1
|
Zheng X, Wang C, Zhang K, Xu Y, Qu X, Cao P, Zhou T, Chen Q. Revealing critical mechanisms involved in carbon nanosol-mediated tobacco growth using small RNA and mRNA sequencing in silico approach. BMC PLANT BIOLOGY 2024; 24:1233. [PMID: 39710652 DOI: 10.1186/s12870-024-05992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Nanomaterials have been shown to promote crop growth, yield and stress resistance. Carbon nanosol (CNS), a type of nanomaterial, is used to regulate tobacco shoot and root growth. However, information about the application of CNS to crop plants, especially tobacco, is still limited. Based on differential expression analysis and trend analysis, several miRNAs (miRN21-Novel-5p-mature, miR319b-Probable-5p-mature, miR160a-c-Known/Probable-5p-mature and miR156c-e-Known-5p-mature/star) and their target genes, including transcription factors (TFs), are likely responsible for the effect of CNS on promoting the growth of tobacco plants. In addition, we characterized nine TFs [Nitab4.5_00001789g0110 (NbbZIP), Nitab4.5_00001176g0010 (NbMYB), Nitab4.5_0001366g0010 (NbNAC), Nitab4.5_00000895g013 (NbMYB), Nitab4.5_0001225g0120 (NbNAC), Nitab4.5_0000202g0230 (NbDof), Nitab4.5_0002241g0010 (NbMYB-related), Nitab4.5_0000410g0060 (NbTCP), and Nitab4.5_0000159g0180 (NbC2H2)] associated with the response of tobacco to CNS according to the differential expression analysis, TF‒gene interaction network analysis and weighted correlation network analysis (WGCNA). Taken together, the findings of our study help understand CNS-mediated growth promotion in tobacco plants. The identification of candidate miRNAs and genes will provide potential support for the use of CNS in tobacco.
Collapse
Affiliation(s)
- Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Kunlong Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Xiaozhan Qu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China.
- Beijing Life Science Academy (BLSA), Beijing, 102209, China.
| |
Collapse
|
2
|
Hsiang TF, Yamane H, Gao-Takai M, Tao R. Regulatory role of Prunus mume DAM6 on lipid body accumulation and phytohormone metabolism in the dormant vegetative meristem. HORTICULTURE RESEARCH 2024; 11:uhae102. [PMID: 38883329 PMCID: PMC11179725 DOI: 10.1093/hr/uhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024]
Abstract
Bud dormancy is a crucial process in the annual growth cycle of woody perennials. In Rosaceae fruit tree species, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factor genes regulating bud dormancy have been identified, but their molecular roles in meristematic tissues have not been thoroughly characterized. In this study, molecular and physiological analyses of transgenic apple plants overexpressing the Japanese apricot DAM6 gene (PmDAM6) and Japanese apricot cultivars and F1 individuals with contrasting dormancy characteristics revealed the metabolic pathways controlled by PmDAM6. Our transcriptome analysis and transmission electron microscopy examination demonstrated that PmDAM6 promotes the accumulation of lipid bodies and inhibits cell division in the dormant vegetative meristem by down-regulating the expression of lipid catabolism genes (GDSL ESTERASE/LIPASE and OIL BODY LIPASE) and CYCLIN genes, respectively. Our findings also indicate PmDAM6 promotes abscisic acid (ABA) accumulation and decreases cytokinin (CTK) accumulation in vegetative buds by up-regulating the expression of the ABA biosynthesis gene ARABIDOPSIS ALDEHYDE OXIDASE and the CTK catabolism gene CYTOKININ DEHYDROGENASE, while also down-regulating the expression of the CTK biosynthesis genes ISOPENTENYL TRANSFERASE (IPT) and CYP735A. Additionally, PmDAM6 modulates gibberellin (GA) metabolism by up-regulating GA2-OXIDASE expression and down-regulating GA3-OXIDASE expression. Furthermore, PmDAM6 may also indirectly promote lipid accumulation and restrict cell division by limiting the accumulation of CTK and GA in buds. In conclusion, using our valuable genetic platform, we clarified how PmDAM6 modifies diverse cellular processes, including lipid catabolism, phytohormone (ABA, CTK, and GA) biosynthesis and catabolism, and cell division, in the dormant vegetative meristem.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mei Gao-Takai
- Experimental Farm, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Nisler J, Pěkná Z, Končitíková R, Klimeš P, Kadlecová A, Murvanidze N, Werbrouck SPO, Plačková L, Kopečný D, Zalabák D, Spíchal L, Strnad M. Cytokinin oxidase/dehydrogenase inhibitors: outlook for selectivity and high efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4806-4817. [PMID: 35522987 DOI: 10.1093/jxb/erac201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Inhibitors of cytokinin oxidase/dehydrogenase (CKX) reduce the degradation of cytokinins in plants, and this effect can be exploited in agriculture and in plant tissue culture. In this study, we examine the structure-activity relationship of two series of CKX inhibitors based on diphenylurea. The compounds of Series I were derived from the recently published CKX inhibitors 3TFM-2HM and 3TFM-2HE, and we identified key substituents with increased selectivity for maize ZmCKX1 and ZmCKX4a over AtCKX2 from Arabidopsis. Series II contained compounds that further exceled in CKX inhibitory activity as well as in the ease of their synthesis. The best inhibitors exhibited half-maximal inhibitory concentration (IC50) values in low nanomolar ranges with ZmCKX1 and especially with ZmCKX4a, which is generally more resistant to inhibition. The activity of the key compounds was verified in tobacco and lobelia leaf-disk assays, where N6-isopentenyladenine was protected from degradation and promoted shoot regeneration. All the prepared compounds were further tested for toxicity against Caenorhabditis elegans, and the assays revealed clear differences in toxicity between compounds with and without a hydroxyalkyl group. In a broader perspective, this work increases our understanding of CKX inhibition and provides a more extensive portfolio of compounds suitable for agricultural and biotechnological research.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-783 71, Czech Republic
| | - Zuzana Pěkná
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-783 71, Czech Republic
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Klimeš
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-783 71, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Nino Murvanidze
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefaan P O Werbrouck
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-783 71, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Park J, Lee S, Park G, Cho H, Choi D, Umeda M, Choi Y, Hwang D, Hwang I. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. PLANT PHYSIOLOGY 2021; 186:1734-1746. [PMID: 33909905 PMCID: PMC8260111 DOI: 10.1093/plphys/kiab180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/31/2021] [Indexed: 05/23/2023]
Abstract
The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.
Collapse
Affiliation(s)
- Joonghyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Geuntae Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hyunwoo Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
5
|
Yang W, Cortijo S, Korsbo N, Roszak P, Schiessl K, Gurzadyan A, Wightman R, Jönsson H, Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 2021; 371:1350-1355. [PMID: 33632892 PMCID: PMC8166333 DOI: 10.1126/science.abe2305] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/09/2021] [Indexed: 01/16/2023]
Abstract
Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4-consistent with an associated transient peak in cytokinin concentration-feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.
