1
|
Grasberger KF, Lund FW, Simonsen AC, Hammershøj M, Fischer P, Corredig M. Role of the pea protein aggregation state on their interfacial properties. J Colloid Interface Sci 2024; 658:156-166. [PMID: 38100972 DOI: 10.1016/j.jcis.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
HYPOTHESIS Plant protein ingredients from similar sources can vary in functionality not only because of compositional differences, but also because of differences in their structure depending on their processing history. It is essential to understand these distinctions to develop novel food emulsion using plant proteins. It is hypothesized that differing interfacial properties can be attributed to their structures, aggregation, and colloidal states. EXPERIMENTS The adsorption behavior of a commercial protein isolate, homogenized or non-homogenized, was compared to a mildly extracted isolate to evaluate the effect of aggregation state and structural differences. After characterization of the particle size and protein composition, the interfacial properties were compared. FINDINGS Atomic force microscopy provided evidence of interfaces packed with protein oligomers regardless of the treatment. Differences in adsorption kinetics and interfacial shear rheology depending on oil polarity suggested different interfacial structures. A polydisperse mixture of protein oligomers resulted in increased rearrangements and protein-protein interactions at the interface. Homogenization of commercial proteins resulted in a lower interfacial tension and less elastic interfaces compared to those of native proteins due to the presence of larger aggregates. This study highlights how the interfacial properties can be related to the protein aggregation state resulting from differences in processing history.
Collapse
Affiliation(s)
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Marianne Hammershøj
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| |
Collapse
|
2
|
Klockars KW, Greca LG, Majoinen J, Mihhels K, Rojas OJ, Tardy BL. Drying stresses in cellulose nanocrystal coatings: Impact of molecular and macromolecular additives. Carbohydr Polym 2023; 303:120465. [PMID: 36657848 DOI: 10.1016/j.carbpol.2022.120465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The industrial implementation of cellulose nanocrystals (CNCs) in films and coatings requires thorough evaluation of the internal stresses post-consolidation, as they cause fracturing and peeling. Characterizing the impact of plasticizing additives on stress is therefore critical. Herein, we use the deflection of thin glass substrates to measure drying stresses in consolidating CNC films, and benchmark the impact of five additives (glucose, glycerol, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and bovine serum albumin). Glycerol and PEG reduced drying stresses effectively, while PEG of increased molecular weight (from 0.2 to 10 kDa), PVA, and BSA were less effective. We analyzed the temporal aspects of the process, where stress relaxation of up to 30 % was observed 2 years after coating formation. Finally, we provide a framework to evaluate the impact of CNC morphology on residual stresses. The introduced approach is expected to fast-track the optimization and implementation of coatings based on biocolloids.
Collapse
Affiliation(s)
- Konrad W Klockars
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Johanna Majoinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Sanabria JC, Romero CM. Influence of tetraalkylammonium salts on the adsorption kinetics of bovine serum albumin in aqueous solutions at the air-liquid interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Thi-Yen Le T, Hussain S, Tsay RY, Noskov BA, Akentiev A, Lin SY. On the equilibrium surface tension of aqueous protein solutions – Bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Interfacial properties of milk proteins: A review. Adv Colloid Interface Sci 2021; 295:102347. [PMID: 33541692 DOI: 10.1016/j.cis.2020.102347] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
The interfacial properties of dairy proteins are of great interest to the food industry. Food manufacturing involves various environmental conditions and multiple processes that significantly alter the structure and colloidal stability of food materials. The effects of concentration, pH, heat treatment, addition of salts etc., have considerable influence on the surface activity of proteins and the mechanical properties of the interfacial protein films. Studies to date have established some understanding of the links between environmental and processing related parameters and their impacts on interfacial behavior. Improvement in knowledge may allow better design of interfacial protein structures for different food applications. This review examines the effects of environmental and processing conditions on the interfacial properties of dairy proteins with emphasis on interfacial tension dynamics, dilatational and surface shear rheological properties. The most commonly used surface analytical techniques along with relevant methods are also addressed.
