1
|
Culliton KN, Speirs AD. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis Cartilage 2021; 29:1362-1369. [PMID: 34082132 DOI: 10.1016/j.joca.2021.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objectives of this study were: first, to compare solute uptake driven by sliding to cyclic uniaxial compression. And secondly, to evaluate the role of the superficial region on passive diffusion to determine if mechanical action is merely overcoming the low permeability of the superficial region or exceeding equilibrium capacity of the tissue. DESIGN Tests were performed on osteochondral plugs under two types of conditions: cyclic loading (sliding vs axial compression) and unloaded passive diffusion (intact vs superficial zone removed). The articular surfaces were exposed to a fluorescent bath and uptake was quantified from the surface to the subchondral bone using fluorescent microscopy. Primary outcome measures were total mass transfer, mass transfer rate, and surface partition factor. RESULTS Mass transfer was 2.1-fold higher at 0.5 h for sliding compared to uniaxial compression (p = 0.004). This increased to 4.4-fold at 2 h (p = 0.002). Solute transport for both loading conditions at 2 h had reached or exceeded intact passive diffusion at 12 h. Total mass transport and mass transport per hour was higher in samples without the superficial region compared to intact samples at equilibrium. Rate of mass transfer was not declining for samples subject to sliding indicating solute uptake induced by sliding would exceed passive tissue capacity. CONCLUSIONS These results are the first to quantify solute uptake between two components of joint articulation. The study demonstrates that sliding is a larger driver of solute transport compared to cyclic uniaxial compression. This has implications for cell nutrition, tissue engineering and biochemical signaling.
Collapse
Affiliation(s)
- K N Culliton
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - A D Speirs
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
| |
Collapse
|
2
|
Topographic features of nano-pores within the osteochondral interface and their effects on transport properties -a 3D imaging and modeling study. J Biomech 2021; 123:110504. [PMID: 34052773 DOI: 10.1016/j.jbiomech.2021.110504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022]
Abstract
Recent insights suggest that the osteochondral interface plays a central role in maintaining healthy articulating joints. Uncovering the underlying transport mechanisms is key to the understanding of the cross-talk between articular cartilage and subchondral bone. Here, we describe the mechanisms that facilitate transport at the osteochondral interface. Using scanning electron microscopy (SEM), we found a continuous transition of mineralization architecture from the non-calcified cartilage towards the calcified cartilage. This refurbishes the classical picture of the so-called tidemark; a well-defined discontinuity at the osteochondral interface. Using focused-ion-beam SEM (FIB-SEM) on one osteochondral plug derived from a human cadaveric knee, we elucidated that the pore structure gradually varies from the calcified cartilage towards the subchondral bone plate. We identified nano-pores with radius of 10.71 ± 6.45 nm in calcified cartilage to 39.1 ± 26.17 nm in the subchondral bone plate. The extracted pore sizes were used to construct 3D pore-scale numerical models to explore the effect of pore sizes and connectivity among different pores. Results indicated that connectivity of nano-pores in calcified cartilage is highly compromised compared to the subchondral bone plate. Flow simulations showed a permeability decrease by about 2000-fold and solute transport simulations using a tracer (iodixanol, 1.5 kDa with a free diffusivity of 2.5 × 10-10 m2/s) showed diffusivity decrease by a factor of 1.5. Taken together, architecture of the nano-pores and the complex mineralization pattern in the osteochondral interface considerably impacts the cross-talk between cartilage and bone.
Collapse
|
3
|
Ngo L, Knothe Tate ML. Osteoarthritis: New Strategies for Transport and Drug Delivery Across Length Scales. ACS Biomater Sci Eng 2020; 6:6009-6020. [PMID: 33449636 DOI: 10.1021/acsbiomaterials.0c01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is the fourth leading cause of disability in adults. Yet, few viable pharmaceutical options exist for pain abatement and joint restoration, aside from joint replacement at late and irreversible stages of the disease. From the first onset of OA, as joint pain increases, individuals with arthritis increasingly reach for drug delivery solutions, from taking oral glycosaminoglycans (GAGs) bought over the counter from retail stores (e.g., Costco) to getting injections of viscous, GAG-containing synovial fluid supplement in the doctor's office. Little is known regarding the efficacy of delivery mode and/or treatment by such disease-modulating agents. This Review addresses the interplay of mechanics and biology on drug delivery to affected joints, which has profound implications for molecular transport in joint health and (patho)physiology. Multiscale systems biology approaches lend themselves to understand the relationship between the cell and joint health in OA and other joint (patho)physiologies. This Review first describes OA-related structural and functional changes in the context of the multilength scale anatomy of articular joints. It then summarizes and categorizes, by size and charge, published molecular transport studies, considering changes in permeability induced through inflammatory pathways. Finally, pharmacological interventions for OA are outlined in the context of molecular weights and modes of drug delivery. Taken together, the current state-of-the-art points to a need for new drug delivery strategies that harness systems-based interactions underpinning molecular transport and maintenance of joint structure and function at multiple length scales from molecular agents to cells, tissues, and tissue compartments which together make up articular joints. Cutting edge and cross-length and -time scale imaging represents a key discovery enabling technology in this process.
Collapse
Affiliation(s)
- Lucy Ngo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melissa L Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 2019; 14:393-403. [PMID: 29899547 DOI: 10.1038/s41584-018-0033-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Collapse
|
5
|
De Geer CM. Intervertebral Disk Nutrients and Transport Mechanisms in Relation to Disk Degeneration: A Narrative Literature Review. J Chiropr Med 2018; 17:97-105. [PMID: 30166966 DOI: 10.1016/j.jcm.2017.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The purpose of this paper was to review the literature regarding the mechanisms leading to degeneration in intervertebral disks and to discuss contributing mechanical and biological factors. Methods The inclusion criteria for the literature review were research studies conducted in the last 3 decades with free full-text available in English. Review articles and articles pertaining to temporomandibular joints and joints of the body other than the intervertebral disk were excluded. The following databases were searched: PubMed, EBSCOhost, and Google Scholar through September 9, 2016. Results A total of 57 articles were used in this review. Intervertebral disk cells require glucose for sustainability and oxygen to synthesize matrix components. Nutrients enter the disk via 2 vascular supply routes: capillary beds of end plates and the peripheral annulus fibrosus. Solute size, shape and charge, compression, and metabolic demand all influence the efficiency of nutrient transport, and alterations of any of these factors may have effects on nutrient transport and, potentially, disk degeneration. Conclusions Progressive nutrient transport disruptions may actively contribute in advancing the phases of degenerative disk disease. Such disruptions include dysfunctional loading and spinal position, lack of motion, high frequency loading, disk injury, aging, smoking, an acidic environment, and a lack of nutrient bioavailability.