Collapse
Affiliation(s)
- Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Niklas Korsbo
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Aram Gurzadyan
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK. .,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.,Department of Astronomy and Theoretical Physics, Lund University, SE22362 Lund, Sweden
| | - Elliot Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK. .,Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Nisler J, Kopečný D, Pěkná Z, Končitíková R, Koprna R, Murvanidze N, Werbrouck SPO, Havlíček L, De Diego N, Kopečná M, Wimmer Z, Briozzo P, Moréra S, Zalabák D, Spíchal L, Strnad M. Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:355-370. [PMID: 32945834 DOI: 10.1093/jxb/eraa437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/17/2020] [Indexed: 05/11/2023]
Abstract
Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins. Here, we describe the synthesis and biological activities of new CKX inhibitors derived mainly from diphenylurea. They were tested on four CKX isoforms from maize and Arabidopsis, where the best compounds showed IC50 values in the 10-8 M concentration range. The binding mode of the most efficient inhibitors was characterized from high-resolution crystal complexed structures. Although these compounds do not possess intrinsic cytokinin activity, we have demonstrated their tremendous potential for use in the plant tissue culture industry as well as in agriculture. We have identified a key substance, compound 19, which not only increases stress resistance and seed yield in Arabidopsis, but also improves the yield of wheat, barley and rapeseed grains under field conditions. Our findings reveal that modulation of cytokinin levels via CKX inhibition can positively affect plant growth, development and yield, and prove that CKX inhibitors can be an attractive target in plant biotechnology and agriculture.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Zuzana Pěkná
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Radoslav Koprna
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Nino Murvanidze
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefaan P O Werbrouck
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, Versailles, France
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| |
Collapse
|
7
|
Ferreira BG, Freitas MSC, Bragança GP, Moreira ASFP, Carneiro RGS, Isaias RMS. Enzyme-mediated metabolism in nutritive tissues of galls induced by Ditylenchus gallaeformans (Nematoda: Anguinidae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1052-1062. [PMID: 31102569 DOI: 10.1111/plb.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The galls induced by Ditylenchus gallaeformans (Nematoda) on leaves of Miconia albicans have unique features when compared to other galls. The nematode colonies are surrounded by nutritive tissues with promeristematic cells, capable of originating new emergences facing the larval chamber, and providing indeterminate growth to these galls. Considering enzyme activity as essential for the translocation of energetic molecules from the common storage tissue (CST) to the typical nutritive tissue (TNT), and the major occurrence of carbohydrates in nematode galls, it was expected that hormones would mediate sink strength relationships by activating enzymes in indeterminate growth regions of the galls. Histochemical, immunocytochemical and quantitative analyses were made in order to demonstrate sites of enzyme activity and hormones, and comparative levels of total soluble sugars, water soluble polysaccharides and starch. The source-sink status, via carbohydrate metabolism, is controlled by the major accumulation of cytokinins in totipotent nutritive cells and new emergences. Thus, reducing sugars, such as glucose and fructose, accumulate in the TNT, where they supply the energy for successive cycles of cell division and for nematode feeding. The histochemical detection of phosphorylase and invertase activities indicates the occurrence of starch catabolism and sucrose transformation into reducing sugars, respectively, in the establishment of a gradient from the CST towards the TNT. Reducing sugars in the TNT are important for the production of new cell walls during the indeterminate growth of the galls, which have increased levels of water-soluble polysaccharides that corroborate such a hypothesis. Functional relationship between plant hormone accumulation, carbohydrate metabolism and cell differentiation in D. gallaeformans-induced galls is attested, providing new insights on cell development and plant metabolism.
Collapse
Affiliation(s)
- B G Ferreira
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M S C Freitas
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - G P Bragança
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A S F P Moreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - R G S Carneiro
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - R M S Isaias
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S, Koukalová Š, Zouhar J, Inzé D, Brzobohatý B. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:805-824. [PMID: 30748050 DOI: 10.1111/tpj.14285] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.
Collapse
Affiliation(s)
- Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Liesbeth Vercruyssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jana Hradilová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Patricie Skaláková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Šárka Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Jan Zouhar
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
9
|
Ćosić T, Raspor M, Savić J, Cingel A, Matekalo D, Zdravković-Korać S, Ninković S. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:257-269. [PMID: 30537612 DOI: 10.1016/j.jplph.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Kohlrabi (Brassica oleracea var. gongylodes) is an important vegetable crop that is able to undergo shoot regeneration in culture from intact seedlings in a single-step regeneration process, using cytokinin as the only plant growth regulator. In this work, we present the expression profiles of seven organogenesis-related genes over the time course of shoot regeneration from intact seedlings of kohlrabi cv. Vienna Purple on shoot regeneration media containing trans-zeatin, cis-zeatin, benzyl adenine or thidiazuron. Two auxin transporter genes - PIN3 and PIN4, a cytokinin response regulator - ARR5, two shoot apical meristem-related transcription factors - CUC1 and RGD3, and two cell cycle-related genes - CDKB2;1 and CYCB2;4 - displayed bimodal expression patterns on most cytokinin-containing media when their expression levels were normalized against control plants grown on hormone-free media. The first expression peak corresponded to direct upregulation by cytokinin from the growth media, and the second one reflected transcriptional events related to callus formation and/or acquisition of organogenic competence, corresponding to the shoot regeneration phases that have already been characterized in Arabidopsis thaliana. We demonstrate that the genes involved in the two-step shoot regeneration of Arabidopsis display their expected expression profiles during the single-step shoot regeneration of its close phylogenetic relative kohlrabi confirming the universality of their roles in the distinct phases of the regeneration process in Brassicaceae. The results presented here represent a first step towards genetic characterization of the morphogenetic processes in this important crop species.
Collapse
Affiliation(s)
- Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandar Cingel
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Dragana Matekalo
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Zdravković-Korać
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slavica Ninković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
10
|
Jamaluddin ND, Mohd Noor N, Goh HH. Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:357-368. [PMID: 28461724 PMCID: PMC5391361 DOI: 10.1007/s12298-017-0429-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool to study global gene expression patterns in plant development. We report the first transcriptome profile analysis of papaya embryogenic callus to improve our understanding on genes associated with somatic embryogenesis. By using 3' mRNA-sequencing, we generated 6,190,687 processed reads and 47.0% were aligned to papaya genome reference, in which 21,170 (75.4%) of 27,082 annotated genes were found to be expressed but only 41% was expressed at functionally high levels. The top 10% of genes with high transcript abundance were significantly enriched in biological processes related to cell proliferation, stress response, and metabolism. Genes functioning in somatic embryogenesis such as SERK and LEA, hormone-related genes, stress-related genes, and genes involved in secondary metabolite biosynthesis pathways were highly expressed. Transcription factors such as NAC, WRKY, MYB, WUSCHEL, Agamous-like MADS-box protein and bHLH important in somatic embryos of other plants species were found to be expressed in papaya embryogenic callus. Abundant expression of enolase and ADH is consistent with proteome study of papaya somatic embryo. Our study highlights that some genes related to secondary metabolite biosynthesis, especially phenylpropanoid biosynthesis, were highly expressed in papaya embryogenic callus, which might have implication for cell factory applications. The discovery of all genes expressed in papaya embryogenic callus provides an important information into early biological processes during the induction of embryogenesis and useful for future research in other plant species.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| |
Collapse
|
11
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Hernandez LR, Mendiola MAR, Castro CA, Gutiérrez-Miceli FA. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. J Oleo Sci 2015; 64:325-30. [PMID: 25757437 DOI: 10.5650/jos.ess14206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids.
Collapse
|
13
|
Techniques to Study Microbial Phytohormones. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Poór P, Borbély P, Kovács J, Papp A, Szepesi Á, Takács Z, Tari I. Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress. ACTA BIOLOGICA HUNGARICA 2014; 65:428-38. [PMID: 25475982 DOI: 10.1556/abiol.65.2014.4.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.
