental results to previous studies and theory suggests that unfolded proteins cross the membrane by passing through the nanopore in a somewhat compact conformation according to the "blob" model of Daoud and de Gennes.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | | | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Juan Pelta
- LAMBE UMR 8587 CNRS, University of Évry-Val-d'Essonne, Évry, France
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
14
|
Khilwani B, Chattopadhyay K. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Toxins (Basel) 2015; 7:3344-58. [PMID: 26308054 PMCID: PMC4549754 DOI: 10.3390/toxins7083344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023] Open
Abstract
Pore-forming toxins (PFTs) are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC) is a prominent member of the beta-barrel PFT (beta-PFT) family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.
Collapse
Affiliation(s)
- Barkha Khilwani
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
15
|
Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membr Biol 2015; 248:517-27. [PMID: 25850715 DOI: 10.1007/s00232-015-9798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30-50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | | | | | |
Collapse
|
16
|
Wuethrich I, Peeters JGC, Blom AEM, Theile CS, Li Z, Spooner E, Ploegh HL, Guimaraes CP. Site-specific chemoenzymatic labeling of aerolysin enables the identification of new aerolysin receptors. PLoS One 2014; 9:e109883. [PMID: 25275512 PMCID: PMC4183550 DOI: 10.1371/journal.pone.0109883] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022] Open
Abstract
Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.
Collapse
Affiliation(s)
- Irene Wuethrich
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janneke G. C. Peeters
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Annet E. M. Blom
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher S. Theile
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Carla P. Guimaraes
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Ekino K, Okumura S, Ishikawa T, Kitada S, Saitoh H, Akao T, Oka T, Nomura Y, Ohba M, Shin T, Mizuki E. Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis A1100 strain. Toxins (Basel) 2014; 6:1882-95. [PMID: 24945755 PMCID: PMC4073135 DOI: 10.3390/toxins6061882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5). PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4). The 50% effective concentration (EC₅₀) of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs). The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.
Collapse
Affiliation(s)
- Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Shiro Okumura
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Tomoyuki Ishikawa
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Sakae Kitada
- Department of Bioscience and Bioinfomatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Saitoh
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Tetsuyuki Akao
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Michio Ohba
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | - Takashi Shin
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Eiichi Mizuki
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| |
Collapse
|
18
|
Gillam JE, MacPhee CE. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:373101. [PMID: 23941964 DOI: 10.1088/0953-8984/25/37/373101] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amyloid and amyloid-like fibrils are self-assembling protein nanostructures, of interest for their robust material properties and inherent biological compatibility as well as their putative role in a number of debilitating mammalian disorders. Understanding fibril formation is essential to the development of strategies to control, manipulate or prevent fibril growth. As such, this area of research has attracted significant attention over the last half century. This review describes a number of different models that have been formulated to describe the kinetics of fibril assembly. We describe the macroscopic implications of mechanisms in which secondary processes such as secondary nucleation, fragmentation or branching dominate the assembly pathway, compared to mechanisms dominated by the influence of primary nucleation. We further describe how experimental data can be analysed with respect to the predictions of kinetic models.
Collapse
Affiliation(s)
- J E Gillam
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK
| | | |
Collapse
|
19
|
Fennouri A, Przybylski C, Pastoriza-Gallego M, Bacri L, Auvray L, Daniel R. Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS NANO 2012; 6:9672-9678. [PMID: 23046010 DOI: 10.1021/nn3031047] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosaminoglycans are biologically active anionic carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. The potential of newly introduced biosensors using protein nanopores that have been mainly described for nucleic acids and protein analysis to date, has been here applied to this polysaccharide-based third class of bioactive biopolymer. This nanopore approach has been harnessed in this study to analyze the hyaluronic acid glycosamiglycan and its depolymerization-derived oligosaccharides. The translocation of a glycosaminoglycan is reported using aerolysin protein nanopore. Nanopore translocation of hyaluronic acid oligosaccharides was evidenced by the direct detection of translocated molecules accumulated into the arrival compartment using high-resolution mass spectrometry. Anionic oligosaccharides of various polymerization degrees were discriminated through measurement of the dwelling time and translocation frequency. This molecular sizing capability of the protein nanopore device allowed the real-time recording of the enzymatic cleavage of hyaluronic acid polysaccharide. The time-resolved detection of enzymatically produced oligosaccharides was carried out to monitor the depolymerization enzyme reaction at the single-molecule level.