Collapse
|
6
|
Kurz F, Hengst C, Kulozik U. RP-HPLC method for simultaneous quantification of free and total thiol groups in native and heat aggregated whey proteins. MethodsX 2020; 7:101112. [PMID: 33194562 PMCID: PMC7644750 DOI: 10.1016/j.mex.2020.101112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
Disulfide formation of whey proteins during heat treatment via thiol oxidation is important with regard to techno-functional properties. Due to the formation of other oxidation products than disulfides, the decrease in free thiol concentration is not proportional to the disulfide formation. Thus, in order to evaluate thiol reactivity and disulfide concentration both parameters are required. Currently applied methods focus mainly on the loss of free thiols using the spectrophotometric Ellman's assay. Next to that, we improved an existing RP-HPLC assay using the thiol reagent 4,4′-Dithiodipyridine (DTDP) to quantify free thiols as well as total (free thiols and disulfide bonds) thiols of native and heat-treated whey proteins. Thereby, the sample preparation technique, the sample handling, and the analysis technique were optimized. Thus, the paper provides a simple RP-HPLC method for quantification of thiol oxidation reactions to determine heat-induced changes in the structure of whey proteins. In addition, the method should be applicable to other protein systems due to the method validation by proteins of different amounts of free and total thiols in their structure.Simple RP-HPLC method for quantification of free and total thiols using 4,4′-Dithiodipyridine (DTDP). High recovery rates for free and total thiols. High stability within 24 h.
Collapse
Affiliation(s)
- Franziska Kurz
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| | - Claudia Hengst
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Zouari A, Briard-Bion V, Gaucheron F, Schuck P, Gaiani C, Triki M, Attia H, Ayadi MA. Effect of pH on the physicochemical characteristics and the surface chemical composition of camel and bovine whey protein's powders. Food Chem 2020; 333:127514. [PMID: 32683259 DOI: 10.1016/j.foodchem.2020.127514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 11/24/2022]
Abstract
This study investigated the effect of pH on the denaturation extent, the surface chemical composition, the water sorption isotherm and the glass transition temperature of camel and bovine whey protein's powders. The LC-MS analysis indicated that the β-Lactoglobulin was the most denatured protein in bovine whey powders regardless the pH value, while this protein was totally absent in camel whey. The α-Lactalbumin was relatively heat stable after drying and predominated the powder surface (X-ray photoelectron spectroscopy results) in both camel and bovine whey powders regardless the pH (neutral (6.7) or acidic (4.3 and 4.6)). Analysis of the water sorption isotherms indicated that decreasing the pH induced the increase of the water activity of lactose crystallization for camel and bovine whey powders. Finally, decreasing the pH led to the decrease of the glass transition temperature of camel and bovine whey powder (at 0.13, 0.23, and 0.33 of water activity).
Collapse
Affiliation(s)
- Ahmed Zouari
- Valuation, Security and Food Analysis Laboratory, National Engineering School of Sfax, Sfax University, Tunisia; UMR-STLO: Science and Technology of Milk and Egg, INRA, Agrocampus Rennes, France.
| | - Valérie Briard-Bion
- UMR-STLO: Science and Technology of Milk and Egg, INRA, Agrocampus Rennes, France
| | - Frédéric Gaucheron
- UMR-STLO: Science and Technology of Milk and Egg, INRA, Agrocampus Rennes, France
| | - Pierre Schuck
- UMR-STLO: Science and Technology of Milk and Egg, INRA, Agrocampus Rennes, France
| | - Claire Gaiani
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), Nancy, France
| | - Mehdi Triki
- Valuation, Security and Food Analysis Laboratory, National Engineering School of Sfax, Sfax University, Tunisia
| | - Hamadi Attia
- Valuation, Security and Food Analysis Laboratory, National Engineering School of Sfax, Sfax University, Tunisia
| | - Mohamed Ali Ayadi
- Valuation, Security and Food Analysis Laboratory, National Engineering School of Sfax, Sfax University, Tunisia.