Collapse
Affiliation(s)
- P Poór
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - P Borbély
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - Judit Kovács
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - Anita Papp
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - Ágnes Szepesi
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - Z Takács
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| | - Irma Tari
- University of Szeged Department of Plant Biology Középfasor 52 H-6701 Szeged Hungary
| |
Collapse
|
15
|
Schaller GE, Street IH, Kieber JJ. Cytokinin and the cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:7-15. [PMID: 24994531 DOI: 10.1016/j.pbi.2014.05.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 05/22/2023]
Abstract
The phytohormone cytokinin influences many aspects of plant growth and development, including a prominent role in the regulation of cell proliferation. How the cytokinin response pathway integrates into the machinery regulating progression through the cell cycle is only beginning to be appreciated. Cytokinin is generally considered to promote mitotic cell division in the shoot, but differentiation and transition to the endocycle in the root. Here we consider recent data on the inputs by which cytokinins positively and negatively regulate transitions through the cell cycle. Cytokinin positively regulates cell division and also serves a key role in establishing organization within shoot stem cell centers. Both auxin-dependent and auxin-independent mechanisms have been uncovered by which cytokinin stimulates the endocycle in roots. We conclude with a model that reconciles the opposing effects of cytokinin on shoot and root cell division.
Collapse
Affiliation(s)
- G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA.
| | - Ian H Street
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Avalbaev AM, Somov KA, Yuldashev RA, Shakirova FM. Cytokinin oxidase is key enzyme of cytokinin degradation. BIOCHEMISTRY (MOSCOW) 2013; 77:1354-61. [PMID: 23244730 DOI: 10.1134/s0006297912120024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinin oxidase (EC 1.5.99.12) is an enzyme that catalyzes the irreversible degradation of cytokinin phytohormones that are extremely necessary for growth, development, and differentiation of plants. Cytokinin oxidase plays an important role in the regulation of quantitative level of cytokinins and their distribution in plant tissues. This review generalizes the available information on the structure, properties, and functional role of this enzyme in plant ontogeny under conditions of normal growth and under the influence of unfavorable environmental factors.
Collapse
Affiliation(s)
- A M Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Center of the Russian Academy of Sciences, pr. Oktyabrya 71, 450054 Ufa, Bashkortostan Republic, Russia
| | | | | | | |
Collapse
|
17
|
Rosar C, Kanonenberg K, Nanda AM, Mielewczik M, Bräutigam A, Novák O, Strnad M, Walter A, Weber APM. The leaf reticulate mutant dov1 is impaired in the first step of purine metabolism. MOLECULAR PLANT 2012; 5:1227-41. [PMID: 22532604 DOI: 10.1093/mp/sss045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A series of reticulated Arabidopsis thaliana mutants were previously described. All mutants show a reticulate leaf pattern, namely green veins on a pale leaf lamina. They have an aberrant mesophyll structure but an intact layer of bundle sheath cells around the veins. Here, we unravel the function of the previously described reticulated EMS-mutant dov1 (differential development of vascular associated cells 1). By positional cloning, we identified the mutated gene, which encodes glutamine phosphoribosyl pyrophosphate aminotransferase 2 (ATase2), an enzyme catalyzing the first step of purine nucleotide biosynthesis. dov1 is allelic to the previously characterized cia1-2 mutant that was isolated in a screen for mutants with impaired chloroplast protein import. We show that purine-derived total cytokinins are lowered in dov1 and crosses with phytohormone reporter lines revealed differential reporter activity patterns in dov1. Metabolite profiling unraveled that amino acids that are involved in purine biosynthesis are increased in dov1. This study identified the molecular basis of an established mutant line, which has the potential for further investigation of the interaction between metabolism and leaf development.
Collapse
Affiliation(s)
- Christian Rosar
- Institute for Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stirk WA, Novák O, Žižková E, Motyka V, Strnad M, van Staden J. Comparison of endogenous cytokinins and cytokinin oxidase/dehydrogenase activity in germinating and thermoinhibited Tagetes minuta achenes. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:696-703. [PMID: 0 DOI: 10.1016/j.jplph.2012.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 05/08/2023]
|
19
|
Vescovi M, Riefler M, Gessuti M, Novák O, Schmülling T, Lo Schiavo F. Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2825-32. [PMID: 22312114 PMCID: PMC3346239 DOI: 10.1093/jxb/ers008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High levels of cytokinins (CKs) induce programmed cell death (PCD) both in animals and plant cells. High levels of the CK benzylaminopurine (BA) induce PCD in cultured cells of Arabidopsis thaliana by accelerating a senescence process characterized by DNA laddering and expression of a specific senescence marker. In this report, the question has been addressed whether members of the small family of Arabidopsis CK receptors (AHK2, AHK3, CRE1/AHK4) are required for BA-induced PCD. In this respect, suspension cell cultures were produced from selected receptor mutants. Cell growth and proliferation of all receptor mutant and wild-type cell cultures were similar, showing that the CK receptors are not required for these processes in cultured cells. The analysis of CK metabolites instead revealed differences between wild-type and receptor mutant lines, and indicated that all three receptors are redundantly involved in the regulation of the steady-state levels of isopentenyladenine- and trans-zeatin-type CKs. By contrast, the levels of cis-zeatin-type CKs were controlled mainly by AHK2 and AHK3. To study the role of CK receptors in the BA-induced PCD pathway, cultured cells were analysed for their behaviour in the presence of high levels of BA. The results show that CRE1/AHK4, the strongest expressed CK receptor gene of this family in cultured cells, is required for PCD, thus linking this process to the known CK signalling pathway.
Collapse
Affiliation(s)
- Marco Vescovi
- Dipartimento di Biologia, Università Degli Studi di Padova, Via G. Colombo 3, I-35121 Padua, Italy
| | - Michael Riefler
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Micael Gessuti
- Dipartimento di Biologia, Università Degli Studi di Padova, Via G. Colombo 3, I-35121 Padua, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Fiorella Lo Schiavo
- Dipartimento di Biologia, Università Degli Studi di Padova, Via G. Colombo 3, I-35121 Padua, Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Spadafora ND, Parfitt D, Marchbank A, Li S, Bruno L, Vaughan R, Nieuwland J, Buchanan-Wollaston V, Herbert RJ, Bitonti MB, Doonan J, Albani D, Prinsen E, Francis D, Rogers HJ. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25. BMC PLANT BIOLOGY 2012; 12:45. [PMID: 22452972 PMCID: PMC3362767 DOI: 10.1186/1471-2229-12-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/27/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. RESULTS Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. CONCLUSIONS We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.
Collapse
Affiliation(s)
- Natasha D Spadafora
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - David Parfitt
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | - Sherong Li
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Leonardo Bruno
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - Rhys Vaughan
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | - Robert J Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Maria Beatrice Bitonti
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - John Doonan
- Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Penglais, Aberystwyth University, Ceredigion SY23 3DA, Aberystwyth, UK
| | - Diego Albani
- Department of Botanical, Ecological and Geological Sciences, University of Sassari, Via Piandanna 4, Sassari 07100, Italy
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
21
|
Lipavská H, Masková P, Vojvodová P. Regulatory dephosphorylation of CDK at G₂/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. ANNALS OF BOTANY 2011; 107:1071-86. [PMID: 21339187 PMCID: PMC3091802 DOI: 10.1093/aob/mcr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G₂/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G₂/M have not yet been identified. SCOPE Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G₂/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G₂ phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G₂ and early M-phase. Spcdc25-expressing tobacco ('Samsun') cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics. CONCLUSIONS The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G₂/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G₂/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.
