1
|
Hofbauer S, Pignataro M, Borsari M, Bortolotti CA, Di Rocco G, Ravenscroft G, Furtmüller PG, Obinger C, Sola M, Battistuzzi G. Pseudoperoxidase activity, conformational stability, and aggregation propensity of the His98Tyr myoglobin variant: implications for the onset of myoglobinopathy. FEBS J 2021; 289:1105-1117. [PMID: 34679218 PMCID: PMC9298411 DOI: 10.1111/febs.16235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high‐molecular‐weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2O2‐induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
2
|
Samuni U, Czapski G, Goldstein S. Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin. Biochim Biophys Acta Gen Subj 2016; 1860:1409-16. [PMID: 27062906 DOI: 10.1016/j.bbagen.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Metmyoglobin (MbFe(III)) reaction with H(2)O(2) has been a subject of study over many years. H(2)O(2) alone promotes heme destruction frequently denoted "suicide inactivation," yet the mechanism underlying H(2)O(2) dismutation associated with MbFe(III) inactivation remains obscure. METHODS MbFe(III) reaction with excess H(2)O(2) in the absence and presence of the nitroxide was studied at pH 5.3-8.1 and 25°C by direct determination of reaction rate constants using rapid-mixing stopped-flow technique, by following H(2)O(2) depletion, O(2) evolution, spectral changes of the heme protein, and the fate of the nitroxide by EPR spectroscopy. RESULTS The rates of both H(2)O(2) dismutation and heme inactivation processes depend on [MbFe(III)], [H(2)O(2)] and pH. Yet the inactivation stoichiometry is independent of these variables and each MbFe(III) molecule catalyzes the dismutation of 50±10 H(2)O(2) molecules until it is inactivated. The nitroxide catalytically enhances the catalase-like activity of MbFe(III) while protecting the heme against inactivation. The rate-determining step in the absence and presence of the nitroxide is the reduction of MbFe(IV)O by H(2)O(2) and by nitroxide, respectively. CONCLUSIONS The nitroxide effects on H(2)O(2) dismutation catalyzed by MbFe(III) demonstrate that MbFe(IV)O reduction by H(2)O(2) is the rate-determining step of this process. The proposed mechanism, which adequately fits the pro-catalytic and protective effects of the nitroxide, implies the intermediacy of a compound I-H(2)O(2) adduct, which decomposes to a MbFe(IV)O and an inactivated heme at a ratio of 25:1. GENERAL SIGNIFICANCE The effects of nitroxides are instrumental in elucidating the mechanism underlying the catalysis and inactivation routes of heme proteins.
Collapse
Affiliation(s)
- Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Gideon Czapski
- The Accelerator Laboratory, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Goldstein
- The Accelerator Laboratory, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
3
|
Ortiz-Avila O, Sámano-García CA, Calderón-Cortés E, Pérez-Hernández IH, Mejía-Zepeda R, Rodríguez-Orozco AR, Saavedra-Molina A, Cortés-Rojo C. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria. J Bioenerg Biomembr 2013; 45:271-87. [PMID: 23443911 DOI: 10.1007/s10863-013-9502-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.
Collapse
Affiliation(s)
- Omar Ortiz-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3 Ciudad Universitaria, Morelia, Mich., México
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ali S, Farooqi H, Prasad R, Naime M, Routray I, Yadav S, Ahmad F. Boron stabilizes peroxide mediated changes in the structure of heme proteins. Int J Biol Macromol 2010; 47:109-15. [PMID: 20576510 DOI: 10.1016/j.ijbiomac.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/15/2022]
Abstract
Boron is reported in this study to stabilize the structure of heme proteins exposed to peroxides. The oxidized heme protein (15 microM) was treated with H(2)O(2) (10mM) in 1M glycine-NaOH buffer (pH 9.2) at 25 degrees C in absence/presence of boron, and characterized by visible absorption spectroscopy, gel exclusion chromatography, native PAGE, HPLC and DLS. Spectral analysis of exposed heme proteins revealed a decrease in absorbance in the Soret region, which was stabilized by boron. The native PAGE analysis of exposed heme proteins showed high molecular weight products; the band intensity was lesser in presence of boron. Further, elution profile of the exposed heme proteins on Sephadex G-200 column and HPLC revealed more than one peak (aggregate formation) when compared to the respective untreated proteins. DLS, which measures the hydrodynamic radius (R(H)), was used to ascertain whether the peaks correspond to monomer, dimer or aggregate forms. The R(H) of boron pretreated heme proteins was close to R(H) of the respective heme protein. Non-heme protein RNase did not show any change when exposed to peroxide. Taken together, results conclude that boron stabilizes the structure of heme proteins, which might be due to specific sites on heme proteins that can bind to borate ions.
