1
|
Cao X, Amevor FK, Du X, Wu Y, Xu D, Wei S, Shu G, Feng J, Zhao X. Supplementation of the Combination of Quercetin and Vitamin E Alleviates the Effects of Heat Stress on the Uterine Function and Hormone Synthesis in Laying Hens. Animals (Basel) 2024; 14:1554. [PMID: 38891601 PMCID: PMC11171397 DOI: 10.3390/ani14111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Chickens are sensitive to heat stress because their capacity to dissipate body heat is low. Hence, in chickens, excessive ambient temperature negatively influences their reproductive performance and health. Heat stress induces inflammation and oxidative stress, thereby rendering many reproductive organs dysfunctional. In this study, we evaluated the effects of the supplementation of dietary quercetin and vitamin E on the uterine function, eggshell quality via estrogen concentration, calcium metabolism, and antioxidant status of the uterus of laying hens under heat stress. The ambient temperature transformation was set at 34 ± 2 °C for 8 h/d (9:00 am-5:00 pm), which was followed by 22 °C to 28 °C for 16 h/d. Throughout the experiment, the relative humidity in the chicken's pen was at 50 to 65%. A total of 400 Tianfu breeder hens (120-days-old) were randomly divided into four dietary experimental groups, including basal diet (Control); basal diet + 0.4 g/kg quercetin; basal diet + 0.2 g/kg vitamin E; and basal diet + the combination of quercetin (0.4 g/kg) and vitamin E (0.2 g/kg). The results show that the combination of quercetin and vitamin E significantly increased the serum alkaline phosphatase levels and the antioxidant status of the uterus (p < 0.05). In addition, the combination of quercetin and vitamin E significantly increased the concentrations of serum estrogen and progesterone, as well as elevated the expression of hypothalamic gonadotropin-releasing hormone-1 and follicular cytochrome P450 family 19 subfamily A member-1 (p < 0.05). We also found that the calcium levels of the serum and uterus were significantly increased by the synergistic effects of quercetin and vitamin E (p < 0.05), and they also increased the expression of Ca2+-ATPase and the mRNA expression of calcium-binding-related genes in the uterus (p < 0.05). These results are consistent with the increased eggshell quality of the laying hens under heat stress. Further, the combination of quercetin and vitamin E significantly increased the uterine morphological characteristics, such as the height of the uterine mucosal fold and the length of the uterine mucosa villus of the heat-stressed laying hens. These results collectively improve the uterine function, serum and uterine calcium concentration, eggshell strength, and eggshell thickness (p < 0.05) in heat-stressed laying hens. Taken together, we demonstrated in the present study that supplementing the combination of dietary quercetin and vitamin E alleviated the effects of heat stress and improved calcium metabolism, hormone synthesis, and uterine function in the heat-stressed laying hens. Thus, the supplementation of the combination of quercetin and vitamin E alleviates oxidative stress in the eggshell gland of heat-stressed laying hens, thereby promoting calcium concentration in the serum and eggshell gland, etc., in laying hens. Hence, the combination of quercetin and vitamin E promotes the reproductive performance of the laying hens under heat stress and can also be used as a potent anti-stressor in laying hens.