Collapse
Affiliation(s)
- Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague 2, Czech Republic.
| | | | | |
Collapse
|
22
|
Stirk WA, van Staden J, Novák O, Doležal K, Strnad M, Dobrev PI, Sipos G, Ördög V, Bálint P. CHANGES IN ENDOGENOUS CYTOKININ CONCENTRATIONS IN CHLORELLA (CHLOROPHYCEAE) IN RELATION TO LIGHT AND THE CELL CYCLE(1). JOURNAL OF PHYCOLOGY 2011; 47:291-301. [PMID: 27021861 DOI: 10.1111/j.1529-8817.2010.00952.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endogenous cytokinins were quantified in synchronized Chlorella minutissima Fott et Novákova (MACC 361) and Chlorella sp. (MACC 458) grown in a 14:10 light:dark (L:D) photoperiod. In 24 h experiments, cell division occurred during the dark period, and cells increased in size during the light period. Cytokinin profiles were similar in both strains, consisting of five cis-zeatin (cZ) and three N(6) -(2-isopentenyl)adenine (iP) derivatives. Cytokinin concentrations were low during the dark period and increased during the light period. In 48 h experiments using synchronized C. minutissima (MACC 361), half the cultures were maintained in continuous dark conditions for the second photoperiod. Cell division occurred during both dark periods, and cells increased in size during the light periods. Cultures kept in continuous dark did not increase in size following cell division. DNA analysis confirmed these results, with cultures grown in light having increased DNA concentrations prior to cell division, while cultures maintained in continuous dark had less DNA. Cytokinins (cZ and iP derivatives) were detected in all samples with concentrations increasing over the first 24 h. This increase was followed by a large increase, especially during the second light period where cytokinin concentrations increased 4-fold. Cytokinin concentrations did not increase in cultures maintained in continuous dark conditions. In vivo deuterium-labeling technology was used to measure cytokinin biosynthetic rates during the dark and light periods in C. minutissima with highest biosynthetic rates measured during the light period. These results show that there is a relationship between light, cell division, and cytokinins.
Collapse
Affiliation(s)
- Wendy A Stirk
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Ondřej Novák
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Karel Doležal
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Miroslav Strnad
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Petre I Dobrev
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - György Sipos
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Vince Ördög
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| | - Péter Bálint
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, P/Bag X01, Scottsville 3209, South AfricaLaboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelů 11, CZ-783 71 Olomouc, Czech RepublicInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-16502, Praha 6, Czech RepublicInstitute of Plant Biology, Faculty of Agricultural and Food Sciences, University of West Hungary, H-9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
23
|
Abstract
The phytohormone auxin is a major regulator of plant growth and development. Many aspects of these processes depend on the multiple controls exerted by auxin on cell division and cell expansion. The detailed mechanisms by which auxin controls these essential cellular responses are still poorly understood, despite recent progress in the identification of auxin receptors and components of auxin signaling pathways. The purpose of this review is to provide an overview of the present knowledge of the molecular mechanisms involved in the auxin control of cell division and cell expansion. In both cases, the involvement of at least two signaling pathways and of multiple targets of auxin action reflects the complexity of the subtle regulation of auxin-mediated cellular responses. In addition, it offers the necessary flexibility for generating differential responses within a given cell depending on its developmental context.
Collapse
Affiliation(s)
- Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355 CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, Cedex, France.
| |
Collapse
|
24
|
Nick P. Probing the actin-auxin oscillator. PLANT SIGNALING & BEHAVIOR 2010; 5:94-8. [PMID: 20023411 PMCID: PMC2884107 DOI: 10.4161/psb.5.2.10337] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 05/20/2023]
Abstract
The directional transport of the plant hormone auxin depends on transcellular gradients of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. To get insight into this question, actin bundling was induced by overexpression of the actin-binding domain of talin in tobacco BY-2 cells and in rice plants. This bundling can be reverted by addition of auxins, which allows to address the role of actin organization on the flux of auxin. In both systems, the reversion of a normal actin configuration can be restored by addition of exogenous auxins and this fully restores the respective auxin-dependent functions. These findings lead to a model of a self-referring regulatory circuit between polar auxin transport and actin organization. To further dissect the actin-auxin oscillator, we used photoactivated release of caged auxin in tobacco cells to demonstrate that auxin gradients can be manipulated at a subcellular level.
Collapse
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
25
|
Pěnčík A, Rolčík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek-Sondi B, Strnad M. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 2009; 80:651-5. [DOI: 10.1016/j.talanta.2009.07.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
26
|
Ascough GD, Novák O, Pencík A, Rolcík J, Strnad M, Erwin JE, Van Staden J. Hormonal and cell division analyses in Watsonia lepida seedlings. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1497-1507. [PMID: 19423185 DOI: 10.1016/j.jplph.2009.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 05/27/2023]
Abstract
The regeneration ability, cell division activity, auxin and cytokinin content of seedling regions and hypocotyl subsections of Watsonia lepida were studied. A total of 21 different cytokinins or conjugates were found in seedlings, with the highest cytokinin content in meristematic regions (root and shoot apical meristems). The greatest contribution to the cytokinin pool came from the biologically inactive cZRMP, suggesting that significant de novo synthesis was occurring. Five different auxins or conjugates were detected, being concentrated largely in the shoot apical meristem and leaves, IAA being the most abundant. Analysis of hypocotyl subsections (C1-C4) revealed that cell division was highest in subsection C2, although regeneration in vitro was significantly lower than in subsection C1. Anatomically, subsection C1 contains the apical meristem, and hence has meristematic cells that are developmentally plastic. In contrast, subsection C2 has cells that have recently exited the meristem and are differentiating. Despite high rates of cell division, cells in subsection C2 appear no longer able to respond to cues that promote proliferation in vitro. Auxin and cytokinin analyses of these subsections were conducted. Possibly, a lower overall cytokinin content, and in particular the free-base cytokinins, could account for this observed difference.
Collapse
Affiliation(s)
- Glendon D Ascough
- Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | | | | | | | | | | | | |
Collapse
|
27
|
Bajguz A, Piotrowska A. Conjugates of auxin and cytokinin. PHYTOCHEMISTRY 2009; 70:957-69. [PMID: 19524990 DOI: 10.1016/j.phytochem.2009.05.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/07/2009] [Accepted: 05/19/2009] [Indexed: 05/18/2023]
Abstract
Plant growth and developmental processes as well as environmental responses require the action and cross talk of phytohormones including auxins and cytokinins. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. The concept of reversible conjugation of auxins and cytokinins suggests that under changeable environmental, developmental or physiological conditions these compounds can be a source of free hormones. Phytohormones metabolism may result in a loss of activity and decrease the size of the bioactive pool. All metabolic steps are in principle irreversible, except for some processes such as the formation of ester, glucoside and amide conjugates, where the free compound can be liberated by enzymatic hydrolysis. The role, chemistry, synthesis and hydrolysis of conjugated forms of two classes of plant hormones are discussed.