Collapse
Affiliation(s)
- Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005; 157:175-88. [PMID: 15917143 DOI: 10.1016/j.toxlet.2005.03.004] [Citation(s) in RCA: 606] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 11/16/2022]
Abstract
Severe hemolysis or myolysis occurring during pathological states, such as sickle cell disease, ischemia reperfusion, and malaria results in high levels of free heme, causing undesirable toxicity leading to organ, tissue, and cellular injury. Free heme catalyzes the oxidation, covalent cross-linking and aggregate formation of protein and its degradation to small peptides. It also catalyzes the formation of cytotoxic lipid peroxide via lipid peroxidation and damages DNA through oxidative stress. Heme being a lipophilic molecule intercalates in the membrane and impairs lipid bilayers and organelles, such as mitochondria and nuclei, and destabilizes the cytoskeleton. Heme is a potent hemolytic agent and alters the conformation of cytoskeletal protein in red cells. Free heme causes endothelial cell injury, leading to vascular inflammatory disorders and stimulates the expression of intracellular adhesion molecules. Heme acts as a pro-inflammatory molecule and heme-induced inflammation is involved in the pathology of diverse conditions; such as renal failure, arteriosclerosis, and complications after artificial blood transfusion, peritoneal endometriosis, and heart transplant failure. Heme offers severe toxic effects to kidney, liver, central nervous system and cardiac tissue. Although heme oxygenase is primarily responsible to detoxify free heme but other extra heme oxygenase systems also play a significant role to detoxify heme. A brief account of free heme toxicity and its detoxification systems along with mechanistic details are presented.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Wickramaratne MND, Fung LWM. Oxidative Reactions of Normal and Abnormal Hemoglobins in the Presence of Phosphatidylserine Vesicles. Hemoglobin 2005. [DOI: 10.1081/hem-47056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Abstract
Heme proteins play a major role in various biological functions, such as oxygen sensing, electron transport, signal transduction, and antioxidant defense enzymes. Most of these reactions are carried out by redox reactions of heme iron. As the heme is not recycled, most cells containing heme proteins have the microsomal mixed function oxygenase, heme oxygenase, which enzymatically degrades heme to biliverdin, carbon monoxide, and iron. However, the red cell with the largest pool of heme protein, hemoglobin, contains no heme oxygenase, and enzymatic degradation of the red cell heme occurs only after the senescent red cells are removed by the reticuloendothelial system. Therefore, only nonenzymatic heme degradation initiated when the heme iron undergoes redox reactions in the presence of oxygen-producing reactive oxygen species takes place in the red cell. Unlike enzymatic degradation, which specifically attacks the alpha-methene bridge, reactive oxygen species randomly attack all the carbon methene bridges of the tetrapyrrole rings, producing various pyrrole products in addition to releasing iron. This review focuses on the literature related to nonenzymatic heme degradation with special emphasis on hemoglobin, the dominant red cell heme protein.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
8
|
Kadnikova EN, Kostić NM. Effects of the environment on microperoxidase-11 and on its catalytic activity in oxidation of organic sulfides to sulfoxides. J Org Chem 2003; 68:2600-8. [PMID: 12662028 DOI: 10.1021/jo026344k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microperoxidase-11 (MP-11, also known as heme undecapeptide of cytochrome c) was immobilized by encapsulation into sol-gel silica glass and by physisorption, chemisorption, and covalent attachment to silica gel. We then compared these species with one another and with dissolved microperoxidase-11 as catalysts for the sulfoxidation of methyl phenyl sulfide by hydrogen peroxide. MP-11 is prone to oligomerization in solution, both via axial ligation and via intermolecular interactions. When the ligation oligomerization is suppressed upon immobilization, heme becomes more accessible, and the sulfoxide yield increases 4-6 times, from 15% up to 95%. When the ligation oligomerization of dissolved MP-11 is suppressed by protonation and acetylation of amino groups and by addition of methanol, sodium dodecyl sulfate (SDS), or trifluoroethanol, the sulfoxide yield increases 3-5 times (up to 76%). The oligomerization via intermolecular interactions is important for preserving enantioselectivity in immobilized and dissolved MP-11. For MP-11 in amine-rich and especially alcohol-rich environments, the enantioselectivity is vanishingly low, presumably because amino and hydroxyl groups cause a conformation change in the catalyst. In other environments, the MP-11 species are aggregated via intermolecular interactions in micellar (SDS) solution and on the surface of the silica gel, or via axial ligation in aqueous buffer at pH 6.0. Under these conditions, the enantioselectivity is enhanced; the enantiomeric excess (ee) becomes as high as 46%. An understanding of the effects of the aggregation state and consequent properties on the catalytic activity of MP-11 allowed us to control the yield and enantioselectivity of sulfoxidation reaction.