| |
Collapse
|
8
|
Tian Z, Wang T, Tunlid A, Persson P. Proteolysis of Iron Oxide-Associated Bovine Serum Albumin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5121-5130. [PMID: 32208652 PMCID: PMC7311061 DOI: 10.1021/acs.est.0c00860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/10/2023]
Abstract
Proteins are a substantial nitrogen source in soils provided that they can be hydrolyzed into bioavailable small peptides or amino acids. However, the strong associations between proteins and soil minerals restrict such proteolytic reactions. This study focused on how an extracellular fungal protease (Rhizopus sp.) hydrolyzed iron oxide-associated bovine serum albumin (BSA) and the factors that affected the proteolysis. We combined batch experiments with size-exclusion and reversed phase liquid chromatography and in situ infrared spectroscopic measurements to monitor the generation of proteolytic products in solution as well as the real-time changes of the adsorbed BSA during 24 h. Results showed that protease hydrolyzed the iron oxide-associated BSA directly at the surface without an initial desorption of BSA. Concurrently, the protease was adsorbed to vacant surface sites at the iron oxides, which significantly slowed down the rate of proteolysis. This inhibiting effect was counteracted by the presence of preadsorbed phosphate or by increasing the BSA coverage, which prevented protease adsorption. Fast initial rates of iron oxide-associated BSA proteolysis, comparable to proteolysis of BSA in solution, and very slow rates at prolonged proteolysis suggest a large variability in mineral-associated proteins as a nitrogen source in soils and that only a fraction of the protein is bioavailable.
Collapse
Affiliation(s)
- Zhaomo Tian
- Department
of Biology, Microbial Ecology Group, Lund
University, Ecology Building, SE-223 62 Lund, Sweden
- Centre
for Environmental and Climate Research (CEC), Lund University, Ecology
Building, SE-223 62 Lund, Sweden
| | - Tao Wang
- Department
of Biology, Microbial Ecology Group, Lund
University, Ecology Building, SE-223 62 Lund, Sweden
| | - Anders Tunlid
- Department
of Biology, Microbial Ecology Group, Lund
University, Ecology Building, SE-223 62 Lund, Sweden
| | - Per Persson
- Department
of Biology, Microbial Ecology Group, Lund
University, Ecology Building, SE-223 62 Lund, Sweden
- Centre
for Environmental and Climate Research (CEC), Lund University, Ecology
Building, SE-223 62 Lund, Sweden
| |
Collapse
|
9
|
Lajnaf R, Trigui I, Samet-Bali O, Attia H, Ayadi M. Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Socrier L, Rosselin M, Gomez Giraldo AM, Chantemargue B, Di Meo F, Trouillas P, Durand G, Morandat S. Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1489-1501. [PMID: 31247162 DOI: 10.1016/j.bbamem.2019.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.
Collapse
Affiliation(s)
- Larissa Socrier
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France.
| | - Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Ana Milena Gomez Giraldo
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| | - Benjamin Chantemargue
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Florent Di Meo
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Patrick Trouillas
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Sandrine Morandat
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| |
Collapse
|
11
|
Papadimitriou M, Avranas A. Surface tension studies of binary and ternary mixtures of tetradecyltrimethylammonium bromide, ditetradecyldimethylammonium bromide and synperonic PE/F68. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1578664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maria Papadimitriou
- Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Avranas
- Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Quan W, Zhang C, Zheng M, Lu Z, Zhao H, Lu F. Effects of small laccase from Streptomyces coelicolor on the solution and gel properties of whey protein isolate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Dopierała K, Krajewska M, Prochaska K. Binding of α-lactalbumin to oleic acid monolayer and its relevance to formation of HAMLET-like complexes. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Hong W, Liu L, Zhao Y, Liu Y, Zhang D, Liu M. Pluronic-based nano-self-assemblies of bacitracin A with a new mechanism of action for an efficient in vivo therapeutic effect against bacterial peritonitis. J Nanobiotechnology 2018; 16:66. [PMID: 30205822 PMCID: PMC6131780 DOI: 10.1186/s12951-018-0397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
Background Although assemblies of hydrophobic-modified bacitracin A with PLGA (Nano-BAPLGA) have demonstrated promising antibacterial activities against both Gram-positive and Gram-negative bacteria, the desirable antibacterial potency has remained challenging due to the low solubility of Nano-BAPLGA. To address this tissue, a series of Pluronic copolymers (Pluronic® F127, Pluronic® P123 and Pluronic® P85) were selected to link the N-terminus of bacitracin A to construct Pluronic-based nano-self assemblies (Nano-BAF127, Nano-BAP123 and Nano-BAP85). Results Impressively, all the newly designed Pluronic-based Nano-BAs possessed higher solubility and stronger effectiveness against both Gram-positive and Gram-negative bacteria compared with Nano-BAPLGA, especially the modification with Pluronic® P85. Surface tension measurements indicated that Nano-BAP85 was much more tensioactive than Nano-BAPLGA, which usually translated into a good membranolytic effect. Fluorescence spectroscopy and electron microscopy analyses confirmed the speculation that the cell wall/membrane