Collapse
Affiliation(s)
- Andrzej Bajguz
- University of Bialystok, Institute of Biology, Swierkowa 20 B, 15-950 Bialystok, Poland.
| | | |
Collapse
|
28
|
Abstract
Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
Werner T, Holst K, Pörs Y, Guivarc'h A, Mustroph A, Chriqui D, Grimm B, Schmülling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2659-72. [PMID: 18515826 PMCID: PMC2486470 DOI: 10.1093/jxb/ern134] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/19/2008] [Accepted: 04/07/2008] [Indexed: 05/17/2023]
Abstract
Cytokinin deficiency causes pleiotropic developmental changes such as reduced shoot and increased root growth. It was investigated whether cytokinin-deficient tobacco plants, which overproduce different cytokinin oxidase/dehydrogenase enzymes, show changes in different sink and source parameters, which could be causally related to the establishment of the cytokinin deficiency syndrome. Ultrastructural analysis revealed distinct changes in differentiating shoot tissues, including an increased vacuolation and an earlier differentiation of plastids, which showed partially disorganized thylakoid structures later in development. A comparison of the ploidy levels revealed an increased population of cells with a 4C DNA content during early stages of leaf development, indicating an inhibited progression from G2 to mitosis. To compare physiological characteristics of sink leaves, source leaves and roots of wild-type and cytokinin-deficient plants, several photosynthetic parameters, content of soluble sugars, starch and adenylates, as well as activities of enzymes of carbon assimilation and dissimilation were determined. Leaves of cytokinin-deficient plants contained less chlorophyll and non-photochemical quenching of young leaves was increased. However, absorption rate, photosynthetic capacity (F(v)/F(m) and J(CO2 max)) and efficiency (Phi CO(2 app)), as well as the content of soluble sugars, were not strongly altered in source leaves, indicating that chlorophyll is not limiting for photoassimilation and suggesting that source strength did not restrict shoot growth. By contrast, shoot sink tissues showed drastically reduced contents of soluble sugars, decreased activities of vacuolar invertases, and a reduced ATP content. These results strongly support a function of cytokinin in regulating shoot sink strength and its reduction may be a cause of the altered shoot phenotype. Roots of cytokinin-deficient plants contained less sugar compared with wild-type. However, this did not negatively affect glycolysis, ATP content, or root development. It is suggested that cytokinin-mediated regulation of the sink strength differs between roots and shoots.
Collapse
Affiliation(s)
- Tomáš Werner
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| | - Kerstin Holst
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| | - Yvonne Pörs
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anne Guivarc'h
- Cytologie Expérimentale et Morphogenèse Végétale (CEMV), Université Pierre et Marie Curie, Paris, France
| | - Angelika Mustroph
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Dominique Chriqui
- Cytologie Expérimentale et Morphogenèse Végétale (CEMV), Université Pierre et Marie Curie, Paris, France
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| |
Collapse
|
30
|
John PCL, Qi R. Cell division and endoreduplication: doubtful engines of vegetative growth. TRENDS IN PLANT SCIENCE 2008; 13:121-127. [PMID: 18291706 DOI: 10.1016/j.tplants.2008.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 05/25/2023]
Abstract
Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.
Collapse
Affiliation(s)
- Peter C L John
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, PO Box 475, ACT 2600, Australia.
| | | |
Collapse
|
31
|
Wang S, Jia L, Xing D, Chen D, Zhao J. On-line concentration and pressurized capillary electrochromatographic analysis of phytohormones in corn. J Sep Sci 2008; 31:859-64. [DOI: 10.1002/jssc.200700519] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Metabolism of plant hormones cytokinins and their function in signaling, cell differentiation and plant development. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1572-5995(08)80028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Abstract
The basic components of the plant cell cycle are G1 (postmitotic interphase), S-phase (DNA synthesis phase), G2 (premitotic interphase) and mitosis/cytokinesis. Proliferating cells are phosphoregulated by cyclin-dependent protein kinases (CDKs). Plant D-type cyclins are sensors of the G0 to G1 transition, and are also important for G2/M. At G1/S, the S-phase transcription factor, E2F, is released from inhibitory retinoblastoma protein. Negative regulation of G1 events is through KRPs (Kip-related proteins). Plant S-phase genes are similar to animal ones, but timing of expression can be different (e.g. CDC6 at the start of S-phase) and functional evidence is limited. At G2/M, A-type and the unique B-type CDKs when bound to A, B and D cyclins, drive cells into division; they are negatively regulated by ICK1/2 and perhaps also by WEE1 kinase. In Arabidopsis, a putative CDC25 lacks a regulatory domain. Mitosis depends on correct temporal activity of CDKs, Aurora kinases and anaphase promotion complex; CDK-cyclin B activity beyond metaphase is catastrophic. Endoreduplication (re-replication of DNA in the absence of mitosis) is characterized by E2F expression and down-regulation of mitotic cyclins. Some cell size data support, whilst others negate, the idea of cell size having an impact on development.
Collapse
Affiliation(s)
- Dennis Francis
- School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| |
Collapse
|
34
|
Vandeputte O, Vereecke D, Mol A, Lenjou M, Van Bockstaele D, El Jaziri M, Baucher M. Rhodococcus fascians infection accelerates progression of tobacco BY-2 cells into mitosis through rapid changes in plant gene expression. THE NEW PHYTOLOGIST 2007; 175:140-154. [PMID: 17547674 DOI: 10.1111/j.1469-8137.2007.02062.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
* To characterize plant cell cycle activation following Rhodococcus fascians infection, bacterial impact on cell cycle progression of tobacco BY-2 cells was investigated. * S-phase-synchronized BY-2 cells were cocultivated with R. fascians and cell cycle progression was monitored by measuring mitotic index, cell cycle gene expression and flow cytometry parameters. Cell cycle alteration was further investigated by cDNA-AFLP (amplified fragment length polymorphism). * It was shown that cell cycle progression of BY-2 cells was accelerated only upon infection with bacteria whose virulence gene expression was induced by a leafy gall extract. Thirty-eight BY-2 genes showed a differential expression within 6 h post-infection. Among these, seven were previously associated with specific plant cell cycle phases (in particular S and G2/M phases). Several genes also showed a differential expression during leafy gall formation. * R. fascians-infected BY-2 cells provide a simple model to identify plant genes related to leafy gall development. R. fascians can also be regarded as a useful biotic agent to alter cell cycle progression and, thereby, gain a better understanding of cell cycle regulation in plants.
Collapse
Affiliation(s)
- Olivier Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Danny Vereecke
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marc Lenjou
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Dirk Van Bockstaele
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| |
Collapse
|
35
|
Ge L, Yong JWH, Tan SN, Yang XH, Ong ES. Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction. J Chromatogr A 2006; 1133:322-31. [PMID: 16965778 DOI: 10.1016/j.chroma.2006.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/03/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
A method based on solid-phase extraction (SPE) and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) is described for the separation and determination of six cytokinin nucleotides in coconut water. The best CZE separation for the six cytokinin nucleotide standards was achieved using a 25 mM ammonium formate/formic acid buffer (pH 3.8) and 2% (v/v) methanol with an applied gradient separation voltage (25 kV for 32 min, and then a linear gradient to 30 kV in 5 min, finally 30 kV to the end of separation) in less than 60 min. MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity and sensitivity for the cytokinin nucleotides. The combined use of on-line sample stacking and CZE-MS/MS achieved limits of detection (LODs) in the range of 0.06-0.19 microM for the six cytokinin nucleotides at a signal-to-noise ratio of 3. Furthermore, a novel dual-step SPE procedure was developed for the pre-concentration and purification of cytokinin nucleotides using Oasis HLB and Oasis MAX cartridges. The recoveries of the cytokinin nucleotides after the dual-step SPE were in the range of 44-71%. The combination of off-line SPE, on-line sample stacking and CZE-MS/MS approach was successfully applied to screen for endogenous cytokinin nucleotides present in coconut water sample. trans-Zeatin riboside-5'-monophosphate (ZMP) was detected and quantified in coconut water by CZE-MS/MS after SPE and on-line sample stacking.
Collapse
Affiliation(s)
- Liya Ge
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | | | | | | | | |
Collapse
|
36
|
Shimizu T, Eguchi K, Nishida I, Laukens K, Witters E, Van Onckelen H, Nagata T. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2006; 93:278-85. [PMID: 16583236 DOI: 10.1007/s00114-006-0098-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 01/29/2006] [Indexed: 11/28/2022]
Abstract
Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.