Collapse
Affiliation(s)
- Xueqing Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaxia Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Youhao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuo Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 851418, China;
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Liu J, Zhang D, Zhang Z, Chai W, Zhang J, Li M, Wang Y, Zhang S, Zhu M. Comparison of body size and reproductive hormones in high- and low-yielding Wulong geese. Poult Sci 2021; 101:101618. [PMID: 34986450 PMCID: PMC8743208 DOI: 10.1016/j.psj.2021.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Wulong geese are renowned for their egg-laying and reproductive abilities. This work investigated the potential of using body size traits in the selection and breeding of high-yielding Wulong geese. A total of forty 479day-old female geese (high-yielding geese, n = 20; low-yielding geese, n = 20) were selected to evaluate the relationship between body weight, body size trait indicators, serum reproductive hormones, and biochemical indicators. The results showed that serum estradiol (E2), glucose (GLU), and triglyceride (TG) concentrations, together with pubic spacing and abdominal circumference were significantly higher in high-yielding geese (P < 0.01), whereas the opposite was true for neck circumference, neck length, and tibial circumference. In addition, the serum testosterone (T) concentration and body weight were higher in high-yielding geese (P < 0.05). Neck circumference and neck length were negatively correlated with E2 and TG (P < 0.01); while pubic spacing and abdominal circumference were positively correlated with E2, GLU, and TG (P < 0.01), the highest correlation coefficient was 0.777 between TG and pubic spacing; T was also strongly associated with neck circumference (P < 0.01). In conclusion, high-yielding Wulong geese can be selected through neck circumference, neck length, pubic spacing, and abdominal circumference.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Agronomy of Liaocheng University, Liaocheng 252000, China
| | - Demin Zhang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Zhenwei Zhang
- College of Agronomy of Liaocheng University, Liaocheng 252000, China
| | - Wenqiong Chai
- College of Agronomy of Liaocheng University, Liaocheng 252000, China
| | - Jiqing Zhang
- College of Agronomy of Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- College of Agronomy of Liaocheng University, Liaocheng 252000, China
| | - Yun Wang
- Liaocheng Academy of Agricultural Sciences, Liaocheng 252000, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agronomy of Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
3
|
Li J, Li C, Li Q, Li G, Li W, Li H, Kang X, Tian Y. Novel Regulatory Factors in the Hypothalamic-Pituitary-Ovarian Axis of Hens at Four Developmental Stages. Front Genet 2020; 11:591672. [PMID: 33329737 PMCID: PMC7672196 DOI: 10.3389/fgene.2020.591672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Ovarian follicular development is an extremely complex and precise process in which the hypothalamic-pituitary-ovarian (HPO) axis plays a crucial role. However, research on the regulatory factors of the HPO axis is sparse. In this study, transcriptomes of the tissues in the entire HPO axis at 15, 20, 30, and 68 w of age were analyzed. In total, 381, 622, and 1090 differentially expressed genes (DEGs) were found among the hypothalamus, pituitary, and ovary, respectively. In particular, the greatest number of DEGs (867) was identified from the comparison of ovary at 30 and 15 w, which might be related to ovarian development and function at high ovulation capacity. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most of these DEGs in the significantly enriched biological process (BP) terms and pathways were primarily involved in tissue development and the regulation of reproductive hormone biosynthesis and secretion. The latter is highly related to the HPO axis. Therefore, a number of hub candidate genes strongly associated with the HPO axis in each tissue were filtered by analyzing the Protein-protein interaction (PPI) network and seven known reproductive hormone-associated key genes were obtained: PGR, HSD3B2, CYP17A1, CYP11A1, CYP21A2, STS, and CYP19A1, and 12 novel genes: ROCK2, TBP, GTF2H2, GTF2B, DHCR24, DHCR7, FDFT1, LSS, SQLE, MSMO1, CYP51A1, and PANK3. These will be utilized for further research into the function of the HPO axis. This study has highlighted the major role of the HPO axis in the reproduction of hens at the four developmental stages and explored the novel factors that might regulate reproduction, thus providing new insights into the function of the HPO axis on the reproductive system.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Jiang J, Qi L, Dai H, Hu C, Lv Z, Wei Q, Shi F. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Balthazart J. New concepts in the study of the sexual differentiation and activation of reproductive behavior, a personal view. Front Neuroendocrinol 2019; 55:100785. [PMID: 31430485 PMCID: PMC6858558 DOI: 10.1016/j.yfrne.2019.100785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
Since the beginning of this century, research methods in neuroendocrinology enjoyed extensive refinements and innovation. These advances allowed collection of huge amounts of new data and the development of new ideas but have not led to this point, with a few exceptions, to the development of new conceptual advances. Conceptual advances that took place largely resulted from the ingenious insights of several investigators. I summarize here some of these new ideas as they relate to the sexual differentiation and activation by sex steroids of reproductive behaviors and I discuss how our research contributed to the general picture. This selective review clearly demonstrates the importance of conceptual changes that have taken place in this field since beginning of the 21st century. The recent technological advances suggest that our understanding of hormones, brain and behavior relationships will continue to improve in a very fundamental manner over the coming years.