might be the main action target of Nano-BAP85 by permeabilizing the cell membrane and damaging the membrane integrity. In vivo results further demonstrated that Nano-BAP85 significantly suppressed bacterial growth and prolonged survival time in the bacterial peritonitis mouse model with negligible toxicity. Conclusions Collectively, the membrane targeting mechanism of action is entirely distinct from those of clinically used antibacterial agents. Furthermore, the new approach of construction nanoantibiotics based on the modification of commercially available antibiotics with Pluronic copolymers is demonstrated to have an efficient therapeutic effect against bacterial infection. Electronic supplementary material The online version of this article (10.1186/s12951-018-0397-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Lipeng Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yining Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yinghui Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
15
|
Lajnaf R, Picart-Palmade L, Cases E, Attia H, Marchesseau S, Ayadi M. The foaming properties of camel and bovine whey: The impact of pH and heat treatment. Food Chem 2018; 240:295-303. [DOI: 10.1016/j.foodchem.2017.07.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
16
|
Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: Preparation and physicochemical characterization. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Tang CH. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Crit Rev Food Sci Nutr 2017; 57:2636-2679. [DOI: 10.1080/10408398.2015.1067594] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chuan-He Tang
- Department of Food Science and Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Angelova N, Yordanov G. Entrapment of β-FeO(OH) nanoparticles in human serum albumin: Preparation, characterization and hemocompatibility. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Yordanov G, Gemeiner P, Katrlík J. Study of interactions between blood plasma proteins and poly(butyl cyanoacrylate) drug nanocarriers by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Parra E, Kinoshita K, Needham D. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10570-10581. [PMID: 27653452 DOI: 10.1021/acs.langmuir.6b01420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm3/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from the lung surfactant literature concerning the widely reported "near-zero surface tension" for lung surfactant films and intact alveolar surfaces is also discussed.
Collapse
Affiliation(s)
- Elisa Parra
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
| | - Koji Kinoshita
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
| | - David Needham
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
- Department of Mechanical Engineering and Material Science, Duke University , Durham, North Carolina 90300, United States
| |
Collapse
|
21
|
Beck-Broichsitter M. Biophysical Activity of Impaired Lung Surfactant upon Exposure to Polymer Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10422-10429. [PMID: 27641633 DOI: 10.1021/acs.langmuir.6b02893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal drug carriers could improve the therapy of numerous airway diseases. However, it remains unclear to what extent nanoscale particulate matter affects the biophysical function of the essential surface-active lining layer of the lungs, especially under predisposed conditions of airway diseases. Accordingly, the current study investigated the impact of defined polymer nanoparticles on impaired lung surfactants. Admixtures of plasma proteins (albumin and fibrinogen) to Curosurf led to a controllable decrease in surface activity (i.e., adsorption and minimal surface tension of >25 and >5 mN/m, respectively), which served as models for dysfunctional lung surfactants. Next, Curosurf preincubated with plasma proteins was challenged with negatively- and positively charged poly(lactide) nanoparticles. Negatively charged nanoparticles significantly perturbed the biophysical function of impaired Curosurf in a dose-dependent manner, most-likely due to a binding of essential surfactant components. By contrast, addition of positively charged nanoparticles led to no further loss of surface activity, but a remarkable depletion of plasma protein content. Once adsorbed to the surface of polymer nanoparticles, plasma proteins were hindered to displace relevant surfactant components from the air/liquid interface. Overall, the current study indicated that, depending on their physicochemical properties, colloidal drug carriers could compromise the biophysical function of impaired lung surfactants. Notably, a positive surface charge represents a parameter for the rationale design of polymer nanomedicines causing negligible adverse events on an impaired surface-active lining layer in the lungs.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität , 35392 Giessen, Germany
| |
Collapse
|
22
|
Zaitsev S. Dynamic surface tension measurements as general approach to the analysis of animal blood plasma and serum. Adv Colloid Interface Sci 2016; 235:201-213. [PMID: 27344188 DOI: 10.1016/j.cis.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
|
23
|
Liu J, Pan L, Cheng X, Berdichevsky Y. Perfused drop microfluidic device for brain slice culture-based drug discovery. Biomed Microdevices 2016; 18:46. [PMID: 27194028 PMCID: PMC5563980 DOI: 10.1007/s10544-016-0073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA
| | - Liping Pan
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - Xuanhong Cheng
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA.