Collapse
|
9
|
Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. CHEMISTRY & BIOLOGY 2002; 9:555-65. [PMID: 12031662 DOI: 10.1016/s1074-5521(02)00149-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As the number of industrial applications for proteins continues to expand, the exploitation of protein engineering becomes critical. It is predicted that protein engineering can generate enzymes with new catalytic properties and create desirable, high-value, products at lower production costs. Peroxidases are ubiquitous enzymes that catalyze a variety of oxygen-transfer reactions and are thus potentially useful for industrial and biomedical applications. However, peroxidases are unstable and are readily inactivated by their substrate, hydrogen peroxide. Researchers rely on the powerful tools of molecular biology to improve the stability of these enzymes, either by protecting residues sensitive to oxidation or by devising more efficient intramolecular pathways for free-radical allocation. Here, we discuss the catalytic cycle of peroxidases and the mechanism of the suicide inactivation process to establish a broad knowledge base for future rational protein engineering.
Collapse
Affiliation(s)
- Brenda Valderrama
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Morelos 62250, México.
| | | | | |
Collapse
|
10
|
He K, Bornheim LM, Falick AM, Maltby D, Yin H, Correia MA. Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 1998; 37:17448-57. [PMID: 9860860 DOI: 10.1021/bi9808464] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cumene hydroperoxide-mediated (CuOOH-mediated) inactivation of cytochromes P450 (CYPs) results in destruction of their prosthetic heme to reactive fragments that irreversibly bind to the protein. We have attempted to characterize this process structurally, using purified, 14C-heme labeled, recombinant human liver P450 3A4 as the target of CuOOH-mediated inactivation, and a battery of protein characterization approaches [chemical (CNBr) and proteolytic (lysylendopeptidase-C) digestion, HPLC-peptide mapping, microEdman sequencing, and mass spectrometric analyses]. The heme-peptide adducts isolated after CNBr/lysylendopeptidase-C digestion of the CuOOH-inactivated P450 3A4 pertain to two distinct P450 3A4 active site domains. One of the peptides isolated corresponds to the proximal helix L/Cys-region peptide 429-450 domain and the others to the K-region (peptide 359-386 domain). Although the precise residue(s) targeted remain to be identified, we have narrowed down the region of attack to within a 17 amino acid peptide (429-445) stretch of the 55-amino acid proximal helix L/Cys domain. Furthermore, although the exact structures of the heme-modifying fragments and the nature of the adduction remain to be established conclusively, the incremental masses of approximately 302 and 314 Da detected by electrospray mass spectrometric analyses of the heme-modified peptides are consistent with a dipyrrolic heme fragment comprised of either pyrrole ring A-D or B-C, a known soluble product of peroxidative heme degradation, as a modifying species.
Collapse
Affiliation(s)
- K He
- Department of Cellular and Molecular Pharmacology, Liver Center, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
11
|
Juckett M, Zheng Y, Yuan H, Pastor T, Antholine W, Weber M, Vercellotti G. Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J Biol Chem 1998; 273:23388-97. [PMID: 9722574 DOI: 10.1074/jbc.273.36.23388] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the effects of nitric oxide (NO) on the control of excess cellular heme and release of catalytically active iron. Endothelial cells (ECs) exposed to hemin followed by a NO donor have a ferritin content that is 16% that of cells exposed to hemin alone. Hemin-treated ECs experience a 3.5-fold rise in non-heme, catalytic iron 2 h later, but a hemin rechallenge 20 h later results in only a 24% increase. The addition of a NO donor after the first hemin exposure prevents this adaptive response, presumably due to effects on ferritin synthesis. NO donors were found to reduce iron release from hemin, while hemin accumulated in cells. A NO donor, in a dose-dependent fashion, inhibited heme oxygenase activity, measured by bilirubin production. Using low temperature EPR spectroscopy, heme oxygenase inhibition correlated with nitrosylation of free heme in microsomes. Nitrosylation of cellular heme prevented iron release, for while there was heme oxygenase-dependent release of iron in cells incubated with hemin for 24 h, the addition of a NO donor blocked iron release. This indicates that NO readily nitrosylates intracellular free heme and prevents its degradation by heme oxygenase. Nitrosylation of heme was found to reduce sensitization of cells to oxidative injury.