Collapse
|
6
|
Balthazart J. Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey. Horm Behav 2017; 93:137-150. [PMID: 28576650 PMCID: PMC5544559 DOI: 10.1016/j.yhbeh.2017.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
Abstract
Since Arnold Adolph Berthold established in 1849 the critical role of the testes in the activation of male sexual behavior, intensive research has identified many sophisticated neurochemical and molecular mechanisms mediating this action. Studies in Japanese quail demonstrated the critical role of testosterone action and of testosterone aromatization in the sexually dimorphic medial preoptic nucleus in the activation of male copulatory behavior. The development of an immunohistochemical visualization of brain aromatase in quail then allowed further refinement in the localization of the sites of neuroestrogens production. Testosterone aromatization is required for the activation of both appetitive and consummatory aspects of male sexual behavior. Brain aromatase activity is modulated by steroid-induced changes in the transcription of the corresponding gene but also more rapidly by phosphorylation processes. Sexual interactions with a female also rapidly regulate brain aromatase activity in an anatomically specific manner presumably via the release and action of endogenous glutamate. These rapid changes in estrogen production modulate sexual behavior and in particular its motivational component with latencies ranging between 15 and 30min. Brain estrogens seem to act in a manner akin to a neurotransmitter or at least a neuromodulator. More recently, assays of brain estradiol concentrations in micropunched samples or in dialysis samples obtained from behaviorally active males suggested that aromatase activity measured ex vivo might not be an accurate proxy to the rapid changes in local neuroestrogens production and concentrations. Studies of brain testosterone metabolism are thus not over and will keep scientists busy for a little longer. Elsevier SBN Keynote Address, Montreal.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, B-4000 Liège, Belgium.
| |
Collapse
|
7
|
Charlier TD, Cornil CA, Patte-Mensah C, Meyer L, Mensah-Nyagan AG, Balthazart J. Local modulation of steroid action: rapid control of enzymatic activity. Front Neurosci 2015; 9:83. [PMID: 25852459 PMCID: PMC4365721 DOI: 10.3389/fnins.2015.00083] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/25/2015] [Indexed: 02/01/2023] Open
Abstract
Estrogens can induce rapid, short-lived physiological and behavioral responses, in addition to their slow, but long-term, effects at the transcriptional level. To be functionally relevant, these effects should be associated with rapid modulations of estrogens concentrations. 17β-estradiol is synthesized by the enzyme aromatase, using testosterone as a substrate, but can also be degraded into catechol-estrogens via hydroxylation by the same enzyme, leading to an increase or decrease in estrogens concentration, respectively. The first evidence that aromatase activity (AA) can be rapidly modulated came from experiments performed in Japanese quail hypothalamus homogenates. This rapid modulation is triggered by calcium-dependent phosphorylations and was confirmed in other tissues and species. The mechanisms controlling the phosphorylation status, the targeted amino acid residues and the reversibility seem to vary depending of the tissues and is discussed in this review. We currently do not know whether the phosphorylation of the same amino acid affects both aromatase and/or hydroxylase activities or whether these residues are different. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues.
Collapse
Affiliation(s)
- Thierry D Charlier
- Institut de Recherche en Santé, Environnement et Travail, University of Rennes 1 Rennes, France ; Department of Biological Sciences, Ohio University Athens, OH, USA
| | | | | | | | | | | |
Collapse
|
8
|
Balthazart J, Taziaux M, Holloway K, Ball GF, Cornil CA. Behavioral effects of brain-derived estrogens in birds. Ann N Y Acad Sci 2009; 1163:31-48. [PMID: 19456326 DOI: 10.1111/j.1749-6632.2008.03637.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In birds as in other vertebrates, estrogens produced in the brain by aromatization of testosterone have widespread effects on behavior. Research conducted with male Japanese quail demonstrates that effects of brain estrogens on all aspects of sexual behavior, including appetitive and consummatory components as well as learned aspects, can be divided into two main classes based on their time course. First, estrogens via binding to estrogen receptors regulate the transcription of a variety of genes involved primarily in neurotransmission. These neurochemical effects ultimately result in the activation of male copulatory behavior after a latency of a few days. Correlatively, testosterone and its aromatized metabolites increase the transcription of the aromatase mRNA, resulting in an increased concentration and activity of the enzyme that actually precedes behavioral activation. Second, recent studies with quail demonstrate that brain aromatase activity can also be modulated within minutes by phosphorylation processes regulated by changes in intracellular calcium concentration, such as those associated with glutamatergic neurotransmission. The rapid upregulations or downregulations of brain estrogen concentration (presumably resulting from these changes in aromatase activity) affect, by nongenomic mechanisms with relatively short latencies (frequency increases or decreases respectively within 10-15 min), the expression of male sexual behavior in quail and also in rodents. Brain estrogens thus affect behavior on different time scales by genomic and nongenomic mechanisms similar to those of a hormone or a neurotransmitter.