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
24
|
Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 2016; 6:25288. [PMID: 27142249 PMCID: PMC4855151 DOI: 10.1038/srep25288] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 11/08/2022] Open
Abstract
Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface.
Collapse
|
25
|
Michel JP, Wang YX, Dé E, Fontaine P, Goldmann M, Rosilio V. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2967-79. [PMID: 26343162 DOI: 10.1016/j.bbamem.2015.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022]
Abstract
Bacterial resistance to antibiotics has become today a major public health issue. In the development of new anti-infectious therapies, antimicrobial peptides appear as promising candidates. However, their mechanisms of action against bacterial membranes are still poorly understood. We describe for the first time the interaction and penetration of plasticins into lipid monolayers and bilayers modeling the two leaflets of the asymmetrical outer membrane of Gram-negative bacteria. The lipid composition of these monolayers mimics that of each leaflet: mixtures of LPS Re 595 mutant and wild type S-form from Salmonella enterica for the external leaflet, and SOPE/SOPG/cardiolipin (80/15/5) for the inner one. The analysis of the interfacial behavior of native (PTCDA1) and modified (PTCDA1-KF) antimicrobial plasticins showed that PTCDA1-KF exhibited better surface properties than its unmodified counterpart. Both peptides could penetrate into the model monolayers at concentrations higher than 0.1 μM. The penetration was particularly enhanced for PTCDA1-KF into the mixed LPS monolayer, due to attractive electrostatic interactions. Grazing X-ray diffraction and atomic force microscopy studies revealed the changes in LPS monolayers organization upon peptide insertion. The interaction of plasticins with liposomes was also monitored by light scattering and circular dichroism techniques. Only the cationic plasticin achieved full disaggregation and structuration in α helices, whereas the native one remained aggregated and unstructured. The main steps of the penetration mechanism of the two plasticins into lipid models of the external leaflet of the outer membrane of Gram-negative bacteria have been established.
Collapse
Affiliation(s)
- J P Michel
- Univ Paris-Sud, Institut Galien Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France; CNRS, UMR 8612, F-92296 Châtenay-Malabry, France.
| | - Y X Wang
- Univ Paris-Sud, Institut Galien Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France; CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| | - E Dé
- Normandie Univ, France; CNRS, UMR 6270, F-76821 Mont-Saint-Aignan Cedex, France
| | - P Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, F-91192 Gif-sur-Yvette Cedex, France
| | - M Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, F-91192 Gif-sur-Yvette Cedex, France; INSP, UPMC, 5 place Jussieu, F-75005 Paris, France; CNRS, UMR 7588, F-75005 Paris, France
| | - V Rosilio
- Univ Paris-Sud, Institut Galien Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France; CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| |
Collapse
|
26
|
Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci Rep 2015; 5:9793. [PMID: 25965905 PMCID: PMC4428270 DOI: 10.1038/srep09793] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
Abstract
Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation.
Collapse
|
27
|
Non-biofouling property of well-defined concentrated polymer brushes. Colloids Surf B Biointerfaces 2015; 127:213-20. [DOI: 10.1016/j.colsurfb.2015.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022]
|
28
|
Peixoto PDS, Bouchoux A, Huet S, Madec MN, Thomas D, Floury J, Gésan-Guiziou G. Diffusion and partitioning of macromolecules in casein microgels: evidence for size-dependent attractive interactions in a dense protein system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1755-1765. [PMID: 25604622 DOI: 10.1021/la503657u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the mechanisms that determine the diffusion and interaction of macromolecules (such as proteins and polysaccharides) that disperse through dense media is an important fundamental issue in the development of innovative technological and medical applications. In the current work, the partitioning and diffusion of macromolecules of different sizes (from 4 to 10 nm in diameter) and shapes (linear or spherical) within dispersions of casein micelles (a protein microgel) is studied. The coefficients for diffusion and partition are measured using FRAP (fluorescence recovery after photobleaching) and analyzed with respect to the structural characteristics of the microgel determined by the use of TEM (transmission electron microscopy) tomography. The results show that the casein microgel displays a nonspecific attractive interaction for all macromolecules studied. When the macromolecular probes are spherical, this affinity is clearly size-dependent, with stronger attraction for the larger probes. The current data show that electrostatic effects cannot account for such an attraction. Rather, nonspecific hydration molecular forces appear to explain these results. These findings show how weak nonspecific forces affect the diffusion and partitioning of proteins and polysaccharides in a dense protein environment. These results could be useful to better understand the mechanisms of diffusion and partitioning in other media such as cells and tissues. Furthermore, there arises the possibility of using the casein micelle as a size-selective molecular device.