Collapse
Affiliation(s)
- M Juckett
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sugiyama K, Highet RJ, Woods A, Cotter RJ, Osawa Y. Hydrogen peroxide-mediated alteration of the heme prosthetic group of metmyoglobin to an iron chlorin product: evidence for a novel oxidative pathway. Proc Natl Acad Sci U S A 1997; 94:796-801. [PMID: 9023336 PMCID: PMC19593 DOI: 10.1073/pnas.94.3.796] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1996] [Accepted: 12/06/1996] [Indexed: 02/03/2023] Open
Abstract
Treatment of metmyoglobin with H2O2 is known to lead to the crosslinking of an active site tyrosine residue to the heme [Catalano, C. E., Y. S. Choe, and P. R. Ortiz de Montellano (1989) J. Biol. Chem. 264, 10534-10541]. We have found in this study that this reaction also leads to an altered heme product not covalently bound to the protein. This product was characterized by visible absorption, infrared absorption, and mass and NMR spectrometry as an iron chlorin product formed from the saturation of the double bond between carbon atoms at positions 17 and 18 of pyrrole ring D with concomitant addition of a hydroxyl group on the carbon atom at position 18 and lactonization of the propionic acid to the carbon atom at position 17. Studies with the use of (18)O-labeled H2O2, O2, and H2O clearly indicate that the source of the added oxygen on the heme is water. Evidently, water adds regiospecifically to a cationic site formed on a carbon atom at position 18 after oxidation of the ferric heme prosthetic group with peroxide. Prolonged incubation of the reaction mixture containing the iron hydroxychlorin product led to the formation of an iron dihydroxychlorin product, presumably from a slow addition of water to the initial iron hydroxychlorin. The iron chlorin products characterized in this study are distinct from the meso-oxyheme species, which is thought to be formed during peroxide-mediated degradation of metmyoglobin, cytochrome P450, ferric heme, and model ferric hemes, and give further insight into the mechanism of H2O2-induced heme alterations.
Collapse
Affiliation(s)
- K Sugiyama
- Chemical Pharmacology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Berg-Candolfi M, Candolfi E, Benet LZ. Suppression of intestinal and hepatic cytochrome P4503A in murine Toxoplasma infection. Effects of N-acetylcysteine and N(G)-monomethyl-L-arginine on the hepatic suppression. Xenobiotica 1996; 26:381-94. [PMID: 9173679 DOI: 10.3109/00498259609046717] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Cytochrome P4503A (CYP3A) expression was studied in a murine model of infection. Mice were infected with a cystogenic strain of Toxoplasma gondii and microsomes were prepared for liver homogenates and jejunum villus tip enterocytes on day 10 postinfection. Total cytochrome P450 (CYP) and CYP3A were quantitated, and CYP3A activity was determined. 2. In the infected mouse, total CYP and CYP3A contents fell in the liver (-39 and - 49% respectively) and intestine (-43 and - 48 % respectively), as did the rate of metabolism of erythromycin (Ery) and cyclosporine A (CyA), two markers of CYP3A activity (-36 and -26% in the liver, -35 and -58% in the intestine). 3. To determine the mechanism(s) involved in the depression of hepatic CYP3A, infected mice were treated on day 7.5 post-infection with a monoclonal antibody raised against interferon-gamma (anti-IFN-gamma, or from days 7.5 to 10 post-infection with either N(G)-monomethyl-L-arginine (NMMA), an inhibitor of reactive nitrogen intermediates (RNI) production, or N-acetylcysteine (NAC), a reactive oxygen intermediates (ROI) scavenger. 4. Total CYP content was restored in the liver of infected mice treated with anti-IFN-gamma, but with marked interindividual variability. NAC treatment led to a recovery in the liver of total CYP content (+35 %), CYP3A content (total recovery), and the rates of Ery (+59%) and CyA (+87%) metabolism, whereas inconsistent results were obtained with NMMA. These results suggest that NAC, but probably not NMMA, partially protects hepatic CYP3A from Toxoplasma-mediated suppression in mouse.
Collapse
Affiliation(s)
- M Berg-Candolfi
- Department of Pharmacy, University of California San Francisco, CA, USA
| | | | | |
Collapse
|
14
|
Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1. Identification of an active site heme-modified peptide. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54114-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Osawa Y, Korzekwa K. Oxidative modification by low levels of HOOH can transform myoglobin to an oxidase. Proc Natl Acad Sci U S A 1991; 88:7081-5. [PMID: 1871123 PMCID: PMC52237 DOI: 10.1073/pnas.88.16.7081] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is generally thought that the oxidative modification of hemoproteins leads to their inactivation. In the current study, however, a transiently activated form of myoglobin was shown to be formed when the prosthetic heme group became covalently bound to the polypeptide during the reaction of myoglobin with low levels of HOOH. In the presence of an enzymatic metmyoglobin reducing system containing diaphorase and methylene blue with excess NADH, this HOOH-altered myoglobin catalyzed NADH oxidation and oxygen consumption; the overall stoichiometry indicated a two-electron reduction of oxygen to HOOH. This reaction was not catalyzed by iron released from heme, as desferrioxamine had no effect on the activity. Stoichiometric amounts of HOOH were sufficient to produce the activated oxidase state of myoglobin, whereas larger amounts of HOOH lead to heme destruction, iron release, and inactivation of the oxidase activity. The alteration of myoglobin to an enzyme that can form toxic oxygen metabolites may have pathological importance, especially in myocardial injury caused by ischemia and reperfusion, where myoglobin is present in large amounts and HOOH is formed. Furthermore, the oxidase form may be involved in the mechanism of destruction of the heme seen with oxidative treatment of myoglobin.