Collapse
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, University of Liège, Liège, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Balthazart J, Cornil CA, Taziaux M, Charlier TD, Baillien M, Ball GF. Rapid changes in production and behavioral action of estrogens. Neuroscience 2005; 138:783-91. [PMID: 16359807 DOI: 10.1016/j.neuroscience.2005.06.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/08/2005] [Accepted: 06/10/2005] [Indexed: 11/29/2022]
Abstract
It is well established that sex steroid hormones bind to nuclear receptors, which then act as transcription factors to control brain sexual differentiation and the activation of sexual behaviors. Estrogens locally produced in the brain exert their behavioral effects in this way but mounting evidence indicates that estrogens also can influence brain functioning more rapidly via non-genomic mechanisms. We recently reported that, in Japanese quail, the activity of preoptic estrogen synthase (aromatase) can be modulated quite rapidly (within minutes) by non-genomic mechanisms, including calcium-dependent phosphorylations. Behavioral studies further demonstrated that rapid changes in estrogen bioavailability, resulting either from a single injection of a high dose of estradiol or from the acute inhibition of aromatase activity, significantly affect the expression of both appetitive and consummatory aspects of male sexual behavior with latencies ranging between 15 and 30 min. Together these data indicate that the bioavailability of estrogens in the brain can change on different time-scales (long- and short-term) that match well with the genomic and non-genomic actions of this steroid and underlie two complementary mechanisms through which estrogens modulate behavior. Estrogens produced locally in the brain should therefore be considered not only as neuroactive steroids but they also display many (if not all) functional characteristics of neuromodulators and perhaps neurotransmitters.
Collapse
Affiliation(s)
- J Balthazart
- University of Liège, Center for Cellular and Molecular Neurobiology, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Benninghoff AD, Thomas P. Involvement of calcium and calmodulin in the regulation of ovarian steroidogenesis in Atlantic croaker (Micropogonias undulatus) and modulation by Aroclor 1254. Gen Comp Endocrinol 2005; 144:211-23. [PMID: 16102761 DOI: 10.1016/j.ygcen.2005.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/25/2005] [Accepted: 06/03/2005] [Indexed: 11/21/2022]
Abstract
The involvement of calcium-dependent signal transduction pathways in the regulation of ovarian steroidogenesis was investigated in Atlantic croaker. Treatment with the calcium ionophores A23187 and ionomycin caused a 2- to 5-fold increase in basal steroid accumulation by croaker ovarian tissue in vitro. A23187 potentiated human chorionic gonadotropin (hCG)-induced testosterone (T) accumulation, whereas it inhibited accumulation of estradiol-17beta (E(2)) and the conversion of T to E(2), suggesting that intracellular calcium modulates aromatase enzyme activity. Gonadotropin stimulation of ovarian steroidogenesis was decreased in the presence of EGTA and inhibitors of voltage-sensitive calcium channels (VSCCs) and inositol-1,4,5-triphosphate-receptors (IP(3)Rs), indicating that releases of calcium from both intracellular and extracellular stores are components of the signal transduction pathways initiated by gonadotropin. Calmodulin is also involved in the regulation of ovarian steroidogenesis in croaker, since the calmodulin inhibitors W-7 and trifluoperazine (TFP) attenuated hCG-stimulated T and E(2) accumulation. These results are broadly similar to those reported previously in goldfish and suggest that the major calcium-dependent signaling pathways involved in gonadotropin stimulation of ovarian steroidogenesis in tetrapods are also present in teleosts. In addition, the involvement of calcium in the regulation of aromatase activity was demonstrated for the first time in a vertebrate ovary. Finally, acute exposure to 0.001-1 ppm Aroclor 1254 induced up to a 5-fold increase in hCG-stimulated E(2) accumulation, and this effect was attenuated by co-treatment with inhibitors of VSCCs and calmodulin, suggesting the existence of a novel mechanism of endocrine disruption by an environmental contaminant involving alteration of calcium-dependent signaling pathways regulating steroidogenesis.