Collapse
Affiliation(s)
- Paulo D S Peixoto
- INRA , UMR1253 Science et Technologie du Lait et de l'Œuf, 65 rue de Saint Brieuc, 35000 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Tang CH, Shen L. Dynamic adsorption and dilatational properties of BSA at oil/water interface: Role of conformational flexibility. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
McGuire J. Building a working understanding of protein adsorption with model systems and serendipity. Colloids Surf B Biointerfaces 2014; 124:38-48. [DOI: 10.1016/j.colsurfb.2014.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
31
|
Souza AL, Pavinatto FJ, Caseli L, Volpati D, Miranda PB, Oliveira Jr. ON. Chitosan does not inhibit enzymatic action of human pancreatic lipase in Langmuir monolayers of 1,2-didecanoyl-glycerol (DDG). Colloids Surf B Biointerfaces 2014; 123:870-7. [DOI: 10.1016/j.colsurfb.2014.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
32
|
Corbatón-Báguena MJ, Álvarez-Blanco S, Vincent-Vela MC. Salt cleaning of ultrafiltration membranes fouled by whey model solutions. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Modulating Protein Release Profiles by Incorporating Hyaluronic Acid into PLGA Microparticles Via a Spray Dryer Equipped with a 3-Fluid Nozzle. Pharm Res 2014; 31:2940-51. [DOI: 10.1007/s11095-014-1387-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
|
34
|
Shen L, Tang CH. Emulsifying properties of vicilins: Dependence on the protein type and concentration. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
|
36
|
Liu F, Chen Z, Tang CH. Microencapsulation properties of protein isolates from three selected Phaseolus legumes in comparison with soy protein isolate. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Liang HN, Tang CH. Emulsifying and interfacial properties of vicilins: role of conformational flexibility at quaternary and/or tertiary levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11140-11150. [PMID: 24151988 DOI: 10.1021/jf403847k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although the functionality of plant proteins (and soy proteins in particular) has been widely investigated in the last decades, the importance of conformational characteristics to their functionalities is still far away from being understood. The aim of the present work was to unravel the role of conformational flexibility at the quaternary and/or tertiary levels in the emulsifying and interfacial properties of phaseolin, an ideal vicilin (or 7S globulin) from red kidney bean. The conformational flexibility at quaternary and tertiary levels of phaseolin was modulated by urea with increasing concentrations from 0 to 8 M, as characterized by using dynamic light scattering (DLS), intrinsic fluorescence and derivative UV spectroscopy, and differential scanning calorimetry (DSC). The emulsifying and interfacial properties, including emulsifying ability, flocculated state of oil droplets (in fresh emulsions), emulsion stability against creaming, and adsorption dynamics at the oil-water interface, were characterized at a specific protein concentration of 0.5% (w/v). The results indicated that increasing the urea concentration resulted in a progressive dissociation of trimeric phaseolin molecules into monomeric subunits, and even a structural unfolding of dissociated subunits; the urea-induced conformational changes at quaternary and/or tertiary levels were reversible, and the molecules at high urea concentrations shared similar structural features to the "molten globule state". On the other hand, increasing the urea concentration progressively improved the emulsifying ability of the protein, and flocculated extent of oil droplets in the fresh emulsions, but led to a progressive decrease in interfacial protein concentration. The improvement of the emulsifying ability was not related to diffusion (during initial adsorption) and penetration at the interface, but highly dependent on ease of structural rearrangement of the adsorbed proteins. These observations clearly confirmed that the flexibility of phaseolin at quaternary and/or tertiary levels plays a vital role in its emulsifying ability, mainly through the way of affecting the ease of structural rearrangement of adsorbed proteins at the interface. The findings could provide an in-depth understanding of the importance of conformational flexibility for the emulsifying properties of oligomeric storage globulins, and thus are of great help to guide the modifications of the proteins for better emulsifying properties.