Collapse
Affiliation(s)
- Y Osawa
- Laboratory of Chemical Pharmacology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
16
|
Bonkovsky HL, Healey JF, Pohl J. Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:155-66. [PMID: 2158889 DOI: 10.1111/j.1432-1033.1990.tb15472.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A major inducible form of heme oxygenase (EC 1.14.99.3) was purified from liver microsomes of chicks pretreated with cadmium chloride. The purification involved solubilization of microsomes with Emulgen 913 and sodium cholate, followed by DEAE-Sephacel, carboxymethyl-cellulose (CM-52) and hydroxyapatite chromatography, and FPLC through Superose 6 and 12 columns operating in series. The final product gave a single band on silver-stained SDS/polyacrylamide gels (Mr = 33,000). Optimal conditions for measurement of activity of solubilized heme oxygenase were studied. In a reconstituted system containing purified heme oxygenase, NADPH-cytochrome reductase, biliverdin reductase and NADPH, the Km for free heme was 3.8 +/- 0.5 microM; for heme in the presence of bovine serum albumin (5 mol heme/3 mol albumin) the Km was 5.0 +/- 0.8 microM; and the Km for NADPH was 6.1 +/- 0.4 microM (all values mean +/- SD, n = 3). Oxygen concentration as low as 15 microM, with saturating concentrations of heme and NADPH, did not affect the reaction rate, indicating that the supply of oxygen is not involved in the physiological regulation of activity of the enzyme. The pH optimum of the reaction was 7.4; at 37 degrees C, the apparent Vmax was 580 +/- 44 nmol biliverdin.(mg protein)-1.min-1 and the molecular activity was 19.2 min-1. Biliverdin IXa was the sole biliverdin isomer formed. In the presence of purified biliverdin reductase, biliverdin was converted quantitatively to bilirubin. Addition of catalase to the reconstituted system decreased the breakdown of heme to non-biliverdin products and led to nearly stoichiometric conversion of heme to biliverdin. Activity of the enzyme in the reconstituted system was inhibited by metalloporphyrins in the following order of decreasing potency: tin mesoporphyrin greater than tin protoporphyrin greater than zinc protoporphyrin greater than manganese protoporphyrin greater than cobalt protoporphyrin. Protoporphyrin (3.3 or 6.6 microM) (and several other porphyrins) and metallic ions (100 microM) alone had little if any inhibitory effect, except for Hg2+ which inhibited by 67% at 10 microM and totally at 15 microM. Following partial cleavage, fragments of the purified enzyme were sequenced. Comparison of sequences to those derived from cDNA sequences for the major inducible rat and human heme oxygenase showed 69% and 76% similarities, respectively. The histidine residue at position 132 of rat heme oxygenase-1 and the residues (Lys128-Arg136) flanking His132 were conserved in all three enzymes, as well as in the corresponding portion of a fourth less highly similar rat enzyme, heme oxygenase-2.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H L Bonkovsky
- Department of Medicine, Winship Cancer Center, Emory University, Atlanta, GA 30322
| | | | | |
Collapse
|
17
|
Abstract
Hemoproteins catalyze reductive and oxidative one-electron transformations. Not infrequently, the radicals produced by these one-electron reactions add to the prosthetic heme group of the enzyme and modify or terminate its catalytic function. Reactions of the radicals with the heme group include additions to the iron atom, pyrrole nitrogens, pyrrole carbons, vinyl groups, and meso carbons. The radicals involved in these reactions derive from the oxidizing agent, the substrate, or the amino acid residues of the catalytic site. The mechanism by which the radicals are generated, their steric and electronic properties, and the extent to which they have access to the heme group determine the nature and regiospecificity of the reaction. The reaction of heme prosthetic groups with radicals is relevant to the inhibition of hemoprotein enzymes, the normal and pathological degradation of heme, and our understanding of hemoprotein function.