Collapse
|
6
|
Hunckler MD, Tilley JMR, Roeder RK. Molecular transport in collagenous tissues measured by gel electrophoresis. J Biomech 2015; 48:4087-4092. [PMID: 26482732 DOI: 10.1016/j.jbiomech.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.
Collapse
Affiliation(s)
- Michael D Hunckler
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer M R Tilley
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Kleinhans KL, Jaworski LM, Schneiderbauer MM, Jackson AR. Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage. J Biomech Eng 2015. [DOI: 10.1115/1.4031118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure–function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.
Collapse
Affiliation(s)
- Kelsey L. Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Lukas M. Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Michaela M. Schneiderbauer
- Department of Orthopaedics, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Room 4056, Miami, FL 33136 e-mail:
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| |
Collapse
|
8
|
Grenier S, Donnelly PE, Gittens J, Torzilli PA. Resurfacing damaged articular cartilage to restore compressive properties. J Biomech 2015; 48:122-9. [PMID: 25468298 PMCID: PMC4420241 DOI: 10.1016/j.jbiomech.2014.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 08/28/2014] [Accepted: 10/19/2014] [Indexed: 01/02/2023]
Abstract
Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages.
Collapse
Affiliation(s)
- Stephanie Grenier
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA.
| | - Patrick E Donnelly
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| | - Jamila Gittens
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| | - Peter A Torzilli
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
9
|
Padalkar MV, Spencer RG, Pleshko N. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann Biomed Eng 2013; 41:2426-36. [PMID: 23824216 DOI: 10.1007/s10439-013-0844-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/11/2013] [Indexed: 01/27/2023]
Abstract
In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.
Collapse
Affiliation(s)
- M V Padalkar
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | | | | |
Collapse
|
10
|
Ito K, Creemers L. Mechanisms of intervertebral disk degeneration/injury and pain: a review. Global Spine J 2013; 3:145-52. [PMID: 24436865 PMCID: PMC3854582 DOI: 10.1055/s-0033-1347300] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
Degeneration of the intervertebral disk and its treatments are currently intensely investigated topics. Back pain is a condition whose chronic and debilitating nature combined with its prevalence make it a major health issue of substantial socioeconomic importance. Although researchers, and even sometimes clinicians, focus on the degenerated disk as the problem, to most patients, pain is the factor that limits their function and impacts their well-being. The purpose of this review is to delineate the changes associated with disk degeneration and to outline mechanisms by which they could be the source of back pain. Although the healthy disk is only innervated in the external layer of its annulus fibrosus, adjacent structures are plentiful with nociceptive receptors. Stimulation of such structures as a consequence of processes initiated by disk degeneration is explored. The concept of discogenic pain and possible mechanisms such as neoinnervation and solute transport are discussed. Finally, how such pain mechanisms may relate to current and proposed treatment strategies is discussed.
Collapse
Affiliation(s)
- Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Prof. Keita Ito, MD, ScD Orthopaedic Biomechanics, GEM-Z 4.115, Department of Biomedical EngineeringP.O. Box 513, 5600 MB EindhovenThe Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Abazari A, Elliott JAW, McGann LE, Thompson RB. MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions. Osteoarthritis Cartilage 2012; 20:1004-10. [PMID: 22579917 DOI: 10.1016/j.joca.2012.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/19/2012] [Accepted: 04/28/2012] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cartilage cryopreservation requires optimal loading of protective solutes, most commonly dimethyl sulfoxide (DMSO), to maximize chondrocyte survival. Previously, diffusion models have been used to predict the distribution of solutes in tissue samples, but the accuracy of spatiotemporal predictions of these models have not been validated with empirical studies and remains unknown. OBJECTIVE In this study, magnetic resonance spectroscopic imaging was used to measure the spatial and temporal changes in DMSO and water concentrations in porcine articular cartilage plugs, throughout 1 h of solute loading. DESIGN A custom NMR spectroscopic imaging pulse sequence provided water and DMSO concentration images with an in-plane spatial resolution of 135 μm and a temporal resolution of 150 s, repeated for 60 min throughout DMSO loading. Delayed gadolinium-enhanced magnetic resonance of cartilage (d-GEMRIC) imaging provided fixed charge density and spin-density imaging provided water density images prior to DMSO loading. RESULTS The measured spatial and temporal distribution of DMSO in three different samples was compared to independent predictions of Fick's law and the modified triphasic biomechanical model by Abazari et al. (2011) with the empirical data more closely agreeing with the triphasic model. CONCLUSION Dynamic NMR spectroscopic imaging can measure spatial and temporal changes in water and cryoprotectant concentrations in articular cartilage. The modified triphasic model predictions for the interstitial distribution of DMSO were confirmed and its advantage over the predictions by Fick's law model, which is commonly used in the literature of cryobiology, was demonstrated.
Collapse
Affiliation(s)
- A Abazari
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. DESIGN: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. RESULTS: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. CONCLUSIONS: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA.
Collapse
Affiliation(s)
- P. A. Torzilli
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY, USA,Peter A. Torzilli, PhD, Laboratory for Soft Tissue Research, The Hospital for Special Surgery, 471 East 71st Street, Room 524, New York, NY 10021-4010.
| | - M. Bhargava
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY, USA
| | - C. T. Chen
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
13
|
Albro MB, Banerjee RE, Li R, Oungoulian SR, Chen B, del Palomar AP, Hung CT, Ateshian GA. Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals. J Biomech 2011; 44:1654-9. [PMID: 21481875 DOI: 10.1016/j.jbiomech.2011.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10, and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (± 10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 h. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 h (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5 ± 1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30s of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism.