Collapse
Affiliation(s)
- Abby D Benninghoff
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | |
Collapse
|
11
|
Balthazart J, Baillien M, Cornil CA, Ball GF. Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiol Behav 2005; 83:247-70. [PMID: 15488543 DOI: 10.1016/j.physbeh.2004.08.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In many species, copulatory behavior and appetitive (anticipatory/motivational) aspects of male sexual behavior are activated by the action in the preoptic area of estrogens locally produced by testosterone aromatization. Estrogens bind to intracellular receptors, which then act as transcription factors to activate the behavior. Accordingly, changes in aromatase activity (AA) result from slow steroid-induced modifications of enzyme transcription. More recently, rapid nongenomic effects of estrogens have been described and evidence has accumulated indicating that AA can be modulated by rapid (minutes to hour) nongenomic mechanisms in addition to the slower transcriptional changes. Hypothalamic AA is rapidly down-regulated in conditions that enhance protein phosphorylation, in particular, increases in the intracellular calcium concentration, such as those triggered by neurotransmitter (e.g., glutamate) activity. Fast changes in brain estrogens can thus be caused by aromatase phosphorylation as a result of changes in neurotransmission. In parallel, recent studies demonstrate that the pharmacological blockade of AA by specific inhibitors rapidly (within 15-45 min) down-regulates motivational and consummatory aspects of male sexual behavior in quail while injections of estradiol can rapidly increase the expression of copulatory behavior. These data collectively support an emerging concept in neuroendocrinology, namely that estrogen, locally produced in the brain, regulates male sexual behavior via a combination of genomic and nongenomic mechanisms. Rapid and slower changes of brain AA match well with these two modes of estrogen action and provide temporal variations in the estrogen's bioavailability that can support the entire range of established effects for this steroid.
Collapse
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour (Bat. L1), B-4020 Liège, Belgium.
| | | | | | | |
Collapse
|
12
|
Hansen KK, Beck MM, Scheideler SE, Blankenship EE. Exogenous estrogen boosts circulating estradiol concentrations and calcium uptake by duodenal tissue in heat-stressed hens. Poult Sci 2004; 83:895-900. [PMID: 15206615 DOI: 10.1093/ps/83.6.895] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the hen, heat stress (HS) disrupts shell calcification and reproductive processes, including hormone synthesis and egg production. Two studies were conducted to investigate palliative effects of exogenous estrogen or dietary vitamin D3 on Ca homeostasis and reproductive physiology during HS. Study 1: Hy-Line W36 hens were randomly assigned to thermoneutral (TN) or HS treatments and to 1 of 7 estrogen treatments: zero (control) or one Compudose 200 implant given 1, 2, 3, 8, 9, or 10 d before onset of HS. With no implant, HS reduced plasma estradiol (E2) and total Ca absorbed (CaT) by duodenal cells (P < 0.05). In TN hens with implants, plasma E2 tripled within 24 h (P < 0.05) and remained elevated (P < 0.05) through d 9. In HS hens with implants, plasma E2 rose 6-fold (P < 0.05) to equal TN+E2 concentrations and remained elevated through d 10. In TN and HS hens with implants, the rate of Ca absorption (CaTR) and CaT increased dramatically; the responses were quadratic and essentially identical. Study 2: Hy-Line W36 hens were provided diets formulated either according to NRC requirements (NRC, 1994), or with the addition of 22,000 IU/kg vitamin D3 (+VD hens). A 24-h HS episode was imposed 2 wk after initiation of the dietary regimen. Duodenal samples were collected for Ca absorption assays after the 24-h HS episode. Both CaTR and CaT in +VD hens were approximately 3-fold higher than in hens in the NVD group (P = 0.102). The results lead to the conclusion that exogenous estrogen, high levels of dietary vitamin D, or both, before a HS episode, are efficacious in alleviating at least some of the effects of HS and should be further investigated.