Collapse
Affiliation(s)
- Aziz Fennouri
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, Bd François Mitterrand, 91025 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled A, Betton JM, Auvray L, Pelta J. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. ACS Chem Biol 2012; 7:652-8. [PMID: 22260417 DOI: 10.1021/cb2004737] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding remains a challenge. A difficulty is to investigate experimentally all the conformations in the energy landscape. Only single molecule methods, fluorescence and force spectroscopy, allow observing individual molecules along their folding pathway. Here we observe that single-nanopore recording can be used as a new single molecule method to explore the unfolding transition and to examine the conformational space of native or variant proteins. We show that we can distinguish unfolded states from partially folded ones with the aerolysin pore. The unfolding transition curves of the destabilized variant are shifted toward the lower values of the denaturant agent compared to the wild type protein. The dynamics of the partially unfolded wild type protein follows a first-order transition. The denaturation curve obtained with the aerolysin pore is similar to that obtained with the α-hemolysin pore. The nanopore geometry or net charge does not influence the folding transition but changes the dynamics.
Collapse
Affiliation(s)
- Céline Merstorf
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | - Benjamin Cressiot
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | | | - Abdelghani Oukhaled
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | | | - Loïc Auvray
- Matière et Systèmes
Complexes, CNRS-UMR 7057, Université Paris Diderot, France
| | - Juan Pelta
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| |
Collapse
|
21
|
Mädler S, Boeri Erba E, Zenobi R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top Curr Chem (Cham) 2012; 331:1-36. [PMID: 22371170 DOI: 10.1007/128_2011_311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Okumura S, Saitoh H, Ishikawa T, Inouye K, Mizuki E. Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1476-82. [DOI: 10.1016/j.bbamem.2010.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022]
|
23
|
Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J 2011; 278:4589-601. [PMID: 21518257 DOI: 10.1111/j.1742-4658.2011.08140.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens ε-toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringens λ-protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin-Darby canine kidney (MDCK) cells. The binding of ε-toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε-toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin-2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε-toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | | | | | | | | |
Collapse
|
24
|
Pernot L, Schiltz M, van der Goot FG. Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1626-30. [PMID: 21139211 PMCID: PMC2998370 DOI: 10.1107/s1744309110041035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022]
Abstract
Aerolysin is a major virulence factor produced by the Gram-negative bacterium Aeromonas hydrophila and is a member of the β-pore-forming toxin family. Two oligomerization-deficient aerolysin mutants, H132D and H132N, have been overproduced, proteolyzed by trypsin digestion and purified. Crystals were grown from the proteolyzed forms and diffraction data were collected for the two mutants to 2.1 and 2.3 Å resolution, respectively. The prism-shaped crystals belonged to space group C2. The crystal structure of the mutants in the mature, but not heptameric, aerolysin form will provide insight into the intermediate states in the oligomerization process of a pore-forming toxin.
Collapse
Affiliation(s)
- Lucile Pernot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Station 15, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
25
|
Abstract
Bacterial toxins damage the host at the site of bacterial infection or distant from the site. Bacterial toxins can be single proteins or oligomeric protein complexes that are organized with distinct AB structure-function properties. The A domain encodes a catalytic activity. ADP ribosylation of host proteins is the earliest post-translational modification determined to be performed by bacterial toxins; other modifications include glucosylation and proteolysis. Bacterial toxins also catalyze the non-covalent modification of host protein function or can modify host cell properties through direct protein-protein interactions. The B domain includes two functional domains: a receptor-binding domain, which defines the tropism of a toxin for a cell and a translocation domain that delivers the A domain across a lipid bilayer, either on the plasma membrane or the endosome. Bacterial toxins are often characterized based upon the secretion mechanism that delivers the toxin out of the bacterium, termed types I-VII. This review summarizes the major families of bacterial toxins and also describes the specific structure-function properties of the botulinum neurotoxins.
Collapse
Affiliation(s)
- James S Henkel
- Medical College of Wisconsin, Department of Microbiology and Molecular Genetics, Milwaukee, WI 53151, USA.
| | | | | |
Collapse
|
26
|
Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A, Geny B, Vandewalle A, Popoff MR. Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis. Toxicon 2009; 55:61-72. [PMID: 19632260 DOI: 10.1016/j.toxicon.2009.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
Alpha-toxin is the unique lethal virulent factor produced by Clostridium septicum, which causes traumatic or non-traumatic gas gangrene and necrotizing enterocolitis in humans. Here, we analyzed channel formation of the recombinant septicum alpha-toxin and characterized its activity on living cells. Recombinant septicum alpha-toxin induces the formation of ion-permeable channels with a single-channel conductance of about 175pS in 0.1M KCl in lipid bilayer membranes, which is typical for a large diffusion pore. Septicum alpha-toxin channels remained mostly in the open configuration, displayed no lipid specificity, and exhibited slight anion selectivity. Septicum alpha-toxin caused a rapid decrease in the transepithelial electrical resistance of MDCK cell monolayers grown on filters, and induced a rapid cell necrosis in a variety of cell lines, characterized by cell permeabilization to propidium iodide without DNA fragmentation and activation of caspase-3. Septicum alpha-toxin also induced a rapid K(+) efflux and ATP depletion. Incubation of the cells in K(+)-enriched medium delayed cell death caused by septicum alpha-toxin or epsilon-toxin, another potent pore-forming toxin, suggesting that the rapid loss of intracellular K(+) represents an early signal of pore-forming toxins-mediated cell necrosis.