Collapse
Affiliation(s)
- Takashi Shimizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ge L, Yong JWH, Tan SN, Ong ES. Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry. Electrophoresis 2006; 27:2171-81. [PMID: 16736454 DOI: 10.1002/elps.200500465] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The applicability of CZE in combination with MS and MS/MS methods for the simultaneous separation and determination of 12 cytokinins was investigated for the first time. Cytokinins were first completely separated by CZE within less than 20 min using a volatile buffer and then detected directly by MS or MS/MS. Satisfactory separation of the 12 cytokinin standards was achieved using a 25 mM ammonium formate/formic acid buffer (pH 3.4) and 3% ACN v/v with a separation voltage of 25 kV. On the basis of the resolution of the neighboring peaks, the various parameters for CZE-MS optimization, such as buffer pH value, concentration of buffer and organic modifier, applied voltage and sheath liquid, were evaluated systematically. MS/MS with multiple reaction monitoring detection was carried out to obtain sufficient selectivity and sensitivity. The combination of on-line sample stacking and CZE-MS/MS achieved a detection limit in the range of 0.05-0.18 microM for the 12 cytokinins at an S/N of 3. The optimized CZE-MS/MS method was simple, rapid, low cost, robust and highly selective. Furthermore, the developed method was successfully applied to screen for endogenous cytokinins in purified coconut water extract sample. Nine cytokinins were detected and quantified in coconut water after SPE.
Collapse
Affiliation(s)
- Liya Ge
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
38
|
Hartig K, Beck E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:389-96. [PMID: 16807832 DOI: 10.1055/s-2006-923797] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant meristems are utilization sinks, in which cell division activity governs sink strength. However, the molecular mechanisms by which cell division activity and sink strength are adjusted to a plant's developmental program in its environmental setting are not well understood. Mitogenic hormonal as well as metabolic signals drive and modulate the cell cycle, but a coherent idea of how this is accomplished, is still missing. Auxin and cytokinins are known as endogenous mitogens whose concentrations and timing, however, can be externally affected. Although the sites and mechanisms of signal interaction in cell cycle control have not yet been unravelled, crosstalk of sugar and phytohormone signals could be localized to several biochemical levels. At the expression level of cell cycle control genes, like cyclins, Cdks, and others, synergistic but also antagonistic interactions could be demonstrated. Another level of crosstalk is that of signal generation or modulation. Cytokinins affect the activity of extracellular invertases and hexose-uptake carriers and thus impinge on an intracellular sugar signal. With tobacco BY-2 cells, a coordinated control of cell cycle activity at both regulatory levels could be shown. Comparison of the results obtained with the root cell-representing BY-2 cells with literature data from shoot tissues or green cell cultures of Arabidopsis and Chenopodium suggests opposed and tissue-specific regulatory patterns of mitogenic signals and signal crosstalk in root and shoot meristems.
Collapse
Affiliation(s)
- K Hartig
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
39
|
Dolezal K, Popa I, Krystof V, Spíchal L, Fojtíková M, Holub J, Lenobel R, Schmülling T, Strnad M. Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg Med Chem 2005; 14:875-84. [PMID: 16214355 DOI: 10.1016/j.bmc.2005.09.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
To study the structure-activity relationships of aromatic cytokinins, the cytokinin activity at both the receptor and cellular levels, as well as CDK inhibitory and anticancer properties of 38 6-benzylaminopurine (BAP) derivatives were compared in various in vitro assays. The compounds were prepared by the condensation of 6-chloropurine with corresponding substituted benzylamines. The majority of synthesised derivatives exhibited high activity in all three of the cytokinin bioassays employed (tobacco callus, wheat senescence and Amaranthus bioassay). The highest activities were obtained in the senescence bioassay. For some compounds tested, significant differences of activity were found in the bioassays used, indicating that diverse recognition systems may operate and suggesting that it may be possible to modulate particular cytokinin-dependent processes with specific compounds. Position-specific steric and hydrophobic effects of different phenyl ring substituents on the variation of biological activity were confirmed. In contrast to their high activity in bioassays, the BAP derivatives were recognised with much lower sensitivity than trans-zeatin in both Arabidopsis thaliana AHK3 and AHK4 receptor assays. The compounds were also investigated for their effects on cyclin-dependent kinase 2 (CDK2) and for antiproliferative properties on cancer and normal cell lines. Several of the tested compounds showed stronger inhibitory activity and cytotoxicity than BAP. There was also a significant positive correlation of the inhibitory effects on human and plant CDKs with cell proliferation of cancer and cytokinin-dependent tobacco cells, respectively. This suggests that at least a part of the antiproliferative effect of the new cytokinins was due to the inhibition of CDK activity.
Collapse
Affiliation(s)
- Karel Dolezal
- Laboratory of Growth Regulators, Palacky University, Institute of Experimental Botany AS CR, Slechtitelu 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Orchard CB, Siciliano I, Sorrell DA, Marchbank A, Rogers HJ, Francis D, Herbert RJ, Suchomelova P, Lipavska H, Azmi A, Van Onckelen H. Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:290-9. [PMID: 16212607 DOI: 10.1111/j.1365-313x.2005.02524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mitotic inducer gene from Schizosaccharomyces pombe, Spcdc25, was used as a tool to investigate regulation of G2/M in higher plants using the BY-2 (Nicotiana tabacum) cell line as a model. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size through a shortening of the G2 phase. The cells often formed isodiametric double files both in BY-2 cells and in cell suspensions derived from 35S::Spcdc25 tobacco plants. In Spcdc25-expressing cells, the tobacco cyclin-dependent kinase, NtCDKB1, showed high activity in early S phase, S/G2 and early M phase, whereas in empty vector cells CDKB1 activity was transiently high in early S phase but thereafter remained lower. Spcdc25-expressing cells also bypassed a block on G2/M imposed by the cytokinin biosynthetic inhibitor lovastatin (LVS). Surprisingly, cytokinins were at remarkably low levels in Spcdc25-expressing cells compared with the empty vector, explaining why these cells retained mitotic competence despite the presence of LVS. In conclusion, synchronised Spcdc25-expressing BY-2 cells divided prematurely at a small cell size, and they exhibited premature, but sustained, CDKB1 activity even though endogenous cytokinins were virtually undetectable.
Collapse
Affiliation(s)
- Craig B Orchard
- School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. THE PLANT CELL 2005; 17:2527-41. [PMID: 16055635 PMCID: PMC1197432 DOI: 10.1105/tpc.105.033761] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/13/2005] [Accepted: 06/27/2005] [Indexed: 05/03/2023]
Abstract
The molecular mechanisms by which the phytohormone auxin coordinates cell division with cell growth and differentiation are largely unknown. Here, we show that in Arabidopsis thaliana E2FB, accumulation and stability are positively regulated by auxin. Coexpression of E2FB, but not of E2FA, with its dimerization partner A, stimulated cell proliferation in the absence of auxin in tobacco (Nicotiana tabacum) Bright Yellow-2 cells. E2FB regulated the entry into both S- and M-phases, the latter corresponding to the activation of a plant-specific mitotic regulator, CDKB1;1. Increased E2FB levels led to shortened cell cycle duration, elevated cell numbers, and extremely small cell sizes. In the absence of auxin, cells elongated with concomitant increase in their ploidy level, but both were strongly inhibited by E2FB. We conclude that E2FB is one of the key targets for auxin to determine whether cells proliferate or whether they exit the cell cycle, enlarge, and endoreduplicate their DNA.