Collapse
Affiliation(s)
- P R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143-0446
| |
Collapse
|
18
|
Rosenberg DW, Kappas A. Characterization of heme oxygenase in the small intestinal epithelium. Arch Biochem Biophys 1989; 274:471-80. [PMID: 2802622 DOI: 10.1016/0003-9861(89)90460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heme oxygenase activity was examined in the epithelial cells of the small intestine in male Sprague-Dawley rats. As with liver and spleen, the highest specific activity of this enzyme was found in the microsomal fraction of these cells. Substrate kinetics, analysis of cofactor requirements, and other biochemical characteristics suggested further similarities between heme oxygenase in the small intestine and liver. Enzyme activity was differentially localized longitudinally within the small intestine, with the highest specific activity occurring in the region approximately 15 to 30 cm beyond the pylorus. The effects of diet on the basal levels of heme oxygenase in the proximal small intestine were also examined. Although intestinal cytochrome P450-dependent monooxygenase activity, as determined by benzo[a]pyrene hydroxylase and 7-ethoxycoumarin O-deethylase, was greatly reduced (65-90%) in animals maintained on a semipurified control diet compared with standard cereal-based chow, there were no differences observed in heme oxygenase activity between the two dietary treatment groups. The activity of intestinal heme oxygenase could be increased, however, by oral treatment with several metal compounds that are known to affect hepatic heme metabolism when administered parenterally. The enzyme activity was also potently inhibited by tin (Sn4+) protoporphyrin administered orally or parenterally.
Collapse
|
19
|
Lincoln BC, Aw TY, Bonkovsky HL. Heme catabolism in cultured hepatocytes: evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:49-58. [PMID: 2752038 DOI: 10.1016/0304-4165(89)90049-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heme oxygenase has been considered to be involved in the predominant pathway of heme degradation in vivo. However, alternative pathways involving cytochrome P-450 reductase, and lipid peroxidation, have previously been demonstrated in vitro, and studies with cultured rat hepatocytes were interpreted to show a majority of endogenous hepatic heme breakdown by non-heme oxygenase pathways. To clarify the pathway of heme breakdown in hepatocytes and the role of heme oxygenase in this process, cultured hepatocytes were pre-labelled with 5-[5-14C]aminolevulinate [( 14C]ALA). Radioactivity in heme, carbon monoxide, and bile pigments was measured for 8-24 h after the removal of [14C]ALA. In cultured chick embryo hepatocytes, which lack biliverdin reductase, the rate of production of biliverdin IXa was closely similar to the rate of catabolism of exogenous heme and radioactivity in carbon monoxide and biliverdin IXa was similar to the loss of radioactivity from endogenous heme. These results support the conclusion that heme breakdown occurred predominantly, if not solely, by heme oxygenase. Also, no evidence of non-heme oxygenase pathways was found in the presence of tin protoporphyrin, an inhibitor of heme oxygenase or mephenytoin, an inducer of both cytochrome P-450 and heme oxygenase. Similarly, in untreated cultured rat hepatocytes, radioactivity in carbon monoxide corresponded with loss of radioactivity in endogenous heme. In other experiments with chick hepatocyte cultures, rates of heme synthesis and breakdown were measured, and data were fitted to various models of hepatic heme metabolism. The results observed were consistent only with models in which an appreciable fraction (control cells, 17%, mephenytoin treated cells, 41%) of the newly synthesized heme was degraded rapidly to biliverdin.
Collapse
Affiliation(s)
- B C Lincoln
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | | |
Collapse
|
20
|
Affiliation(s)
- J D Ostrow
- Department of Medicine, VA Lakeside Medical Center, Chicago, Illinois 60611
| |
Collapse
|
21
|
Harel S, Salan MA, Kanner J. Iron release from metmyoglobin, methaemoglobin and cytochrome c by a system generating hydrogen peroxide. FREE RADICAL RESEARCH COMMUNICATIONS 1988; 5:11-9. [PMID: 2853113 DOI: 10.3109/10715768809068554] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 microM release 40%, 20% and 3%, respectively, of molecular iron after 10 min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.