Collapse
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines, 28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guénin E, Lecouvey M, Hardouin J. Study of bisphosphonates by matrix-assisted laser desorption/ionization mass spectrometry--influence of alkali atoms on fragmentation patterns. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1234-1240. [PMID: 19306287 DOI: 10.1002/rcm.3984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
1-hydroxymethylene-1,1-bisphosphonic acids (or bisphosphonates) are compounds that have interesting pharmacological applications. However, few mass spectrometric investigations have been carried out to determine their fragmentation patterns. Herein, we evaluated different matrices for the study by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) of the formation and fragmentation of the protonated, the cationized (MNa+ and MK+) and the deprotonated bisphosphonates. Some in-source fragmentations were observed both in positive and in negative ion modes. The fragmentation patterns obtained in post-source decay mode are also discussed. In contrast to previous electrospray ionization/multi-stage mass spectrometry (ESI-MSn) studies, some new fragmentation pathways were deduced and the effects of alkali ions on the fragmentation patterns were shown. The results summarized here completed the data previously recorded by ESI-MSn and could be used for the characterization of bisphosphonates as alkali complexes in biological mixtures.
Collapse
Affiliation(s)
- Erwann Guénin
- Equipe Chimie Bioorganique et Bionanomatériaux (C2B), Laboratoire de Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| | | | | |
Collapse
|
28
|
Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:375-97. [DOI: 10.1016/j.bbapap.2008.10.016] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/17/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
29
|
Iacovache I, van der Goot FG, Pernot L. Pore formation: an ancient yet complex form of attack. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1611-23. [PMID: 18298943 DOI: 10.1016/j.bbamem.2008.01.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/03/2008] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Bacteria, as well as higher organisms such as sea anemones or earthworms, have developed sophisticated virulence factors such as the pore-forming toxins (PFTs) to mount their attack against the host. One of the most fascinating aspects of PFTs is that they can adopt a water-soluble form at the beginning of their lifetime and become an integral transmembrane protein in the membrane of the target cells. There is a growing understanding of the sequence of events and the various conformational changes undergone by these toxins in order to bind to the host cell surface, to penetrate the cell membranes and to achieve pore formation. These points will be addressed in this review.
Collapse
Affiliation(s)
- Ioan Iacovache
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Station 15, Lausanne, Switzerland
| | | | | |
Collapse
|
30
|
Hardouin J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. MASS SPECTROMETRY REVIEWS 2007; 26:672-82. [PMID: 17492750 DOI: 10.1002/mas.20142] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteins from biological samples are often identified by mass spectrometry (MS) with the two following "bottom-up" approaches: peptide mass fingerprinting or peptide sequence tag. Nevertheless, these strategies are time-consuming (digestion, liquid chromatography step, desalting step), the N- (or C-) terminal information often lacks and post-translational modifications (PTMs) are hardly observed. The in-source decay (ISD) occurring in a matrix assisted laser desorption/ionization (MALDI) source appears an interesting analytical tool to obtain N-terminal sequence, to identify proteins and to characterize PTMs by a "top-down" strategy. The goal of this review deals with the usefulness of the ISD technique in MALDI source in proteomics fields. In the first part, the ISD principle is explained and in the second part, the use of ISD in proteomic studies is discussed for protein identification and sequence characterization.
Collapse
Affiliation(s)
- Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris XIII, UMR CNRS 7033, 74 rue Marcel Cachin, 93 017, Bobigny Cedex, France.
| |
Collapse
|
31
|
Yanes O, Aviles FX, Roepstorff P, Jørgensen TJD. Exploring the "intensity fading" phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:359-67. [PMID: 17097887 DOI: 10.1016/j.jasms.2006.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/10/2006] [Accepted: 10/02/2006] [Indexed: 05/12/2023]
Abstract
The difficulties to detect intact noncovalent complexes involving proteins and peptides by MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently, "intensity fading MS" has been presented as an alternative strategy to detect noncovalent interactions in solution, in which a reduction in the relative signal intensity of low molecular mass binding partners (i.e., protease inhibitors) can be observed when their target protein (i.e., protease) is added to the sample. Here we have performed a systematic study to explore how various experimental conditions affect the intensity fading phenomenon, as well as a comparison with the strategy based on the direct detection of intact complexes by MALDI MS. For this purpose, the study is focused on two different protease-inhibitor complexes naturally occurring in solution, together with a heterogeneous mixture of nonbinding molecules derived from a biological extract, to examine the specificity of the approach, i.e., those of carboxypeptidase A (CPA) bound to potato carboxypeptidase inhibitor (PCI) and of trypsin bound to bovine pancreatic trypsin inhibitor (BPTI). Our results show that the intensity fading phenomenon occurs when the binding assay is carried out in the sub-muM range and the interacting partners are present in complex mixtures of nonbinding compounds. Thus, at these experimental conditions, the specific inhibitor-protease interaction causes a selective reduction in the relative abundance of the inhibitor. Interestingly, we could not detect any gaseous noncovalent inhibitor-protease ions at these conditions, presumably due to the lower high-mass sensitivity of MCP detectors.