Collapse
Affiliation(s)
- Zoltán Magyar
- Royal Holloway University of London, School of Biological Sciences, Egham TW20 0EX, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Kwade Z, Swiatek A, Azmi A, Goossens A, Inzé D, Van Onckelen H, Roef L. Identification of four adenosine kinase isoforms in tobacco By-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J Biol Chem 2005; 280:17512-9. [PMID: 15731114 DOI: 10.1074/jbc.m411428200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine kinase (ADK), a key enzyme in the regulation of the intracellular level of adenosine is also speculated to be responsible for the conversion of cytokinin ribosides to their respective nucleotides. To elucidate the role of ADK in the cytokinin metabolism of tobacco BY-2 cells (Nicotiana tabacum cv. "Bright Yellow-2"; TBY-2), we have identified and characterized the full-length cDNAs encoding four ADK isoforms of N. tabacum and determined their catalytic properties. The four TBY-2 ADK isoforms (designated 1S, 2S, 1T, and 2T) display a high affinity for both adenosine (Km 1.88-7.30 microm) and three distinct types of cytokinin ribosides: isopentenyladenosine; zeatin riboside; and dihydrozeatin riboside (Km 0.30-8.71 microm). The Vmax/Km values suggest that ADK2S exhibits in vitro an overall higher efficiency in the metabolism of cytokinin ribosides than the other three isoforms. The expression pattern of NtADK genes is modulated significantly during the cell cycle. We suggest that the increased transcript accumulation of NtADK coupled to an increased ADK activity just prior to mitosis is associated with a very active cytokinin metabolism at that phase of the cell cycle of synchronized TBY-2 cells.
Collapse
Affiliation(s)
- Zuzanna Kwade
- Laboratory of Plant Biochemistry and Physiology, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Hartig K, Beck E. Endogenous cytokinin oscillations control cell cycle progression of tobacco BY-2 cells. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:33-40. [PMID: 15666212 DOI: 10.1055/s-2004-830474] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The significance of cytokinins for the progression of the cell cycle is well known. Cytokinins contribute to the control of the expression of D-cyclins and other cell cycle genes, but knowledge as to how they affect the progression of the cell cycle is still limited. Highly synchronized tobacco BY-2 cells with clearly defined cell cycle stages were employed to determine cytokinin patterns in detail throughout the entire cycle. Concentrations of trans-zeatin, and of some other cytokinins, oscillated during the course of the cell cycle, increasing substantially at all four phase transitions and decreasing again to a minimum value during the course of each subsequent phase. Addition of exogenous cytokinins or inhibition of cytokinin biosynthesis promoted the progression of the cell cycle when the effects of these manipulations intensified the endogenous fluctuations, whereas the progression of the cycle was retarded when the amplitude of the fluctuations was decreased. The results show that the attainment of low concentrations of cytokinins is as important as the transient increases in concentration for a controlled progression from one phase of the cell cycle to the next. Cytokinin oxidase/dehydrogenase activity also showed fluctuations during the course of the cell cycle, the timing of which could at least partly explain oscillations of cytokinin levels. The activities of the enzyme were sufficient to account for the rates of cytokinin disappearance observed subsequent to a phase transition.
Collapse
Affiliation(s)
- K Hartig
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
44
|
Zhang K, Diederich L, John PCL. The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase: implications for mechanisms of cytokinin response and plant development. PLANT PHYSIOLOGY 2005; 137:308-16. [PMID: 15618425 PMCID: PMC548861 DOI: 10.1104/pp.104.051938] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/03/2004] [Accepted: 11/10/2004] [Indexed: 05/20/2023]
Abstract
Cultured cells of Nicotiana plumbaginifolia, when deprived of exogenous cytokinin, arrest in G2 phase prior to mitosis and then contain cyclin-dependent protein kinase (CDK) that is inactive because phosphorylated on tyrosine (Tyr). The action of cytokinin in stimulating the activation of CDK by removal of inhibitory phosphorylation from Tyr is not a secondary downstream consequence of other hormone actions but is the key primary effect of the hormone in its stimulation of cell proliferation, since cytokinin could be replaced by expression of cdc25, which encodes the main Cdc2 (CDK)-Tyr dephosphorylating enzyme of yeast (Saccharomyces cerevisiae). The cdc25 gene, under control of a steroid-inducible promoter, induced a rise in cdc25 mRNA, accumulation of p67(Cdc25) protein, and increase in Cdc25 phosphatase activity that was measured in vitro with Tyr-phosphorylated Cdc2 as substrate. Cdc25 phosphatase activity peaked during mitotic prophase at the time CDK activation was most rapid. Mitosis that was induced by cytokinin also involved increase in endogenous plant CDK Tyr phosphatase activity during prophase, therefore indicating that this is a normal part of plant mitosis. These results suggest a biochemical mechanism for several previously described transgene phenotypes in whole plants and suggest that a primary signal from cytokinin leading to progression through mitosis is the activation of CDK by dephosphorylation of Tyr.
Collapse
Affiliation(s)
- Kerong Zhang
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | | |
Collapse
|
45
|
Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T. In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 2004; 101:8821-6. [PMID: 15166290 PMCID: PMC423279 DOI: 10.1073/pnas.0402887101] [Citation(s) in RCA: 481] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Indexed: 11/18/2022] Open
Abstract
Since their discovery as cell-division factors in plant tissue culture about five decades ago, cytokinins have been hypothesized to play a central role in the regulation of cell division and differentiation in plants. To test this hypothesis in planta, we isolated Arabidopsis plants lacking one, two, or three of the genes encoding a subfamily of histidine kinases (CRE1, AHK2, and AHK3) that function as cytokinin receptors. Seeds were obtained for homozygous plants containing mutations in all seven genotypes, namely single, double, and triple mutants, and the responses of germinated seedlings in various cytokinin assays were compared. Both redundant and specific functions for the three different cytokinin receptors were observed. Plants carrying mutations in all three genes did not show cytokinin responses, including inhibition of root elongation, inhibition of root formation, cell proliferation in and greening of calli, and induction of cytokinin primary-response genes. The triple mutants were small and infertile, with a reduction in meristem size and activity, yet they possessed basic organs: roots, stems, and leaves. These results confirm that cytokinins are a pivotal class of plant growth regulators but provide no evidence that cytokinins are required for the processes of gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Masayuki Higuchi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Valdés AE, Fernández B, Centeno ML. Hormonal changes throughout maturation and ageing in Pinus pinea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:335-340. [PMID: 15120119 DOI: 10.1016/j.plaphy.2004.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 02/13/2004] [Indexed: 05/24/2023]
Abstract
Phytohormones, which are responsible for certain age-related changes in plants, play a major role throughout maturation and ageing. Previous results dealing with this topic allowed us to describe an ageing and vigour index in Pinus radiata based on a ratio between different forms of cytokinins (Cks). The aim of the present study was to extend the studies on the changes in the hormonal status throughout maturation and ageing to Stone pine (Pinus pinea L.). With this aim in mind, a number of Cks were analysed in addition to indole-3-acetic acid (IAA) and abscisic acid (ABA) in terminal buds, axillary buds and in the apical portion of needles collected from trees at different stages of development. The results showed an increasing pattern in the levels of various Cks similar to that found in previous studies on P. radiata. Although the maintenance of the same ratio as an ageing and vigour index was not ratified, these results seem to point to Cks as major hormones throughout maturation and related processes in conifers. The distribution of hormones between the two parts of the needle is also discussed.