Collapse
Affiliation(s)
- Han-Ni Liang
- Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | | |
Collapse
|
38
|
Aqueous solutions of the double chain cationic surfactants didodecyldimethylammonium bromide and ditetradecyldimethylammonium bromide with Pluronic F68: Dynamic surface tension measurements. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Dynamic surface tension studies of mixtures of hydroxypropylmethylcellulose with the double chain cationic surfactants didodecyldimethylammonium bromide and ditetradecyldimethylammonium bromide. J Colloid Interface Sci 2013; 402:237-45. [DOI: 10.1016/j.jcis.2013.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022]
|
40
|
Griffin DR, Schlosser JL, Lam SF, Nguyen TH, Maynard HD, Kasko AM. Synthesis of photodegradable macromers for conjugation and release of bioactive molecules. Biomacromolecules 2013; 14:1199-207. [PMID: 23506440 DOI: 10.1021/bm400169d] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogel scaffolds are used in biomedicine to study cell differentiation and tissue evolution, where it is critical to control the delivery of chemical cues both spatially and temporally. While large molecules can be physically entrapped in a hydrogel, moderate molecular weight therapeutics must be tethered to the hydrogel network through a labile linkage to allow controlled release. We synthesized and characterized a library of polymerizable ortho-nitrobenzyl (o-NB) macromers with different functionalities at the benzylic position (alcohol, amine, BOC-amine, halide, acrylate, carboxylic acid, activated disulfide, N-hydroxysuccinyl ester, biotin). This library of polymerizable macromers containing o-NB groups should allow direct conjugation of nearly any type of therapeutic agent and its subsequent controlled photorelease from a hydrogel network. As proof-of-concept, we incorporated the N-hydroxysuccinyl ester macromer into hydrogels and then reacted phenylalanine with the NHS ester. Upon exposure to light (λ = 365 nm; 10 mW/cm(2), 10 min), 81.3% of the phenylalanine was released from the gel. Utilizing the photodegradable macromer incorporating an activated disulfide, we conjugated a cell-adhesive peptide (GCGYGRGDSPG), a protein that exhibits enzymatic activity (bovine serum albumin (BSA)), and a growth factor (transforming growth factor-β1 (TGF-β1)) into hydrogels, controlled their release with light (λ = 365 nm; 10 mW/cm(2), 0-20 min), and verified the bioactivity of the photoreleased molecules. The photoreleasable peptide allows real-time control over cell adhesion. BSA maintains full enzymatic activity upon sequestration and release from the hydrogel. Photoreleased TGF-β1 is able to induce chondrogenic differentiation of human mesenchymal stem cells comparable to native TGF-β1. Through this approach, we have demonstrated that photodegradable tethers can be used to sequester peptides and proteins into hydrogel depots and release them in an externally controlled, predictable manner without compromising biological function.
Collapse
Affiliation(s)
- Donald R Griffin
- Department of Bioengineering, University of California, Los Angeles , 410 Westwood Plaza, 5121 Eng V, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
41
|
Cattoir L, Pede V, Decavele AS, De Buyzere ML, Speeckaert MM, Seccombe D, Boterberg V, Dubruel P, de Bisschop F, Delanghe JR. Influence of physical properties of cuvette surface on measurement of serum lipase. Clin Chem Lab Med 2013; 51:2109-14. [DOI: 10.1515/cclm-2013-0369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 11/15/2022]
|
42
|
Lavoie B, Mayes MA, McKay LD. Transport of Explosive Residue Surrogates in Saturated Porous Media. WATER, AIR, AND SOIL POLLUTION 2012; 223:1983-1993. [PMID: 22707801 PMCID: PMC3359453 DOI: 10.1007/s11270-011-0999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/12/2011] [Indexed: 06/01/2023]
Abstract
Department of Defense operational ranges may become contaminated by particles of explosives residues (ER) as a result of low-order detonations of munitions. The goal of this study was to determine the extent to which particles of ER could migrate through columns of sandy sediment, representing model aquifer materials. Transport experiments were conducted in saturated columns (2 × 20 cm) packed with different grain sizes of clean sand or glass beads. Fine particles (approximately 2 to 50 μm) of 2,6-dinitrotoluene (DNT) were used as a surrogate for ER. DNT particles were applied to the top 1 cm of sand or beads in the columns, and the columns were subsequently leached with artificial groundwater solutions. DNT migration occurred as both dissolved and particulate phases. Concentration differences between unfiltered and filtered samples indicate that particulate DNT accounted for up to 41% of the mass recovered in effluent samples. Proportionally, more particulate than dissolved DNT was recovered in effluent solutions from columns with larger grain sizes, while total concentrations of DNT in effluent were inversely related to grain size. Of the total DNT mass applied to the uppermost layer of the column, <3% was recovered in the effluent with the bulk remaining in the top 2 cm of the column. Our results suggest there is some potential for subsurface migration of ER particles and that most of the particles will be retained over relatively short transport distances.