Collapse
Affiliation(s)
- Oscar Yanes
- Institut de Biotecnologia i de Biomedicina, and Departament de Bioquimica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
32
|
Abstract
A rapid, specific, and sensitive method for the detection of protein-protein interactions is of crucial importance for drug discovery and clinical diagnostics. Mass spectrometry plays a major role in the analysis of proteins, but its application to the routine analysis of protein complexes has been lagging behind. A new strategy for high-throughput analysis of protein interactions is presented here. We demonstrate application to immunochemical questions such as epitope mapping, kinetic studies, and sandwich assays. The methodology is based on a direct mass spectrometric readout for antigen-antibody complexes in the 150-400 kDa range. This has become possible using a novel detector technology and chemical cross-linking to stabilize complexes for analysis by MALDI MS. We demonstrate high detection sensitivity (femtomole quantities of antigen), high specificity (specific detection of antigen directly in serum), high accuracy, and high speed (minutes per assay), surpassing conventional analytical methods by more than 2 orders of magnitude.
Collapse
Affiliation(s)
- Alexis Nazabal
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Tilley SJ, Saibil HR. The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 2006; 16:230-6. [PMID: 16563740 DOI: 10.1016/j.sbi.2006.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/06/2006] [Accepted: 03/14/2006] [Indexed: 01/13/2023]
Abstract
A remarkable group of proteins challenge the notions that protein sequence determines a unique three-dimensional structure, and that membrane and soluble proteins are very distinct. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. Recent structural studies provide ideas about how these changes take place. The recently solved structures of the beta-pore-forming toxins LukS, epsilon-toxin and intermedilysin confirm that the pore-forming regions are initially folded up on the surfaces of the soluble precursors. To create the transmembrane pores, these regions must extend and refold into membrane-inserted beta-barrels.
Collapse
Affiliation(s)
- Sarah J Tilley
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
34
|
Smith AW, Cámara-Artigas A, Brune DC, Allen JP. Implications of high-molecular-weight oligomers of the binary toxin from Bacillus sphaericus. J Invertebr Pathol 2005; 88:27-33. [PMID: 15707866 DOI: 10.1016/j.jip.2004.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 07/20/2004] [Accepted: 10/08/2004] [Indexed: 11/26/2022]
Abstract
The mosquito-larvicidal binary toxin produced by Bacillus sphaericus is composed of BinB and BinA, which have calculated molecular weights of 51.4 and 41.9 kDa, respectively. NaOH extracts of B. sphaericus spores were analyzed using SDS-PAGE. Stained gels showed bands with molecular weights corresponding to those of BinB and BinA as well as two additional bands at 110 and 125 kDa. The matrix-assisted laser desorption/ionization mass spectrum of the purified 110 and 125 kDa bands showed two peaks at 104,160 and 87,358 Da that are assigned to dimers of BinB and BinA, respectively. Mass spectral analysis of trypsin-digested 110 and 125 kDa bands showed peaks at 51,328, 43,523, 43,130, and 40,832 Da that assigned to undigested BinB, two forms of digested BinB and digested BinA, respectively. Dynamic light scattering studies showed a solution of the purified 110 and 125 kDa bands was comprised almost entirely (99.6% of total mass) of a particle with a hydrodynamic radius of 5.6+/-1.2 nm and a calculated molecular weight of 186+/-38 kDa. These data demonstrate that the binary toxin extracted from B. sphaericus spores can exist in solution as an oligomer containing two copies each of BinB and BinA.
Collapse
Affiliation(s)
- A W Smith
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
35
|
Schlosser G, Vékey K, Malorni A, Pocsfalvi G. Combination of solid-phase affinity capture on magnetic beads and mass spectrometry to study non-covalent interactions: example of minor groove binding drugs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3307-14. [PMID: 16217838 DOI: 10.1002/rcm.2193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A simple and novel approach was developed to detect non-covalent interactions. It is based on combination of solid-phase affinity capture with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). One of the interacting molecules is bound to magnetic beads and is incubated with the target molecules in solution. The complex bound on the solid support is removed from the solution and transferred for MALDI analysis. Mass spectrometry is used only to detect the target compound, which is far more straightforward than detecting the intact non-covalent complex. To demonstrate the applicability of the method, an AT-rich oligonucleotide (5'-CCCCCAATTCCCCC-3') and its complementary biotinylated sequence (5'-biotin-GGGGGAATTGGGGG-3') were hybridized and immobilized to paramagnetic particles by streptavidin-biotin interaction. The immobilized duplex oligonucleotide was reacted with minor groove binding drugs, Netropsin, Distamycin A, Hoechst 33258 and 4',6-diamidino-2-phenylindole. The resulting DNA-drug complex bound to the particles was separated and analyzed by linear MALDI-TOFMS after washing. Drugs were selectively detected in the spectra. Relative binding strengths were also estimated using competitive complexation.