Collapse
Affiliation(s)
- Michael B Albro
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 SW Mudd Mail Code 4703, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kokkonen HT, Jurvelin JS, Tiitu V, Töyräs J. Detection of mechanical injury of articular cartilage using contrast enhanced computed tomography. Osteoarthritis Cartilage 2011; 19:295-301. [PMID: 21215317 DOI: 10.1016/j.joca.2010.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritic degeneration may be initiated by mechanical overloading of articular cartilage. Mechanical injury increases the permeability of tissue, thereby probably affecting the diffusion of contrast agents in articular cartilage. We investigated whether it is possible to detect acute cartilage injury by measuring contrast agent diffusion into articular cartilage using contrast enhanced computed tomography (CECT). METHODS Osteochondral plugs (Ø=6.0 mm, n=36) were prepared from intact bovine patellae (n=9). Two of the adjacent samples were injured by impact loading, using a drop tower, while the others served as paired controls. The samples were imaged before immersion in contrast agent solution [ioxaglate (Hexabrix™) or sodium iodide (NaI)] and 1, 3, 5, 7, 10, 15, 20 and 25 h after immersion using a MicroCT-instrument. Contrast agent content, diffusion coefficient and diffusion flux were determined for each sample. RESULTS Already after 1 h the penetration of contrast agents into cartilage was significantly (P<0.05) greater in the injured samples. The diffusion coefficient was not altered by the injury, which suggests that reaching the diffusion equilibrium takes the same time in injured and intact cartilage. However, the diffusion flux of ioxaglate through the articular surface was significantly higher in injured samples at 30-60 min after immersion. CONCLUSIONS To conclude, CECT could diagnose articular cartilage injuries, and determination of the diffusion flux of ioxaglate helped to detect tissue injury without waiting for the diffusion equilibrium. These results are encouraging, however, in vivo application of CECT is challenging and systematic further studies are needed to reveal its clinical potential.
Collapse
Affiliation(s)
- H T Kokkonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
15
|
Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP. Ann Biomed Eng 2010; 39:53-65. [PMID: 20686922 DOI: 10.1007/s10439-010-0138-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive-reactive transport in biological tissues and tissue engineered constructs.
Collapse
|
16
|
Miller GJ, Morgan EF. Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales. Osteoarthritis Cartilage 2010; 18:1051-7. [PMID: 20417292 PMCID: PMC2906658 DOI: 10.1016/j.joca.2010.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Small scale mechanical testing techniques offer new possibilities for defining changes in mechanical properties that accompany the morphological, histological, and biochemical abnormalities of osteoarthritis (OA). The goal of this study was to investigate the use of microindentation in characterizing the biphasic material properties of articular cartilage. Direct comparisons of the biphasic properties (E, k and nu) determined using microindentation were made to those determined on the same specimens using standard macroscale testing techniques. METHODS Deep-zone bovine articular cartilage specimens (n=10) were tested in macroscale confined and unconfined compression. For microindentation testing, the biphasic properties were determined by conducting finite element simulations of the microindentation experiments for different combinations of values of biphasic properties and identifying the combination yielding the best match to each microindentation curve. Paired t-tests were performed to compare each of E, k and nu between the macro- and microscale. RESULTS The microscale values for E, k and nu were 0.74 (0.53, 0.95)MPa, 0.66 (0.022, 0.110)x10(-16)m(4)/Ns, and 0.16 (0.08, 0.24), respectively. A significant difference between the macro- and microscale measurements was observed for k (P<0.0001), but not for E or nu (P=0.88, 0.16). CONCLUSIONS The agreement in Young's modulus and Poisson's ratio between the results of the microindentation and macroscale tests supports the use of microindentation for characterization of some of the biphasic material properties of articular cartilage. The observed differences in permeability between macro- and microscales are consistent with evidence in the literature of a length-scale dependence to this property.
Collapse
Affiliation(s)
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA
| |
Collapse
|
17
|
Kulmala KAM, Korhonen RK, Julkunen P, Jurvelin JS, Quinn TM, Kröger H, Töyräs J. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med Eng Phys 2010; 32:878-82. [PMID: 20594900 DOI: 10.1016/j.medengphy.2010.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue.
Collapse
Affiliation(s)
- K A M Kulmala
- Department of Physics and Mathematics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vinardell T, Thorpe SD, Buckley CT, Kelly DJ. Chondrogenesis and Integration of Mesenchymal Stem Cells Within an In Vitro Cartilage Defect Repair Model. Ann Biomed Eng 2009; 37:2556-65. [DOI: 10.1007/s10439-009-9791-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 08/31/2009] [Indexed: 12/31/2022]
|
19
|
Abstract
Cartilaginous tissues, such as articular cartilage and intervertebral disc, are avascular tissues which rely on transport for cellular nutrition. Comprehensive knowledge of transport properties in such tissues is therefore necessary in the understanding of nutritional supply to cells. Furthermore, poor cellular nutrition in cartilaginous tissues is believed to be a primary source of tissue degeneration, which may result in osteoarthritis (OA) or disc degeneration. In this mini-review, we present an overview of the current status of the study of transport properties and behavior in cartilaginous tissues. The mechanisms of transport in these tissues, as well as experimental approaches to measuring transport properties and results obtained are discussed. The current status of bioreactors used in cartilage tissue engineering is also presented.
Collapse
Affiliation(s)
- Ar Jackson
- Tissue Biomechanics Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, FL
| | | |
Collapse
|
20
|
Leddy HA, Christensen SE, Guilak F. Microscale diffusion properties of the cartilage pericellular matrix measured using 3D scanning microphotolysis. J Biomech Eng 2008; 130:061002. [PMID: 19045531 PMCID: PMC2748862 DOI: 10.1115/1.2979876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chondrocytes, the cells in articular cartilage, are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM may help in elucidating the regulatory role of the PCM in controlling transport to and from the chondrocyte. The diffusivities of fluorescently labeled 70 kDa and 500 kDa dextrans were quantified within the PCM of porcine articular cartilage using a newly developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by a best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusivity of the larger molecule (500 kDa dextran) was significantly lower than that of the smaller molecule (70 kDa dextran), and values were consistent with those reported previously using standard techniques. Furthermore, for both dextran sizes, the diffusion coefficient was significantly lower in the PCM than in the ECM; however, this difference was not detected in early-stage arthritic tissue. We have successfully modified the SCAMP technique to measure diffusion coefficients within the small volume of the PCM using confocal laser scanning microscopy. Our results support the hypothesis that diffusivity within the PCM of healthy articular cartilage is lower than that within the ECM, presumably due to differences in proteoglycan content.