Collapse
Affiliation(s)
- K K Hansen
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583, USA
| | | | | | | |
Collapse
|
13
|
Balthazart J, Baillien M, Charlier TD, Cornil CA, Ball GF. Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level. J Steroid Biochem Mol Biol 2003; 86:367-79. [PMID: 14623533 DOI: 10.1016/s0960-0760(03)00346-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms. We review here these two types of control mechanisms and their potential contribution to various aspects of brain physiology in quail. High levels of aromatase mRNA, protein and activity (AA) are present in the preoptic area of this species where the transcription of aromatase is controlled mainly by steroids. Estrogens acting in synergy with androgens play a key role in this control and both androgen and estrogen receptors (ER; alpha and beta subtypes) are present in the preoptic area even if they are not necessarily co-localized in the same cells as aromatase. Steroids have more pronounced effects on aromatase transcription in males than in females and this sex difference could be caused, in part, by a sexually differentiated expression of the steroid receptor coactivator 1 in this area. The changes in aromatase concentration presumably control seasonal variations as well as sex differences in brain estrogen production. Aromatase activity in hypothalamic homogenates is also rapidly (within minutes) down-regulated by exposure to conditions that enhance protein phosphorylation such as the presence of high concentrations of calcium, magnesium and ATP. Similarly, pharmacological manipulations such as treatment with thapsigargin or stimulation of various neurotransmitter receptors (alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA)) leading to enhanced intracellular calcium concentrations depress within minutes the aromatase activity measured in quail preoptic explants. The effects of receptor stimulation are presumably direct: electrophysiological data confirm the presence of these receptors in the membrane of aromatase-expressing cells. Inhibitors of protein kinases interfere with these processes and Western blotting experiments on brain aromatase purified by immunoprecipitation confirm that the phosphorylations regulating aromatase activity directly affect the enzyme rather than another regulatory protein. Accordingly, several phosphorylation consensus sites are present on the deduced amino acid sequence of the recently cloned quail aromatase. Fast changes in the local availability of estrogens in the brain can thus be caused by aromatase phosphorylation so that estrogen could rapidly regulate neuronal physiology and behavior. The rapid as well as slower processes of local estrogen production in the brain thus match well with the genomic and non-genomic actions of steroids in the brain. These two processes potentially provide sufficient temporal variation in the bio-availability of estrogens to support the entire range of established effects for this steroid.
Collapse
Affiliation(s)
- Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, University of Liège, 17 Place Delcour (Bat L1), Liège B-4020, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Balthazart J, Baillien M, Ball GF. Phosphorylation processes mediate rapid changes of brain aromatase activity. J Steroid Biochem Mol Biol 2001; 79:261-77. [PMID: 11850233 DOI: 10.1016/s0960-0760(01)00143-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme aromatase (also called estrogen synthase) that catalyzes the transformation of testosterone (T) into estradiol plays a key limiting role in the action of T on many aspects of reproduction. The distribution and regulation of aromatase in the quail brain has been studied by radioenzyme assays on microdissected brain areas, immunocytochemistry, RT-PCR and in situ hybridization. High levels of aromatase activity (AA) characterize the sexually dimorphic, steroid-sensitive medial preoptic nucleus (POM), a critical site of T action and aromatization for the activation of male sexual behavior. The boundaries of the POM are clearly outlined by a dense population of aromatase-containing cells as visualized by both immunocytochemistry and in situ hybridization histochemistry. Aromatase synthesis in the POM is controlled by T and its metabolite estradiol, but estradiol receptors alpha (ERalpha) are not normally co-localized with aromatase in this brain area. Estradiol receptor beta (ERbeta) has been recently cloned in quail and localized in POM but we do not yet know whether ERbeta occurs in aromatase cells. It is therefore not known whether estrogens regulate aromatase synthesis directly or by affecting different inputs to aromatase cells as is the case with the gonadotropin releasing hormone neurons. The presence of aromatase in presynaptic boutons suggests that locally formed estrogens may exert part of their effects by non-genomic mechanisms at the membrane level. Rapid effects of estrogens in the brain that presumably take place at the neuronal membrane level have been described in other species. If fast transduction mechanisms for estrogen are available at the membrane level, this will not necessarily result in rapid changes in brain function if the availability of the ligand does not also change rapidly. We demonstrate here that AA in hypothalamic homogenates is rapidly down-regulated by exposure to conditions that enhance protein phosphorylation (addition of Ca2+, Mg2+, ATP). This inhibition is blocked by kinase inhibitors which supports the notion that phosphorylation processes are involved. A rapid (within minutes) and reversible regulation of AA is also observed in hypothalamic explants incubated in vitro and exposed to high Ca2+ levels (K+-induced depolarization, treatment by thapsigargin, by kainate, AMPA or NMDA). The local production and availability of estrogens in the brain can therefore be rapidly changed by Ca2+ based on variation in neurotransmitter activity. Locally-produced estrogens are as a consequence available for non-genomic regulation of neuronal physiology in a manner more akin to the action of a neuropeptide/neurotransmitter than previously thought.