Collapse
Affiliation(s)
- Gitta Schlosser
- Proteomic and Biomolecular Mass Spectrometry Center (CeSMa-ProBio), Institute of Food Science and Technology, C.N.R., via Roma 52 a/c, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
36
|
Zehl M, Allmaier G. Instrumental Parameters in the MALDI-TOF Mass Spectrometric Analysis of Quaternary Protein Structures. Anal Chem 2004; 77:103-10. [PMID: 15623284 DOI: 10.1021/ac040003k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several former studies have shown that MALDI-TOF-MS can be applied successfully to investigate the quaternary structure of proteins. Whereas most of these reports were focused on MALDI sample preparation, there is little information about the influence of instrumental parameters on the desorption/ionization and gas-phase behavior of protein subunit assemblies. Therefore, in addition of giving short examples of the quaternary structure analysis of a microheterogeneous glycoprotein, a metalloenzyme, and a heme-binding enzyme by MALDI-TOF-MS, we report a systematic study of the effect of some instrumental parameters on the analysis of chicken egg white avidin. From these tested parameters, only the laser pulse energy was found to influence the relative abundance of the intact assembly as well as the formation of nonspecific cluster ions significantly. This finding suggests that the disruption of the noncovalent interactions during the desorption/ionization process takes place at a very short time interval after the laser ablation, whereas those assemblies that survive this step are rather stable afterward in the gas phase. In addition, we present clear evidence that protein cluster ions are not preformed during sample preparation but originate from nonspecific assemblage during desorption/ionization.
Collapse
Affiliation(s)
- Martin Zehl
- Institute of Chemical Technologies and Analysis, Vienna University of Technology, Getreidemarkt 9/164-IAC, A-1060 Vienna, Austria
| | | |
Collapse
|
37
|
de Vitry C, Desbois A, Redeker V, Zito F, Wollman FA. Biochemical and spectroscopic characterization of the covalent binding of heme to cytochrome b6. Biochemistry 2004; 43:3956-68. [PMID: 15049703 DOI: 10.1021/bi036093p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure of the cytochrome b(6)f complex disclosed the unexpected presence of a new heme c(i) [Stroebel, D., Choquet, Y., Popot, J.-L., and Picot, D. (2003) Nature 426, 413-418; Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Science 302, 1009-1014]. Here we present a biochemical, spectroscopic, and mutagenesis study of this unusual heme binding in Chlamydomonas reinhardtii. As predicted by the structure data, we identify a Cys(35)-containing proteolytic fragment (Tyr(25)-Lys(111)) from cytochrome b(6) as a peptide that covalently binds a heme. Resonance Raman spectra of cyt b(6)f complexes show particular frequencies in nu(2), nu(3), nu(4), and nu(8) regions that identify this extra heme as a ferrous c'-like heme under a five-coordinated high-spin state. The set of frequencies is consistent with a coordination by either a water molecule or a hydroxide ion. Other changes in resonance Raman bands, observed in the mid- and low-frequency regions, point to a modification in conformation and/or environment of at least one b heme methyl and/or propionate group. Site-directed mutagenesis of apocytochrome b(6), leading to a Cys(35)Val substitution, generates Chlamydomonas strains that are unable to assemble cytochrome b(6)f complexes. On the basis of the mutant phenotype, we discuss the participation, in the covalent binding of heme c(i), of the nuclear CCB factors that we identified previously as controlling the apo to holo conversion of cytochrome b(6) [Kuras, R., de Vitry, C., Choquet, Y., Girard-Bascou, J., Culler, D., Büschlen, S., Merchant, S., and Wollman, F.-A. (1997) J. Biol. Chem. 272, 32427-32435].
Collapse
Affiliation(s)
- Catherine de Vitry
- Physiologie Membranaire et Moléculaire du Chloroplaste CNRS UPR 1261, Institut de Biologie Physico-Chimique CNRS FRC 550, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
38
|
Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak AK. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol 2004; 11:797-8. [PMID: 15258571 DOI: 10.1038/nsmb804] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 05/20/2004] [Indexed: 11/09/2022]
Abstract
Epsilon-toxin from Clostridium perfringens is a lethal toxin. Recent studies suggest that the toxin acts via an unusually potent pore-forming mechanism. Here we report the crystal structure of epsilon-toxin, which reveals structural similarity to aerolysin from Aeromonas hydrophila. Pore-forming toxins can change conformation between soluble and transmembrane states. By comparing the two toxins, we have identified regions important for this transformation.