Collapse
Affiliation(s)
- S Harel
- Agricultural Research Organization, Volcani Center, Department of Food Science, Bet-Dagan, Israel
| | | | | |
Collapse
|
22
|
Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. FREE RADICAL RESEARCH COMMUNICATIONS 1988; 5:21-33. [PMID: 2853114 DOI: 10.3109/10715768809068555] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The oxidation of 2-keto-4-thiomethyl butyric acid (KTBA) and methionine to ethylene has been used to evaluate generation of ferryl species or hydroxyl radicals by H2O2-activated haemproteins or free ferric ions. Hydrogen peroxide was generated by a glucose oxidase-glucose system at a rate of 1 microM/min. Free ferric in the presence of H2O2 oxidizes KTBA, and this was highly inhibited by hydroxyl radical scavengers, caeruloplasmin, superoxide dismutase (SOD) and EDTA. However, when metmyoglobin, methaemoglobin (MtHb) or horseradish peroxidase (HRP) were tested in the same model system, hydroxyl radical scavengers suppressed partially KTBA oxidation and caeruloplasmin, SOD and EDTA failed to inhibit the reaction. Cytochrome-c was found to be a weak promoter of KTBA oxidation in the presence of H2O2. Methionine was oxidized to ethylene by an active system which generates hydroxyl radicals, but not by H2O2-activated metmyoglobin. Ferric ions chelated to membranes or ADP in the presence of H2O2 generated enzymatically, initiated membranal lipid peroxidation only in the presence of ascorbic acid, and this was inhibited by EDTA. In contrast, metmyoglobin and methaemoglobin activated by H2O2 generated by the same system, initiated membranal lipid peroxidation and this was not inhibited by EDTA. It is concluded that ferryl and not HO. is the main oxidant in systems containing myoglobin and haemoglobin activated by low concentrations of H2O2.
Collapse
Affiliation(s)
- S Harel
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | | |
Collapse
|
23
|
Correia MA, Decker C, Sugiyama K, Caldera P, Bornheim L, Wrighton SA, Rettie AE, Trager WF. Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch Biochem Biophys 1987; 258:436-51. [PMID: 3674884 DOI: 10.1016/0003-9861(87)90365-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Administration of 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP) (a structural analog of the dihydropyridine Ca2+ antagonists) to untreated, phenobarbital-, or dexamethasone-pretreated rats results in time-dependent losses of hepatic cytochrome P-450 content. Functional markers for various cytochrome P-450 isozymes have permitted the identification of P-450h, P-450 PB-1/k, and P-450p as the isozymes inactivated preferentially by the drug. DDEP-mediated cytochrome P-450 destruction may be reproduced in vitro, is most prominent after pretreatment of rats with dexamethasone, pregnenolone 16 alpha-carbonitrile or phenobarbital, and is blocked by triacetyloleandomycin. These findings together with the observation that DDEP markedly inactivates hepatic 2 beta- and 6 beta-testosterone hydroxylase and erythromycin N-demethylase tend to indict the steroid-inducible P-450p isozyme as a key protagonist in this event. The precise mechanism of such DDEP-mediated P-450p heme destruction is unclear, but involves prosthetic heme alkylation of the apocytochrome at its active site in what appears to be a novel mechanism-based "suicide" inactivation. Such inactivation appears to involve fragmentation of the heme to reactive metabolites that irreversibly bind to the protein, but the chemical structure of the heme-protein adducts is yet to be established. Intriguingly, such DDEP-mediated P-450p destruction in vivo also results in accelerated loss of immunochemically detectable apocytochrome P-450p. It remains to be determined whether or not this loss is due to enhanced proteolysis triggered by the structural modification of the apocytochrome.
Collapse
Affiliation(s)
- M A Correia
- Department of Pharmacology, University of California, San Francisco 94143
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kutty RK, Maines MD. Characterization of an NADH-dependent haem-degrading system in ox heart mitochondria. Biochem J 1987; 246:467-74. [PMID: 3120697 PMCID: PMC1148297 DOI: 10.1042/bj2460467] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the identification of an NADH-dependent haem-degrading system in ox heart mitochondria. The activity was localized to the mitochondrial inner membrane, specifically associated with complex I (NADH:ubiquinone oxidoreductase). The mitochondrial NADH-dependent haem-degradation activity was highly effective and displayed a rate nearly 60% higher than that of the microsomal activity. The following observations suggested the enzymic nature of the activity: (i) haem degradation by complex I did not proceed upon exposure to elevated temperature and extremes of pH; (ii) it displayed substrate specificity; (iii) it was inhibited by a substrate analogue; and (iv) it showed a cofactor requirement. Moreover, the activity was distinctly different from the ascorbate-mediated haem-degradation activity. Also, complex I differed from the microsomal NADPH:cytochrome c (P-450) reductase inasmuch as the formation of an effective interaction with the microsomal haem oxygenase could not be detected. Addition of purified haem oxygenase to complex I neither influenced the rate of haem degradation nor resulted in the formation of biliverdin IX alpha. In contrast, addition of haem oxygenase to NADPH:cytochrome c (P-450) reductase enhanced the rate of haem degradation by nearly 8-fold, and more than 60% of the degraded haem could be accounted for as biliverdin IX alpha. The haem-degrading activity of complex I appeared to involve the activity of H2O2, as the reaction was inhibited by nearly 90% by catalase, and propentdyopents were detected as reaction products. Intact haemoproteins such as cytochrome c and myoglobin were not effective substrates. However, the haem undecapeptide of cytochrome c was degraded at a rate equal to that observed for haem. Haematohaem was degraded at a rate 50% lower than that observed for haem. It is suggested that the NADH-dependent haem-degradation system may have a biological role in the regulation of the concentration of respiratory haemoproteins and the disposition of the aberrant forms of the mitochondrial haemoproteins.