Collapse
Affiliation(s)
| | | | - Farshid Guilak
- Departments of Surgery and Biomedical Engineering, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
21
|
Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 2008; 16:708-14. [PMID: 18023368 DOI: 10.1016/j.joca.2007.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 10/01/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVES (1) To establish whether the tidemark and calcified cartilage are permeable to low molecular weight solutes, thereby providing a potential pathway for nutrition of cells in the deep cartilage. (2) To investigate transport from the subchondral microcirculation into calcified cartilage in an intact perfused joint and the effects on transport of static loading. METHODS The permeability of the tidemark and calcified cartilage was investigated in plugs of cartilage and subchondral bone which formed the membrane of a diffusion cell. Transport from the subchondral microcirculation and the effects of load were studied in an intact perfused joint. Both preparations used the metacarpophalangeal joints of mature horses and fluorescein and rhodamine (m.w. approximately 400 Da) were employed as tracers, assayed by quantitative fluorescence microscopy on histological sections. RESULTS Calcified cartilage was permeable to both solutes, both from the superficial and the subchondral sides. The effective diffusivity of both solutes was of the order of 9 x 10(-9) cm(2) s(-1), fivefold less than in the uncalcified cartilage. The calcified zone was heterogeneous, with high uptake of both tracers in the vicinity of the tidemark. The distribution volume of rhodamine B was higher than for fluorescein, consistent with a significant anionic charge in the calcified matrix. Static loading of the intact joint did not affect the transport of rhodamine B but caused a significant decrease in concentration of fluorescein both in the surface and deep zones of the tissue. CONCLUSIONS Calcified cartilage is permeable to small solutes and the subchondral circulation may make a significant contribution to the nutrition of deep cartilage in the mature horse. Static loading reduces the uptake of small anionic solutes in the intact joint.
Collapse
|
22
|
Huang CY, Gu WY. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression. J Biomech Eng 2007; 129:423-9. [PMID: 17536910 PMCID: PMC2671022 DOI: 10.1115/1.2720920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cartilage is a charged hydrated fibrous tissue exhibiting a high degree of tension-compression nonlinearity (i.e., tissue anisotropy). The effect of tension-compression nonlinearity on solute transport has not been investigated in cartilaginous tissue under dynamic loading conditions. In this study, a new model was developed based on the mechano-electrochemical mixture model [Yao and Gu, 2007, J. Biomech. Model Mechanobiol., 6, pp. 63-72, Lai et al., 1991, J. Biomech. Eng., 113, pp. 245-258], and conewise linear elasticity model [Soltz and Ateshian, 2000, J. Biomech. Eng., 122, pp. 576-586; Curnier et al., 1995, J. Elasticity, 37, pp. 1-38]. The solute desorption in cartilage under unconfined dynamic compression was investigated numerically using this new model. Analyses and results demonstrated that a high degree of tissue tension-compression nonlinearity could enhance the transport of large solutes considerably in the cartilage sample under dynamic unconfined compression, whereas it had little effect on the transport of small solutes (at 5% dynamic strain level). The loading-induced convection is an important mechanism for enhancing the transport of large solutes in the cartilage sample with tension-compression nonlinearity. The dynamic compression also promoted diffusion of large solutes in both tissues with and without tension-compression nonlinearity. These findings provide a new insight into the mechanisms of solute transport in hydrated, fibrous soft tissues.
Collapse
Affiliation(s)
| | - Wei Yong Gu
- Corresponding author: W.Y. Gu, Ph.D. Department of Biomedical Engineering College of Engineering University of Miami P.O. Box 248294 Coral Gables, FL 33124-0621 USA Telephone: (305)284-5434 Fax: (305)284-4720 E-mail:
| |
Collapse
|
23
|
Yao H, Gu WY. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech Model Mechanobiol 2006; 6:63-72. [PMID: 16767452 PMCID: PMC2671028 DOI: 10.1007/s10237-006-0040-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/13/2005] [Indexed: 10/24/2022]
Abstract
The extracellular matrix of cartilage is a charged porous fibrous material. Transport phenomena in such a medium are very complex. In this study, solute diffusive flux and convective flux in porous fibrous media were investigated using a continuum mixture theory approach. The intrinsic diffusion coefficient of solute in the mixture was defined and its relation to drag coefficients was presented. The effect of mechanical loading on solute diffusion in cartilage under unconfined compression with a frictionless boundary condition was analyzed numerically using the model developed. Both strain-dependent hydraulic permeability and diffusivity were considered. Analyses and results show that (1) In porous media, the convective velocity for each solute phase is different. (2) The solute convection in tissue is governed by the relative convective velocity (i.e., relative to solid velocity). (3) Under the assumption that all the frictional interactions among solutes are negligible, the relative convective velocity for alpha-solute phase is equal to the relative solvent velocity multiplied by its convective coefficient (H (alpha)) which is also known as the hindrance factor in the literature. The relationship between the convective coefficient and the relative diffusivity of solute is presented. (4) Solute concentration profile within the cartilage sample depends on the phase of dynamic compression.
Collapse
Affiliation(s)
- Hai Yao
- Dept. of Bioengineering, Clemson University, Clemson, SC
| | - Wei Yong Gu
- Corresponding author: W.Y. Gu, Ph.D. Department of Biomedical Engineering College of Engineering University of Miami P.O. Box 248294 Coral Gables, FL 33124-0621 USA Telephone: (305)284-5434 Fax: (305)284-4720 E-mail:
| |
Collapse
|
24
|
Evans RC, Quinn TM. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys J 2006; 91:1541-7. [PMID: 16679370 PMCID: PMC1518627 DOI: 10.1529/biophysj.105.080366] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solute transport through the extracellular matrix is essential for cellular activities in articular cartilage. Increased solute transport via fluid convection may be a mechanism by which dynamic compression stimulates chondrocyte metabolism. However, loading conditions that optimally augment transport likely vary for different solutes. To investigate effects of dynamic loading on transport of a bioactive solute, triangular mechanical loading waveforms were applied to cartilage explants disks while interstitial transport of a fluorescent glucose analog was monitored. Peak-to-peak compression amplitudes varied from 5-50% and frequencies varied from 0.0006-0.1 Hz to alter the spatial distribution and magnitude of oscillatory fluid flow. Solute transport was quantified by monitoring accumulation of fluorescence in a saline bath circulated around the explant. Individual explants were subjected to a series of compression protocols, so that effects of loading on solute desorption could be observed directly. Maximum increases in solute transport were obtained with 10-20% compression amplitudes at 0.1 Hz; similar loading protocols were previously found to stimulate chondrocyte metabolism in vitro. Results therefore support hypotheses relating to increased solute transport as a mediator of the cartilage biological response to dynamic compression, and may have application in mechanical conditioning of cartilage constructs for tissue engineering.