Collapse
Affiliation(s)
- Ambrose R Cole
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
39
|
Lengqvist J, Svensson R, Evergren E, Morgenstern R, Griffiths WJ. Observation of an Intact Noncovalent Homotrimer of Detergent-solubilized Rat Microsomal Glutathione Transferase-1 by Electrospray Mass Spectrometry. J Biol Chem 2004; 279:13311-6. [PMID: 14726533 DOI: 10.1074/jbc.m310958200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry and Biophysics, Lüdwig Institute for Cancer Research, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
40
|
Abrami L, Fivaz M, Glauser PE, Sugimoto N, Zurzolo C, van der Goot FG. Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin. Infect Immun 2003; 71:739-46. [PMID: 12540553 PMCID: PMC145399 DOI: 10.1128/iai.71.2.739-746.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerolysin is one of the major virulence factors produced by Aeromonas hydrophila, a human pathogen that produces deep wound infection and gastroenteritis. The toxin interacts with target mammalian cells by binding to the glycan core of glycosylphosphatidyl inositol (GPI)-anchored proteins and subsequently forms a pore in the plasma membrane. Since epithelial cells of the intestine are the primary targets of aerolysin, we investigated its effect on three types of polarized epithelial cells: Caco-2 cells, derived from human intestine; MDCK cells, a well-characterized cell line in terms of protein targeting; and FRT cells, an unusual cell line in that it targets its GPI-anchored proteins to the basolateral plasma membrane in contrast to other epithelial cells, which target them almost exclusively to the apical surface. Surprisingly, we found that all three cell types were sensitive to the toxin from both the apical and the basolateral sides. Apical sensitivity was always higher, even for FRT cells. In contrast, FRT cells were more sensitive from the basolateral than from the apical side to the related toxin Clostridium septicum alpha-toxin, which also binds to GPI-anchored proteins but lacks the lectin binding domain found in aerolysin. These observations are consistent with the notion that a shuttling mechanism involving low-affinity interactions with surface sugars allows aerolysin to gradually move toward the membrane surface, where it can finally encounter the glycan cores of GPI-anchored proteins.
Collapse
Affiliation(s)
- Laurence Abrami
- Department of Genetics and Microbiology, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Schlosser G, Pocsfalvi G, Malorni A, Puerta A, de Frutos M, Vékey K. Detection of immune complexes by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2741-2747. [PMID: 14673821 DOI: 10.1002/rcm.1239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to detect an immune complex formed between beta-lactoglobulin and polyclonal anti-beta-lactoglobulin antibody in the gas phase. The most important experimental parameters to detect such a specific antibody-antigen complex by MALDI were the use of solutions at near-neutral pH and of sinapinic acid matrix prepared by the dried-droplet method. Under such conditions, predominantly one but also two molecules of antigen protein were complexed by the antibody. Specific formation of the antibody-antigen complex was confirmed by performing competitive reactions. Addition of antibody to a 1:1 mixture of beta-lactoglobulin and one control protein resulted not only in the appearance of the expected antibody-antigen complex, but also in a strong decrease in the free beta-lactoglobulin signal, while the abundance of the control protein was not influenced.
Collapse
Affiliation(s)
- Gitta Schlosser
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Like a variety of other pathogenic bacteria, Aeromonas hydrophila secretes a pore-forming toxin that contribute to its virulence. The last decade has not only increased our knowledge about the structure of this toxin, called aerolysin, but has also shed light on how it interacts with its target cell and how the cell reacts to this stress. Whereas pore-forming toxins are generally thought to lead to brutal death by osmotic lysis of the cell, based on what is observed for erythrocytes, recent studies have started to reveal far more complicated pathways leading to death of nucleated mammalian cells.
Collapse
Affiliation(s)
- M Fivaz
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
43
|
Hebrard E, Drucker M, Leclerc D, Hohn T, Uzest M, Froissart R, Strub JM, Sanglier S, van Dorsselaer A, Padilla A, Labesse G, Blanc S. Biochemical characterization of the helper component of Cauliflower mosaic virus. J Virol 2001; 75:8538-46. [PMID: 11507199 PMCID: PMC115099 DOI: 10.1128/jvi.75.18.8538-8546.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The helper component of Cauliflower mosaic virus is encoded by viral gene II. This protein (P2) is dispensable for virus replication but required for aphid transmission. The purification of P2 has never been reported, and hence its biochemical properties are largely unknown. We produced the P2 protein via a recombinant baculovirus with a His tag fused at the N terminus. The fusion protein was purified by affinity chromatography in a soluble and biologically active form. Matrix-assisted laser desorption time-of-flight mass spectrometry demonstrated that P2 is not posttranslationally modified. UV circular dichroism revealed the secondary structure of P2 to be 23% alpha-helical. Most alpha-helices are suggested to be located in the C-terminal domain. Using size exclusion chromatography and aphid transmission testing, we established that the active form of P2 assembles as a huge soluble oligomer containing 200 to 300 subunits. We further showed that P2 can also polymerize as long paracrystalline filaments. We mapped P2 domains involved in P2 self-interaction, presumably through coiled-coil structures, one of which is proposed to form a parallel trimer. These regions have previously been reported to also interact with viral P3, another protein involved in aphid transmission. Possible interference between the two types of interaction is discussed with regard to the biological activity of P2.