Collapse
Affiliation(s)
- J Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, 17 Place Delcour (Bat. L1), University of Liège, B-4020, Liège, Belgium.
| | | | | |
Collapse
|
15
|
Absil P, Baillien M, Ball GF, Panzica GC, Balthazart J. The control of preoptic aromatase activity by afferent inputs in Japanese quail. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:38-58. [PMID: 11744073 DOI: 10.1016/s0165-0173(01)00122-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review summarizes current knowledge on the mechanisms that control aromatase activity in the quail preoptic area, a brain region that plays a key role in the control of reproduction. Aromatase and aromatase mRNA synthesis in the preoptic area are enhanced by testosterone and its metabolite estradiol, but estradiol receptors of the alpha subtype are not regularly colocalized with aromatase. Estradiol receptors of the beta subtype are present in the preoptic area but it is not yet known whether these receptors are colocalized with aromatase. The regulation by estrogen of aromatase activity may be, in part, trans-synaptically mediated, in a manner that is reminiscent of the ways in which steroids control the activity of gonadotropic hormone releasing hormone neurons. Aromatase-immunoreactive neurons are surrounded by dense networks of vasotocin-immunoreactive and tyrosine hydroxylase-immunoreactive fibers and punctate structures. These inputs are in part steroid-sensitive and could therefore mediate the effects of steroids on aromatase activity. In vivo pharmacological experiments indicate that catecholaminergic depletions significantly affect aromatase activity presumably by modulating aromatase transcription. In addition, in vitro studies on brain homogenates or on preoptic-hypothalamic explants show that aromatase activity can be rapidly modulated by a variety of dopaminergic compounds. These effects do not appear to be mediated by the membrane dopamine receptors and could involve changes in the phosphorylation state of the enzyme. Together, these results provide converging evidence for a direct control of aromatase activity by catecholamines consistent with the anatomical data indicating the presence of a catecholaminergic innervation of aromatase cells. These dopamine-induced changes in aromatase activity are observed after several hours or days and presumably result from changes in aromatase transcription but rapid non-genomic controls have also been identified. The potential significance of these processes for the physiology of reproduction is critically evaluated.
Collapse
Affiliation(s)
- P Absil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour, B-4020, Liège, Belgium
| | | | | | | | | |
Collapse
|
16
|
Woolveridge I, Peddie MJ. The inhibition of androstenedione production in mature thecal cells from the ovary of the domestic hen (Gallus domesticus): evidence for the involvement of progestins. Steroids 1997; 62:214-20. [PMID: 9055379 DOI: 10.1016/s0039-128x(96)00209-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the 24 hours before ovulation, there is an abrupt decline in the ability of theca cells from the largest chicken preovulatory follicle to produce androstenedione from all substrates except dehydroepiandrosterone. In this study, we tested the hypothesis that progesterone from granulosa cells might inhibit andostenedione production by the adjacent theca cells. Physiological concentrations of progesterone inhibited andostenedione production by dispersed thecal cells from the substrate 17 alpha-hydroxyprogesterone but not dehydroepiandrosterone in both a dose- and time-dependent manner. In contrast, the metabolites of progesterone, 17 alpha-hydroxyprogesterone, and androstenedione at a high concentration (100 nM) failed to produce such an inhibitory effect. In addition, this inhibitory effect of progesterone was reversed by the protein synthesis inhibitor cycloheximide. The results of this study seem to suggest that progesterone acts indirectly through its nuclear receptor to induce the synthesis of a protein that possibly inhibits C17,20 lyase activity and/or C17,20 lyase gene expression.
Collapse
Affiliation(s)
- I Woolveridge
- Department of Physiology and Pharmacology, University of Southampton, UK
| | | |
Collapse
|
17
|
Ruschkowski SR, Hart LE. Ionic and endocrine characteristics of reproductive failure in calcium-deficient and vitamin D-deficient laying hens. Poult Sci 1992; 71:1722-32. [PMID: 1454689 DOI: 10.3382/ps.0711722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Whole blood ionized calcium and plasma total calcium, inorganic phosphorus, estradiol-17 beta, progesterone, and 1,25-di-hydroxycholecalciferol concentrations were measured in calcium- or vitamin D-deficient Single Comb White Leghorn hens. Control birds were serially sampled every 2 h for 26 h immediately following oviposition until the next oviposition. Deficient birds, which had ceased laying 10 to 14 days prior to sampling, were sampled at the same times. The control birds had significantly higher mean total and bound plasma calcium and inorganic phosphorus concentrations than the deficient hens. Control and vitamin D-deficient hens had similar mean ionized calcium concentrations. Control hens exhibited a cyclic pattern in ionized calcium and inorganic phosphorus concentrations over the sampling period that was related to shell calcification. Deficient hens showed no changes in ionized calcium concentration during this time. Plasma 1,25-dihydroxycholecalciferol concentrations were significantly higher in the calcium-deficient birds than the control or vitamin D-deficient hens. Mean plasma estradiol-17 beta and progesterone concentrations were consistently higher in the control hens than the deficient hens. Consistent with this observation were decreases in ovary and oviduct weights, which occurred in the nonlaying deficient hens.