Collapse
Affiliation(s)
- Robin C Evans
- Cartilage Biomechanics Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
25
|
Leddy HA, Haider MA, Guilak F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys J 2006; 91:311-6. [PMID: 16603503 PMCID: PMC1479052 DOI: 10.1529/biophysj.105.075283] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular transport in avascular collagenous tissues such as articular cartilage occurs primarily via diffusion. The presence of ordered structures in the extracellular matrix may influence the local transport of macromolecules, leading to anisotropic diffusion depending on the relative size of the molecule and that of extracellular matrix structures. Here we present what we believe is a novel photobleaching technique for measuring the anisotropic diffusivity of macromolecules in collagenous tissues. We hypothesized that macromolecular diffusion is anisotropic in collagenous tissues, depending on molecular size and the local organization of the collagen structure. A theoretical model and experimental protocol for fluorescence imaging of continuous point photobleaching was developed to measure diffusional anisotropy. Significant anisotropy was observed in highly ordered collagenous tissues such as ligament, with diffusivity ratios>2 along the fiber direction compared to the perpendicular direction. In less-ordered tissues such as articular cartilage, diffusional anisotropy was dependent on site in the tissue and size of the diffusing molecule. Anisotropic diffusion was also dependent on the size of the diffusing molecule, with greatest anisotropy observed for larger molecules. These findings suggest that diffusional transport of macromolecules is anisotropic in collagenous tissues, with higher rates of diffusion along primary orientation of collagen fibers.
Collapse
Affiliation(s)
- Holly A Leddy
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
26
|
Gu WY, Yao H, Vega AL, Flagler D. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann Biomed Eng 2005; 32:1710-7. [PMID: 15675682 DOI: 10.1007/s10439-004-7823-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effect of tissue porosity on ion (sodium, potassium, and chloride) diffusivity in agarose gels and porcine intervertebral disc tissues was investigated using an electrical conductivity method. An empirical, constitutive model for diffusivity (D) of solutes in porous fibrous media was proposed: D/Do = exp[-alpha(r(s)/k(1/2))beta] where r(s) is the Stokes radius of a solute, kappa is the Darcy permeability of the porous medium, Do is the diffusivity in free solution, alpha and beta are two positive parameters whose values depend on material structure. It is found that alpha = 1.25 +/- 0.138, beta = 0.681 +/- 0.059 (95% confidence interval, R2 = 0.92, n = 72) for agarose gels and alpha = 1.29 +/- 0.171 and beta = 0.372 +/- 0.088 (95% confidence interval, R2 = 0.88, n = 86) for porcine annulus fibrosus. The functional relationship between solute diffusivity and tissue deformation was derived. Comparisons of our model prediction with experimental data on diffusion coefficients of macromolecules (proteins, dextrans, polymer beads) in agarose gels in the literature were made. Our results were also compared to the data on ion diffusivity in charged gels and in cartilaginous tissues reported in the literature. There was a good agreement between our model prediction and the data in the literature. The present study provides additional information on solute diffusivity in uncharged gels and charged tissues, and is important for understanding nutritional transport in avascular cartilaginous tissues under different mechanical loading conditions.
Collapse
Affiliation(s)
- Wei Yong Gu
- Tissue Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124-0621, USA.
| | | | | | | |
Collapse
|
27
|
Zhang L, Szeri A. Transport of neutral solute in articular cartilage: effects of loading and particle size. Proc Math Phys Eng Sci 2005. [DOI: 10.1098/rspa.2005.1461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate the influence that matrix structure, size of diffusing molecules and type and intensity of mechanical loading have on the transport of neutral solutes in articular cartilage. Although this type of investigation has been performed in the past, earlier researchers assumed a constant diffusion coefficient. By contrast, our diffusion coefficient depends on the local deformation of the matrix, and thus varies both in space and in time during an experiment.
We derive a three-dimensional formulation of the problem based on mixture theory and utilize the commercial finite-element code ABAQUS to study it numerically. We also make use of the Cohen–Turnbull–Yasuda model to correlate the decrease of the diffusion coefficient with the increase in tortuosity, owing to the presence of the matrix. Under appropriate circumstances, the equations derived here reduce to the classical convection/diffusion equation and the equations of the biphasic cartilage model. Even though we chose axisymmetric sample geometry for the present calculations, the model can easily be applied to irregular three-dimensional samples.
Our results reinforce and refine previously published studies. The neutral solute's rate of diffusion is reduced under static compression, due to the strain dependence of the diffusion coefficient; an increase in static compression leads to a decrease in the rate of transport of solutes of all sizes. Dynamic loading, on the other hand, augments solute transport due to convection, depending on particle size. The transport of small molecular size solute is moderately enhanced, but only within the surface layer; however, the rate of transport of large molecule solute is greatly increased, even in the deep layer of the cartilage.
Collapse
Affiliation(s)
- Le Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - A.Z Szeri
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
28
|
Olsen S, Oloyede A, Adam C. A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage. Comput Methods Biomech Biomed Engin 2004; 7:111-20. [PMID: 15203959 DOI: 10.1080/10255840410001672185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The theory of poroelasticity is extended to include physico-chemical swelling and used to predict the transient responses of normal and degenerate articular cartilage to both chemical and mechanical loading; with emphasis on isolating the influence of the major parameters which govern its deformation. Using a new hybrid element, our mathematical relationships were implemented in a purpose-built poroelastic finite element analysis algorithm (u-pi-c program) which was used to resolve the nature of the coupling between the mechanical and chemical responses of cartilage when subjected to ionic transport across its membranous skeleton. Our results demonstrate that one of the roles of the strain-dependent matrix permeability is to limit the rate of transmission of stresses from the fluid to the collagen-proteoglycan solid skeleton in the incipient stages of loading, and that the major contribution of the swelling pressure is that of preventing any excessive deformation of the matrix.