Collapse
Affiliation(s)
- E Hebrard
- Station de Recherches de Pathologie Comparée, UMR 5087, INRA-CNRS-Université Montpellier II, 30380 Saint-Christol-les-Alès, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fivaz M, Abrami L, Tsitrin Y, van der Goot FG. Aerolysin from Aeromonas hydrophila and related toxins. Curr Top Microbiol Immunol 2001; 257:35-52. [PMID: 11417121 DOI: 10.1007/978-3-642-56508-3_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Fivaz
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
45
|
Abstract
In view of the recent studies on the CDCs, a reasonable schematic of the stages leading to membrane insertion of the CDCs can be assembled. As shown in Fig. 3, we propose that the CDC first binds to the membrane as a monomer. These monomers then diffuse laterally on the membrane surface to encounter other monomers or incomplete oligomeric complexes. Presumably, once the requisite oligomer size is reached, the prepore complex is converted into the pore complex and a large membrane channel is formed. During the conversion of the prepore complex to the pore complex, we predict that the TMHs of the subunits in the prepore complex insert into the bilayer in a concerted fashion to form the large transmembrane beta-barrel, although this still remains to be confirmed experimentally. Many intriguing problems concerning the cytolytic mechanism of the CDCs remain unsolved. The nature of the initial interaction of the CDC monomer with the membrane is currently one of the most controversial questions concerning the CDC mechanism. Is cholesterol involved in this interaction, as previously assumed, or do specific receptors exist for these toxins that remain to be discovered? Also, the trigger for membrane insertion and the regions of these toxins that facilitate the [figure: see text] interaction of the monomers during prepore complex formation are unknown. In addition, the temporal sequence of the multiple structural changes that accompany the conversion of the soluble CDC monomer into a membrane-inserted oligomer have yet to be defined or characterized kinetically.
Collapse
Affiliation(s)
- R K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
46
|
Abstract
The development of MALDI-TOF mass spectrometry methods for the characterization of bacteria is reviewed and discussed. The general use of MALDI for the characterization of large biomolecules led directly to obvious applications involving the analysis of isolated bacterial proteins. More surprising was the observation that MALDI-TOF mass spectrometry could be applied directly to crude cellular fractions or cellular suspensions and that the resulting data from such complex mixtures could provide evidence for chemotaxonomic classification. Versatility and the rapidity of analysis led to the rapid development of a number of MALDI-TOF methods involving bacteria. Examples of some of the applications covered in this review are the analysis of bacterial RNA and DNA, the detection of recombinant proteins, the characterization of targeted or unknown proteins, bacterial proteomics, the detection of virulence markers, and the very rapid characterization of bacteria at the genus, species, and strain level. The demonstrated capability of taxonomic classification at the strain level, using unprocessed cells, opens the possibility that MALDI-TOF and similar mass spectrometry approaches may contribute significantly to fulfilling emerging needs for the development of near real-time methods for the characterization of bacteria.
Collapse
Affiliation(s)
- J O Lay
- Division of Chemistry, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
47
|
Miyata S, Matsushita O, Minami J, Katayama S, Shimamoto S, Okabe A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J Biol Chem 2001; 276:13778-83. [PMID: 11278924 DOI: 10.1074/jbc.m011527200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Clostridium perfringens epsilon-protoxin by tryptic digestion is accompanied by removal of the 13 N-terminal and 22 C-terminal amino acid residues. In this study, we examined the toxicity of four constructs: an epsilon-protoxin derivative (PD), in which a factor Xa cleavage site was generated at the C-terminal trypsin-sensitive site; PD without the 13 N-terminal residues (DeltaN-PD); PD without the 23 C-terminal residues (DeltaC-PD); and PD without either the N- or C-terminal residues (DeltaNC-PD). A mouse lethality test showed that DeltaN-PD was inactive, as is PD, whereas DeltaC-PD and DeltaNC-PD were equally active. DeltaC-PD and DeltaNC-PD, but not the other constructs formed a large SDS-resistant complex in rat synaptosomal membranes as demonstrated by SDS-polyacrylamide gel electrophoresis. When DeltaNC-PD and DeltaC-PD, both labeled with (32)P and mixed in various ratios, were incubated with membranes, eight distinct high molecular weight bands corresponding to six heteropolymers and two homopolymers were detected on a SDS-polyacrylamide gel, indicating the active toxin forms a heptameric complex. These results indicate that C-terminal processing is responsible for activation of the toxin and that it is essential for its heptamerization within the membrane.