Collapse
Affiliation(s)
- Ana Elisa Valdés
- Unidad de Fisiología Vegetal, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, c/Catedrático Rodrigo Uría, s/n. 33071 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
47
|
Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:203-14. [PMID: 15078325 DOI: 10.1111/j.1365-313x.2004.02038.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used the cytokinin-responsive Arabidopsis response regulator (ARR)5 gene promoter fused to a beta-glucuronidase (GUS) reporter gene, and cytokinin oxidase (CKX) genes from Arabidopsis thaliana (AtCKX3) and maize (ZmCKX1) to investigate the roles of cytokinins in lateral root formation and symbiosis in Lotus japonicus. ARR5 expression was undetectable in the dividing initial cells at early stages of lateral root formation, but later we observed high expression in the base of the lateral root primordium. The root tip continues to express ARR5 during subsequent development of the lateral root. These results suggest a dynamic role for cytokinin in lateral root development. We observed ARR5 expression in curled/deformed root hairs, and also in nodule primordia in response to Rhizobial inoculation. This expression declined once the nodule emerged from the parent root. Root penetration and migration of root-knot nematode (RKN) second-stage larvae (L2) did not elevate ARR5 expression, but a high level of expression was induced when L2 reached the differentiating vascular bundle and during early stages of the nematode-plant interaction. ARR5 expression was specifically absent in mature giant cells (GCs), although dividing cells around the GCs continued to express this reporter. The same pattern was observed using a green fluorescent protein (GFP) reporter driven by the ARR5 promoter in tomato. Overexpression of CKX genes rendered the transgenic hairy roots resistant to exogenous application of the cytokinin [N6-(Delta2 isopentenyl) adenine riboside] (iPR). CKX roots have significantly more lateral roots, but fewer nodules and nematode-induced root galls per plant, than control hairy roots.
Collapse
Affiliation(s)
- Dasharath Prasad Lohar
- Center for the Biology of Nematode Parasitism, North Carolina State University, Campus Box 7253, Raleigh, NC 27695-7253, USA
| | | | | | | | | | | |
Collapse
|
48
|
Boiten H, Azmi A, Dillen W, De Schepper S, Debergh P, Gerats T, Van Onckelen H, Prinsen E. The Rg-1 encoded regeneration capacity of tomato is not related to an altered cytokinin homeostasis. THE NEW PHYTOLOGIST 2004; 161:761-771. [PMID: 33873729 DOI: 10.1111/j.1469-8137.2004.00993.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Cytokinin (CK) metabolism was analyzed in tomato (Lycopersicon esculentum) Rg-1 hybrids during in vitro shoot organogenesis from root explants. • Data were obtained by combining physicochemical analysis with quantification and in situ detection methods. • Although exogenous zeatin is added in all classical regeneration protocols, we show here that regenerating (Rg+ ) tomato explants did not require an exogenous CK source for regeneration. Irrespective of the presence or absence of exogenous zeatin, the endogenous CK levels were not affected by Rg-1 in the initial explants or in the early callus phase. In a later stage, and related to the presence of numerous shoots, the Rg+ explants showed much lower endogenous CK concentrations than the nonregenerating (rg- ) explants. Cells of rg- explants were not able to differentiate, despite their high endogenous CK content, and did not respond to exogenously applied CKs. • We show that the insensitivity of rg- explants to a hormonal signal, normally initiating regeneration, is not related to an altered endogenous CK metabolism. We therefore postulate that Rg-1 action involves a regeneration-specific CK receptor or a regeneration-specific CK signal transduction pathway.
Collapse
Affiliation(s)
- Hilde Boiten
- Laboratory of Plant Biochemistry and Physiology, Department of Biology, University of Antwerp (UA), B-2610 Antwerp, Belgium
| | - Abdelkrim Azmi
- Laboratory of Plant Biochemistry and Physiology, Department of Biology, University of Antwerp (UA), B-2610 Antwerp, Belgium
| | - Willy Dillen
- Department of Plant Systems Biology, University of Ghent (RUG), B-9000 Ghent, Belgium
- Present address: Crop Design, Technologiepark 3, B-9052 Zwijnaarde, Belgium
| | - Sandra De Schepper
- Laboratory of Horticulture and Plant Biotechnology, Department of Plant Production, University of Ghent (RUG), B-9000 Ghent, Belgium
| | - Pierre Debergh
- Laboratory of Horticulture and Plant Biotechnology, Department of Plant Production, University of Ghent (RUG), B-9000 Ghent, Belgium
| | - Tom Gerats
- Department of Plant Systems Biology, University of Ghent (RUG), B-9000 Ghent, Belgium
- Present address: Laboratory of Plant Genetics, Department of Experimental Botany, University of Nijmegen (KUN), Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | - Harry Van Onckelen
- Laboratory of Plant Biochemistry and Physiology, Department of Biology, University of Antwerp (UA), B-2610 Antwerp, Belgium
| | - Els Prinsen
- Laboratory of Plant Biochemistry and Physiology, Department of Biology, University of Antwerp (UA), B-2610 Antwerp, Belgium
| |
Collapse
|
49
|
Renaudin JP. Growth and Physiology of Suspension-Cultured Plant Cells: the Contribution of Tobacco BY-2 Cells to the Study of Auxin Action. TOBACCO BY-2 CELLS 2004. [DOI: 10.1007/978-3-662-10572-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Casanova E, Valdés AE, Fernández B, Moysset L, Trillas MI. Levels and immunolocalization of endogenous cytokinins in thidiazuron-induced shoot organogenesis in carnation. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:95-104. [PMID: 15002669 DOI: 10.1078/0176-1617-00957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We evaluated the capacity of the plant growth regulator thidiazuron (TDZ), a substituted phenylurea with high cytokinin-like activity, to promote organogenesis in petals and leaves of several carnation cultivars (Dianthus spp.), combined with 1-naphthaleneacetic acid (NAA). The involvement of the endogenous auxin indole-3-acetic acid (IAA) and purine-type cytokinins was also studied. Shoot differentiation was found to depend on the explant, cultivar and balance of growth regulators. TDZ alone (0.5 and 5.0 micromol/L) as well as synergistically with NAA (0.5 and 5.0 micromol/L) promoted shoot organogenesis in petals, and was more active than N6-benzyladenine. In petals of the White Sim cultivar, TDZ induced cell proliferation in a concentration-dependent manner and, on day 7 of culture, the proportion of meristematic regions in those petals allowed the prediction of shoot regeneration capacity after 30 days of culture. Immunolocalization of CK ribosides, N6-(delta2-isopentenyl)adenosine, zeatin riboside (ZR) and dihydrozeatin riboside (DHZR), in organogenic petals showed them to be highly concentrated in the tips of bud primordia and in the regions with proliferation capacity. All of them may play a role in cell proliferation, and possibly in differentiation, during the organogenic process. After seven days of culture of White Sim petals, NAA may account for the changes found in the levels of IAA and DHZR, whereas TDZ may be responsible for the remarkable increases in N6-(delta2-isopentenyl)adenine (iP) and ZR. ZR is induced by low TDZ concentrations (0.0-0.005 micromol/L), whereas iP, that correlates with massive cell proliferation and the onset of shoot differentiation, is associated with high TDZ levels (0.5 micromol/L). In addition to the changes observed in quantification and in situ localization of endogenous phytohormones during TDZ-induced shoot organogenesis, we propose that TDZ also promotes growth directly, through its own biological activity. To our knowledge, this study is the first to evaluate the effect of TDZ on endogenous phytohormones in an organogenic process.
Collapse
Affiliation(s)
- Eva Casanova
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|