Collapse
Affiliation(s)
- R K Kutty
- Department of Biophysics, University of Rochester School of Medicine, NY 14642
| | | |
Collapse
|
25
|
Docherty JC, Firneisz GD, Schacter BA. Methene bridge carbon atom elimination in oxidative heme degradation catalyzed by heme oxygenase and NADPH-cytochrome P-450 reductase. Arch Biochem Biophys 1984; 235:657-64. [PMID: 6440489 DOI: 10.1016/0003-9861(84)90241-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.
Collapse
|
26
|
Docherty JC, Schacter BA, Firneisz GD, Brown SB. Mechanism of action of heme oxygenase. A study of heme degradation to bile pigment by 18O labeling. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90657-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
27
|
Maines MD, Veltman JC. Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin. Biochem J 1984; 217:409-17. [PMID: 6546515 PMCID: PMC1153231 DOI: 10.1042/bj2170409] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.
Collapse
|
28
|
Bodaness RS. The H2O2-mediated oxidation of NADPH to NADP+ catalyzed by the heme-undecapeptide from cytochrome C. Biochem Biophys Res Commun 1983; 113:710-6. [PMID: 6307298 DOI: 10.1016/0006-291x(83)91784-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
NAD(P)H is known to be oxidized by singlet molecular oxygen, perhydroxyl radical, and hydroxyl radical. In marked contrast to these reactive oxygen species, NAD(P)H is stable in the presence of micromolar concentrations of H2O2. The experiments herein demonstrate that NADPH is rapidly oxidized by H2O2 in the presence of a heme-peptide. The oxidation product is enzymatically active NADP+. In the absence of NADPH, the heme-peptide undergoes rapid degradation via reaction with H2O2. In the presence of NADPH, the reduced nucleotide is oxidized to NADP and the heme-peptide is partially protected from oxidation. It is suggested that under certain conditions the reduced nucleotides may contribute to the protection of intracellular heme moieties from degradation engendered by endogenous or exogenous H2O2.
Collapse
|
29
|
Cantoni L, Blezza D, Belvedere G. Effect of iron and hemoproteins on hydrogen peroxide-supported styrene oxidation to styrene oxide. EXPERIENTIA 1982; 38:1192-4. [PMID: 6814946 DOI: 10.1007/bf01959735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
A comparative study of heme degradation by NADPH-cytochrome c reductase alone and by the complete heme oxygenase system. Distinctive aspects of heme degradation by NADPH-cytochrome c reductase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34451-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
White IN. Metabolic activation of saturated aldehydes to cause destruction of cytochrome P-450 in vitro. Chem Biol Interact 1982; 39:231-43. [PMID: 7060228 DOI: 10.1016/0009-2797(82)90124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The results of this paper demonstrate for the first time that a number of saturated aliphatic aldehydes, e.g. octanal, when incubated with rat liver microsomes and NADPH in vitro cause the time dependent destruction of cytochrome P-450 and the formation of green pigments. No loss of this cytochrome occurred when microsomes were incubated with aldehydes in the absence of NADPH. The activating enzymes had some characteristics typical of the microsomal mixed-function oxidases. Formaldehyde and acetaldehyde did not appear to be activated by this system. Octanal had no effect on hepatic microsomal cytochrome P-450 when administered to rats (1 mmol/kg, i.p.) in vivo. Under similar conditions, the ethynyl-substituted 1-octyne caused a significant destruction of this cytochrome. In order to prelabel liver haem with 14C, rats were pretreated with 5-amino[4-14C]laevulinic acid. Microsomal fractions prepared from these animals were incubated with octanal. Destruction of cytochrome P-450 was accompanied by the appearance of 14C-labelled green pigments separated by HPLC. The properties of the green pigments produced by incubating microsomes with either octanal or 1-ocytne have been compared. From their chromatographic behaviour and spectrophotometrically they appear to be similar though not identical. The results suggest that octanal induced green pigments may contain chelated iron which is not readily removed. The possibility that aldehyde could be metabolically activated via a ketene intermediate was investigated. Although attempts to prepare the ketene analogue of octanal were not successful, ketene gas, prepared chemically, reacted with haem in chloroform and to a limited extent with aqueous microsomal suspensions. However, the reaction products were brown in colour and gave an absorption spectrum indistinguishable from that of haem. There was no evidence of green pigment formation.
Collapse
|