Collapse
Affiliation(s)
- S Miyata
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Garnier C, Lafitte D, Jorgensen TJ, Jensen ON, Briand C, Peyrot V. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2402-7. [PMID: 11298759 DOI: 10.1046/j.1432-1327.2001.02121.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HSP90 is one of the most abundant proteins in the cytosol of eukaryotic cells. HSP90 forms transient or stable complexes with several key proteins involved in signal transduction including protooncogenic protein kinases and nuclear receptors, it interacts with cellular structural elements such as actin-microfilament, tubulin-microtubule and intermediate filaments, and also exhibits conventional chaperone functions. This protein exists in two isoforms alpha-HSP90 and beta-HSP90, and it forms dimers which are crucial species for its biological activity. PAGE, ESI-MS and MALDI-MS were used to study HSP90 purified from pig brain. The two protein isoforms were clearly distinguished by ESI-MS, the alpha isoform being approximately six times more abundant than the beta isoform. ESI-MS in combination with lambda phosphatase treatment provided direct evidence of the existence of four phosphorylated forms of native pig brain alpha-HSP90, with the diphosphorylated form being the most abundant. For the beta isoform, the di-phosphorylated was also the most abundant. MALDI mass spectra of HSP90 samples after chemical cross-linking showed a high percentage of alpha-alpha homodimers. In addition, evidence for the existence of higher HSP90 oligomers was obtained.
Collapse
Affiliation(s)
- C Garnier
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, France
| | | | | | | | | | | |
Collapse
|
49
|
Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 2001; 276:8261-8. [PMID: 11102453 DOI: 10.1074/jbc.m009865200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perfringolysin O (PFO), a member of the cholesterol-dependent cytolysin family of pore-forming toxins, forms large oligomeric complexes comprising up to 50 monomers. In the present study, a disulfide bridge was introduced between cysteine-substituted serine 190 of transmembrane hairpin 1 (TMH1) and cysteine-substituted glycine 57 of domain 2 of PFO. The resulting disulfide-trapped mutant (PFO(C190-C57)) was devoid of hemolytic activity and could not insert either of its transmembrane beta-hairpins (TMHs) into the membrane unless the disulfide was reduced. Both the size of the oligomer formed on the membrane and its rate of formation were unaffected by the oxidation state of the Cys(190)-Cys(57) disulfide bond; thus, the disulfide-trapped PFO was assembled into a prepore complex on the membrane. The conversion of this prepore to the pore complex was achieved by reducing the C190-C57 disulfide bond. PFO(C190-C57) that was allowed to form the prepore prior to the reduction of the disulfide exhibited a dramatic increase in the rate of PFO-dependent hemolysis and the membrane insertion of its TMHs when compared with toxin that had the disulfide reduced prior mixing the toxin with membranes. Therefore, the rate-limiting step in pore formation is prepore assembly, not TMH insertion. These data demonstrate that the prepore is a legitimate intermediate during the insertion of the large transmembrane beta-sheet of the PFO oligomer. Finally, the PFO TMHs do not appear to insert independently, but instead their insertion is coupled.
Collapse
Affiliation(s)
- E M Hotze
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | | | |
Collapse
|
50
|
Labrie V, Harel J, Dubreuil JD. Oligomerization of Escherichia coli enterotoxin b through its C-terminal hydrophobic alpha-helix. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:128-33. [PMID: 11342001 DOI: 10.1016/s0925-4439(00)00091-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chemical cross-linker and gel electrophoresis or a dot blot overlay assay, we studied protein-protein interaction of STb toxin, a 48-residue amphiphilic polypeptide causing intestinal disorders. For the first time, we report on the oligomerization property of STb. This enterotoxin forms hexamers and heptamers in a temperature-independent fashion in presence or absence of its receptor (sulfatide) anchored in a 50-nm liposome or as a free molecule. Full STb structure integrity is necessary for its oligomerization as this process is not observed under reducing conditions in the presence of beta-mercaptoethanol. STb treatment with tetramethylurea (TMU) and different detergents prevented oligomerization. Site-directed mutagenesis decreasing overall STb hydrophobicity in the hydrophobic alpha-helix resulted in the incapacity to form oligomers. Taken together, these data suggest that the C-terminal hydrophobic alpha-helix corresponds to the domain of STb-STb inter-binding where hydrophobic interaction is involved.
Collapse
Affiliation(s)
- V Labrie
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, C.P. 5000, Québec J2S 7C6, Saint-Hyacinthe, Canada
| | | | | |
Collapse
|