Collapse
Affiliation(s)
- S R Ruschkowski
- Department of Animal Science, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
18
|
Moudgal RP, Mohan J, Panda JN. The influence of prepubertal partial sinistral ovariectomy on the subsequent reproductive function of domestic hens (Gallus domesticus ). Theriogenology 1992; 37:1155-62. [PMID: 16727112 DOI: 10.1016/0093-691x(92)90112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/1991] [Accepted: 02/25/1992] [Indexed: 10/26/2022]
Abstract
Each of 20 White Leghorn hens of 13 to 14 weeks were subjected to partial sinistral ovariectomy and sham-operations. In half of the hens from each group, the percentage of egg production and clutch size were noted until 50 weeks of age. The growing pattern of normal ovarian follicles was also recorded at 26 weeks of age in a rest half ofthe hens in the two groups. The percentage of egg production and the mean and variance of clutch size did not differ significantly (P / 0.05) between the partially ovariectomized and sham-operated groups. The growing yellow follicles (>8 mm) in the rapidly developing phase in these two groups did not vary, although the smaller follicles (4 to 8 mm in diameter) remained significantly (P / 0.01) more in the shamoperated control group than in the partially ovariectomized group. This observation indicates that smaller follicles (4 to 8 mm) developed in the larger (>8 mm) follicles more efficiently in partially ovariectomized hens than in the sham-operated (control) hens. In a second experiment, one group of hens had all the yellow follicles (>8 mm) removed, while a second group of hens was left untreated. On the 3rd and 6th day post treatment, the hens were examined for the presence of ovarian follicles. No significant (P / 0.05) difference in the growing pattern of subsequent follicles (2 to 4 or 4 to 8 mm) was detected due to treatment. These data demonstrate that the mechanisms that regulate follicular growth and atresia are adjust to maintain normal ovulation following partial ovariectomy.
Collapse
Affiliation(s)
- R P Moudgal
- Division of Physiology and Reproduction Central Avian Research Institute Izatnagar, 243 122 (UP) India
| | | | | |
Collapse
|
19
|
Velázquez P, Gómez Y, González del Pliego M, Pedernera E. Steroidogenic cell subpopulations obtained from the theca of preovulatory follicles in the ovary of the domestic fowl. Gen Comp Endocrinol 1991; 83:243-8. [PMID: 1916211 DOI: 10.1016/0016-6480(91)90027-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of the present study is to provide further evidence in support of the theory which suggests that two cells are involved in the secretion of estrogens and androgens in the theca of the preovulatory ovarian follicles in the domestic fowl. The third (F3), the fourth (F4), and the fifth (F5), in order of decreasing size follicles, were obtained from white Leghorn hens. Theca cells were dispersed by trypsin treatment, and isolated cells were centrifuged in a continuous Percoll gradient (0-100%). Testosterone and 17 beta-estradiol secretion from cell samples in each density gradient fraction were radioimmunologically assayed. The highest secretion of 17 beta-estradiol was registered in cells isolated in density fractions ranging from 1.059 to 1.070 g/ml, while the maximal testosterone production was found in fractions from 1.037 to 1.048 g/ml. The different results were obtained from the three types of follicles studied (F3-F5). Morphological study of the F4 follicle showed typical steroidogenic cells with abundant lipid droplets in the cytoplasm in the theca interna, whereas clusters of poorly differentiated epithelial cells were visualized between fibroblast layers of the theca externa. The secretion of aromatizable androgens by the typical steroidogenic cells of the theca interna and estrogen production in the epithelial cells of the theca externa are postulated.
Collapse
Affiliation(s)
- P Velázquez
- Departamento de Histología, Facultad de Medicina, Universidad Nacional, Autónoma de México, DF
| | | | | | | |
Collapse
|