Collapse
Affiliation(s)
- S Olsen
- School of Mechanical, Manufacturing and Medical Engineering, Queensland University of Technology, 2 George Street,Q 4001 Brisbane, Australia.
| | | | | |
Collapse
|
29
|
Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 2004; 37:213-21. [PMID: 14706324 DOI: 10.1016/s0021-9290(03)00250-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
Collapse
Affiliation(s)
- Stephen J Ferguson
- ME Müller Institute for Surgical Technology and Biomechanics, University of Bern, Murtenstrasse 35, PO Box 8354, CH-3001 Bern, Switzerland.
| | | | | |
Collapse
|
30
|
Mauck RL, Hung CT, Ateshian GA. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng 2004; 125:602-14. [PMID: 14618919 PMCID: PMC2854001 DOI: 10.1115/1.1611512] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A primary mechanism of solute transport in articular cartilage is believed to occur through passive diffusion across the articular surface, but cyclical loading has been shown experimentally to enhance the transport of large solutes. The objective of this study is to examine the effect of dynamic loading within a theoretical context, and to investigate the circumstances under which convective transport induced by dynamic loading might supplement diffusive transport. The theory of incompressible mixtures was used to model the tissue (gel) as a mixture of a gel solid matrix (extracellular matrix/scaffold), and two fluid phases (interstitial fluid solvent and neutral solute), to solve the problem of solute transport through the lateral surface of a cylindrical sample loaded dynamically in unconfined compression with frictionless impermeable platens in a bathing solution containing an excess of solute. The resulting equations are governed by nondimensional parameters, the most significant of which are the ratio of the diffusive velocity of the interstitial fluid in the gel to the solute diffusivity in the gel (Rg), the ratio of actual to ideal solute diffusive velocities inside the gel (Rd), the ratio of loading frequency to the characteristic frequency of the gel (f), and the compressive strain amplitude (epsilon 0). Results show that when Rg > 1, Rd < 1, and f > 1, dynamic loading can significantly enhance solute transport into the gel, and that this effect is enhanced as epsilon 0 increases. Based on representative material properties of cartilage and agarose gels, and diffusivities of various solutes in these gels, it is found that the ranges Rg > 1, Rd < 1, correspond to large solutes, whereas f > 1 is in the range of physiological loading frequencies. These theoretical predictions are thus in agreement with the limited experimental data available in the literature. The results of this study apply to any porous hydrated tissue or material, and it is therefore plausible to hypothesize that dynamic loading may serve to enhance solute transport in a variety of physiological processes.
Collapse
Affiliation(s)
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University
- Department of Mechanical Engineering, Columbia University
| |
Collapse
|
31
|
Li KW, Wang AS, Sah RL. Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. ARTHRITIS AND RHEUMATISM 2003; 48:689-99. [PMID: 12632422 DOI: 10.1002/art.10849] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To compare extracellular signal-regulated kinase (ERK) activity in response to interleukin-1 (IL-1) in chondrocytes under various culture configurations designed for the study of cartilage biology and repair, and also in response to dynamic load for chondrocytes in cartilage. METHODS Isolated bovine articular chondrocytes were maintained in serum-supplemented medium under 4 culture configurations: high-density monolayer, attached to a cut surface of cartilage, within tissue-engineered constructs, or within intact cartilage explants. Samples were subjected to a change of medium with or without IL-1. Cartilage explants were also subjected to dynamic compression. RESULTS In chondrocyte monolayers, both basal and IL-1-stimulated ERK activities were similarly elevated at 0.5 hours after medium change, diminishing by 74% after 16 hours. In contrast, chondrocytes in other culture configurations exhibited lower basal levels of ERK activity and a moderate activation of ERK in response to IL-1 that was sustained over the 16-hour treatment time. The dynamic component of loading of cartilage explants led to a 5-fold activation of ERK, compared with free-swelling controls, that was indistinguishable from the effects of IL-1. CONCLUSION ERK signaling in response to IL-1 in chondrocyte monolayers exhibited a pattern that was distinct from that in other culture systems, suggesting that the extracellular matrix plays an important regulatory role in modulating the response to extracellular stimuli. Since IL-1 and dynamic loading have distinct effects on chondrocyte biosynthesis, signaling pathways other than ERK participate in the chondrocyte responses to these stimuli.
Collapse
Affiliation(s)
- Kelvin W Li
- Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, 92093, USA
| | | | | |
Collapse
|
32
|
Quinn TM, Studer C, Grodzinsky AJ, Meister JJ. Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2002; 52:83-95. [PMID: 12204413 DOI: 10.1016/s0165-022x(02)00051-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Solute transport within articular cartilage is of central importance to tissue physiology, and may mediate effects of mechanical compression on cell metabolism. We therefore developed and applied a freeze-substitution method for fixation of cartilage explant disks which had been compressed axially during radial solute desorption. Dextrans were used as model solutes. Explant morphology was well preserved and nonequilibrium solute concentration distributions were stable for several hours at room temperature. For desorption from explants compressed statically to 0-46% strain, analysis of laser confocal images and comparison to a theoretical model permitted measurement of effective diffusivities. Results were consistent with previous studies suggesting a role for transport limitations in mediating the decreases of chondrocyte metabolic rates associated with static compression. In explants compressed dynamically (23+/-5% strain at 0.001 Hz), evidence was obtained for the augmentation of effective transport rate of 3 kDa dextrans by oscillatory interstitial fluid flows. This suggests that augmented solute transport may play a role in mediating the increases of chondrocyte metabolic rates associated with dynamic compression. Methods appear suitable for quantitative studies of transport within mechanically compressed cartilage-like tissues, and may be valuable for identification of loading environments which optimize solute transport in tissue engineering applications.
Collapse
Affiliation(s)
- Thomas M Quinn
- EPFL, Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
33
|
Trampel R, Schiller J, Naji L, Stallmach F, Kärger J, Arnold K. Self-diffusion of polymers in cartilage as studied by pulsed field gradient NMR. Biophys Chem 2002; 97:251-60. [PMID: 12050014 DOI: 10.1016/s0301-4622(02)00078-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) was used to investigate the self-diffusion behaviour of polymers in cartilage. Polyethylene glycol and dextran with different molecular weights and in different concentrations were used as model compounds to mimic the diffusion behaviour of metabolites of cartilage. The polymer self-diffusion depends extremely on the observation time: The short-time self-diffusion coefficients (diffusion time Delta approximately 15 ms) are subjected to a rather non-specific obstruction effect that depends mainly on the molecular weights of the applied polymers as well as on the water content of the cartilage. The observed self-diffusion coefficients decrease with increasing molecular weights of the polymers and with a decreasing water content of the cartilage. In contrast, the long-time self-diffusion coefficients of the polymers in cartilage (diffusion time Delta approximately 600 ms) reflect the structural properties of the tissue. Measurements at different water contents, different molecular weights of the polymers and varying observation times suggest that primarily the collagenous network of cartilage but also the entanglements of the polymer chains themselves are responsible for the observed restricted diffusion. Additionally, anomalous restricted diffusion was shown to occur already in concentrated polymer solutions.
Collapse
Affiliation(s)
- Robert Trampel
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Liebigstr. 27, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Quinn TM, Morel V, Meister JJ. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J Biomech 2001; 34:1463-9. [PMID: 11672721 DOI: 10.1016/s0021-9290(01)00112-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chondrocytes depend upon solute transport within the avascular extracellular matrix of adult articular cartilage for many of their biological activities. Alterations to bioactive solute transport may, therefore, represent a mechanism by which cartilage compression is transduced into cellular metabolic responses. We investigated the effects of cartilage static compression on diffusivity and partitioning of a range of model solutes including dextrans of molecular weights 3 and 40 kDa, and tetramethylrhodamine (a 430 Da fluorophore). New fluorescence methods were developed for real-time visualization and measurement of transport within compressed cartilage explants. Experimental design allowed for multiple measurements on individual explants at different compression levels in order to minimize confounding influences of compositional variations. Results demonstrate that physiological levels of static compression may significantly decrease solute diffusivity and partitioning in cartilage. Effects of compression were most dramatic for the relatively high molecular weight solutes. For 40 kDa dextran, diffusivity decreased significantly (p<0.01) between 8% and 23% compression, while partitioning of 3 and 40 kDa dextran decreased significantly (p<0.01) between free-swelling conditions and 8% compression. Since diffusivity and partitioning can influence pericellular concentrations of bioactive solutes, these observations support a role for perturbations to solute transport in mediating the cartilage biological response to compression.
Collapse
Affiliation(s)
- T M Quinn
- Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, EPFL, PSE-A, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
35
|
Quinn TM, Kocian P, Meister JJ. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch Biochem Biophys 2001; 384:327-34. [PMID: 11368320 DOI: 10.1006/abbi.2000.2077] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chondrocytes of adult articular cartilage rely upon transport phenomena within their avascular extracellular matrix for many biological activities. Therefore, changes in matrix structure which influence cytokine transport parameters may be an important mechanism involved in the chondrocyte response to tissue compression. With this hypothesis in mind, partitioning and diffusion of 3-, 10-, and 40-kDa dextrans conjugated to tetramethylrhodamine, and 430-Da tetramethylrhodamine itself, were measured within statically compressed bovine articular cartilage explants using a novel experimental apparatus and desorption fluorescence method. Partitioning and diffusion were examined as functions of solute molecular weight and matrix proteoglycan density, and diffusion was measured versus static compression up to 35% volumetric strain. In general, partition coefficients and diffusivities were found to decrease with increasing solute molecular weight. In addition, for a given solute, diffusivities decreased significantly with increasing static compression. Results therefore suggest a possible role for transport limitations of relatively large molecular weight solutes within the extracellular matrix in mediating the biological response of chondrocytes to cartilage compression.
Collapse
Affiliation(s)
- T M Quinn
- Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne.
| | | | | |
Collapse
|
36
|
Foy BD, Blake J. Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1-D NMR imaging technique. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 148:126-134. [PMID: 11133285 DOI: 10.1006/jmre.2000.2216] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantifying the diffusive transport of large molecules in avascular cartilage tissue is important both for planning potential pharamacological treatments and for gaining insight into the molecular-scale structure of cartilage. In this work, the diffusion coefficients of gadolinium-DTPA and Gd-labeled versions of four proteins-lysozyme, trypsinogen, ovalbumin, and bovine serum albumin (BSA) with molecular weights of 14,300, 24,000, 45,000, and 67,000, respectively-have been measured in healthy and degraded calf cartilage. The experimental technique relies on the effect of the paramagnetic on the relaxation properties of the surrounding water, combined with the time course of a 1-dimensional spatial profile of the water signal in the cartilage sample. The enhanced technique presented here does not require a prior measurement of the relaxivity of the paramagnetic compound in the sample of interest. The data are expressed as the ratio of the diffusion coefficient of a compound in cartilage to its diffusion coefficient in water. For healthy cartilage, this ratio was 0.34 +/- 0.07 for Gd-DTPA, the smallest compound, and fell to 0.3 +/- 0.1 for Gd-lysozyme, 0.08 +/- 0.04 for Gd-trypsinogen, and 0.07 +/- 0.04 for Gd-ovalbumin. Gd-BSA did not appear to enter healthy cartilage tissue beyond a surface layer. After the cartilage had been degraded by 24-h trypsinization, these ratios were 0.60 +/- 0.03 for Gd-DTPA, 0.40 +/- 0.08 for Gd-lysozyme, 0.42 +/- 0.09 for Gd-trypsinogen, 0.16 +/- 0.14 for Gd-ovalbumin, and 0.11 +/- 0.05 for Gd-BSA. Thus, degradation of the cartilage led to increases in the diffusion coefficient of up to fivefold for the Gd-labeled proteins. These basic transport parameters yield insights on the nature of pore sizes and chemical-matrix interactions in the cartilage tissue and may prove diagnostically useful for identifying the degree and nature of damage to cartilage.
Collapse
Affiliation(s)
- B D Foy
- Department of Physics, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
37
|
Abstract
The diffusive properties of immature bovine articular cartilage were determined using two different-sized, uncharged solutes (glucose 180 Da, and dextran 10k Da). Radioactively tagged glucose and dextran were diffused into the cartilage for transport times of 5, 15, and 60 min, and the diffusion and partition coefficients were calculated by fitting the experimental data to a one-dimensional diffusion model. The diffusion and partition coefficients for the two solutes averaged 6.08 +/- 2.19 and 5.09 +/- 2.51 (x 10(-6) cm2/s) and 0.712 +/- 0.149 and 0.615 +/- 0.120, respectively. Both coefficients were significantly greater for glucose compared to the larger dextran. While no statistical differences could be found in the diffusive properties of these solutes in immature cartilage compared to their diffusive properties in mature cartilage, there was some evidence that the larger dextran solute might diffuse faster in the earlier time periods. Finally, the bulk fluid contents between the two types of cartilage were not different even though the immature tissue was significantly thicker (1.6 times) than the mature tissue. Our results indicate that the solute diffusion properties of articular cartilage, at least with respect to uncharged solutes, do not change during skeletal maturation.
Collapse
Affiliation(s)
- P A Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York 10021, USA
| | | | | |
Collapse
|
38
|
Macpherson JV, O'Hare D, Unwin PR, Winlove CP. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage. Biophys J 1997; 73:2771-81. [PMID: 9370471 PMCID: PMC1181179 DOI: 10.1016/s0006-3495(97)78306-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The scanning electrochemical microscope (SECM) is a scanned probe microscope that uses the response of a mobile ultramicroelectrode (UME) tip to determine the reactivity, topography, and mass transport characteristics of interfaces with high spatial resolution. SECM strategies for measuring the rates of solute diffusion and convection through samples of cartilage, using amperometric UMEs, are outlined. The methods are used to determine the diffusion coefficients of oxygen and ruthenium(III) hexamine [Ru(NH3)6(3+)] in laryngeal cartilage. The diffusion coefficient of oxygen in cartilage is found to be approximately 50% of that in aqueous electrolyte solution, assuming a partition coefficient of unity for oxygen between cartilage and aqueous solution. In contrast, diffusion of Ru(NH3)6(3+) within the cartilage sample cannot be detected on the SECM timescale, suggesting a diffusion coefficient at least two orders of magnitude lower than that in solution, given a measured partition coefficient for Ru(NH3)6(3+) between cartilage and aqueous solution, Kp = [Ru(NH3)6(3+)]cartilage/[RU(NH3)6(3+)]solution = 3.4 +/- 0.1. Rates of Ru(NH3)6(3+) osmotically driven convective transport across cartilage samples are imaged at high spatial resolution by monitoring the current response of a scanning UME, with an osmotic pressure of approximately 0.75 atm across the slice. A model is outlined that enables the current response to be related to the local flux. By determining the topography of the sample from the current response with no applied osmotic pressure, local transport rates can be correlated with topographical features of the sample surface, at much higher spatial resolution than has previously been achieved.
Collapse
Affiliation(s)
- J V Macpherson
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | | | | |
Collapse
|
39
|
Torzilli PA, Arduino JM, Gregory JD, Bansal M. Effect of proteoglycan removal on solute mobility in articular cartilage. J Biomech 1997; 30:895-902. [PMID: 9302612 DOI: 10.1016/s0021-9290(97)00059-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transport of nutrients, cytokines, pharmacologic agents, and matrix components through articular cartilage is critical for the viability and structural integrity of the tissue. To understand the role of the extracellular matrix in regulating this process, we measured the diffusivity of three uncharged solutes of different molecular size (glucose, MW 180; inulin, MW 5000; dextran, MW 70,000) into intact cartilage and cartilage that had its proteoglycan (PG) component removed. Solute diffusivity was measured by performing transient (nonsteady state) one-dimensional diffusion tests using radiolabelled solutes. Compared to intact cartilage, the diffusivity of glucose was unchanged after PG removal, inulin was unchanged but dextran increased by 1.7 times after 71% PG removal, and both inulin and dextran increased by 1.6 and 2.0 times, respectively, after 93% PG removal. The diffusivities of inulin and dextran were inversely proportional to the PG content. While no change was found in the tissue's bulk fluid content, PG depletion resulted in an increase in fluid content in the upper regions of the tissue and a decrease in the lower regions. These results indicate that in intact tissue small uncharged solutes have free mobility through the inter-molecular and intra-molecular PG volumes, larger molecules have limited intra-molecular mobility, and very large molecules are excluded from the intra-molecular space.
Collapse
Affiliation(s)
- P A Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, Cornell University Medical College, New York, NY 10021-4892, USA
| | | | | | | |
Collapse
|
40
|
Bursac P, Freed L, Biron R, Vunjak-Novakovic G. Mass Transfer Studies of Tissue Engineered Cartilage. ACTA ACUST UNITED AC 1996; 2:141-50. [DOI: 10.1089/ten.1996.2.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- P.M. Bursac
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Boston University, Boston, Massachusetts 02215
| | - L.E. Freed
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - R.J. Biron
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
41
|
Torzilli PA. Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage. Med Biol Eng Comput 1993; 31 Suppl:S93-8. [PMID: 7694012 DOI: 10.1007/bf02446656] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diffusion of glucose, inulin and dextran into adult bovine articular cartilage was studied as a function of temperature, solute concentration and articular surface integrity. One-dimensional, transient solute diffusion experiments were performed for 5, 15 and 60 min. The diffusion and interface partition coefficients increased with increasing temperature, but exhibited no concentration dependency when the solute concentration was increased 100-fold. Relative to intact tissue, removal of the uppermost articular surface resulted in decreased solute concentrations within the tissue for all solutes and time periods tested.
Collapse
Affiliation(s)
- P A Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
42
|
Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 1993; 11:465-78. [PMID: 8340820 DOI: 10.1002/jor.1100110402] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability of water and solutes to move through the cartilage matrix is important to the normal function of cartilage and is presumed to be altered in degenerative diseases of cartilage such as osteoarthritis and rheumatoid arthritis. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) techniques were used to measure a self diffusion coefficient (D) for small solutes in samples of explanted cartilage for diffusion times ranging from 13 ms to 2 s. With a diffusion time of 13 ms, the intratissue diffusivity of several small solutes (water, Na+, Li+, and CF3CO2-) was found consistently to be about 60% of the diffusivity of the same species in free solution. Equilibration of the samples at low pH (which titrates the charge groups so that the net matrix charge of -300 mM at pH 8 becomes approximately -50 mM at pH 2) did not affect the diffusivity of water or Na+. These data, and the similarity between the D in cartilage relative to free solution for water, anions, and cations, are consistent with the view that charge is not an important determinant of the intratissue diffusivity of small solutes in cartilage. With 35% compression, the diffusivity of water and Li+ dropped by 19 and 39%, respectively. In contrast, the diffusivity of water increased by 20% after treatment with trypsin (to remove the proteoglycans and noncollagenous proteins). These data and the lack of an effect of charge on diffusivity are consistent with D being dependent on the composition and density of the solid tissue matrix. A series of diffusion-weighted proton images demonstrated that D could be measured on a localized basis and that changes in D associated with an enzymatically depleted matrix could be clearly observed. Finally, evidence of restriction to diffusion within the tissue was found with studies in which D was measured as a function of diffusion time. The measured D for water in cartilage decreased with diffusion times ranging from 25 ms to 2 s, at which point the measured D was roughly 40% of the diffusivity in free solution. Although changes in matrix density by compression or digestion with trypsin led to a decrease or increase, respectively, in the measured D, the functional change in measured diffusivity with diffusion time remained essentially unchanged. In a different type of study, in which bulk transport could be observed over long periods of time, cartilage was submerged in 99% D2O and MRI studies were performed to demonstrate the bulk movement of water out of the cartilage matrix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Burstein
- Department of Radiology, Charles A. Dana Research Institute, Beth Israel Hospital, Boston, MA 02215
| | | | | | | | | |
Collapse
|