Collapse
Affiliation(s)
- Beth Lavoie
- Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive, Knoxville, TN 37996 USA
| | - Melanie A. Mayes
- Environmental Sciences Division, Subsurface Science Group, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038 USA
| | - Larry D. McKay
- Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive, Knoxville, TN 37996 USA
| |
Collapse
|
43
|
Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.02.041] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
López ML, Bengoechea C, De La Fuente J, Ruiz M, Guerrero A. Influence of the presence of monoglyceride on the interfacial properties of wheat gluten. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1688-1694. [PMID: 20564444 DOI: 10.1002/jsfa.4003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The physical stability of several food systems depends strongly on their interfacial properties, which may be modified by adding proteins and low-molecular-weight surfactants to their formulation. This study deals with the possibility of using wheat gluten to alter the surface and interfacial properties of an aqueous system, considering the effects of protein concentration, pH and the presence of monostearin. RESULTS It was generally found that the surface tension decreased as the protein concentration increased, reaching a minimum value at 0.5 g kg(-1). The influence of protein concentration on surface tension was much greater than the effect of pH owing to the low ionic character of wheat gluten protein. At acidic and alkaline pH values the interfacial viscosity of the protein system underwent a significant increase with time. The addition of monostearin either promoted the displacement of protein molecules at the interface or generated an interfacial mixed film with surface tension values lower than those of both single components, depending on the pH. CONCLUSION The results obtained indicate that gluten can contribute to the stabilisation of air/water and oil/water interfaces in some food systems (emulsions, foams, etc.).
Collapse
Affiliation(s)
- M Luisa López
- Ingeniería Química, Universidad de Sevilla, P. García González 1, Seville, Spain
| | | | | | | | | |
Collapse
|
45
|
Perez AA, Carrara CR, Sánchez CC, Santiago LG, Rodríguez Patino JM. Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocoll 2009. [DOI: 10.1016/j.foodhyd.2008.08.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
|
47
|
Lourenzoni MR, Namba AM, Caseli L, Degrève L, Zaniquelli MED. Study of the Interaction of Human Defensins with Cell Membrane Models: Relationships between Structure and Biological Activity. J Phys Chem B 2007; 111:11318-29. [PMID: 17784741 DOI: 10.1021/jp067127g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HNP-1, HNP-2, and HNP-3 defensins are human antimicrobial peptides produced in response to microbial invasion. Their properties are distinct, with a more potent action for HNP-3. In this study, the relationship between their structural dissimilarities and their different microbial actions was evaluated by molecular dynamics simulation. Structural determinants related to their intra- and intermolecular interactions were defined for each HNP using a simplified membrane model consisting of a water/n-hexane interface. The hydrophobic portion of the HNPs promotes their diffusion to the interface with a concomitant, slight change in the structure induced by the intermolecular electrostatic interactions between the HPN molecules and the interface. As a consequence, different orientations are probably adopted by the HNPs at the interface, which may explain their different actions. The interaction of HNP-1 and HNP-2 with the surfaces was also studied using Langmuir monolayers as a biomimetic system. It was found that peptides adsorb rapidly at n-hexane/water interfaces as well as at phospholipid Langmuir monolayers but not at the air/liquid interface. This reveals that the presence of an organic phase is required for the exposure of the hydrophobic groups of the peptides. In addition, adsorption kinetics and surface pressure-area isotherms for Langmuir monolayers suggested that the lipid-peptide interaction is strongly influenced by the monolayer electrical charge and packing, depending also on the HPN structure. This study supports a model in which defensins, acting in a dimeric form, are able to disrupt membranes. The model also shows that the individual structures of the HNPs are responsible for their different actions on microbes.
Collapse
Affiliation(s)
- Marcos R Lourenzoni
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto-S. P., Brazil.
| | | | | | | | | |
Collapse
|
48
|
Juárez J, Galaz JG, Machi L, Burboa M, Gutiérrez-Millán LE, Goycoolea FM, Valdez MA. Interfacial Behavior of N-Nitrosodiethylamine/Bovine Serum Albumin Complexes at the Air−Water and the Chloroform−Water Interfaces by Axisymmetric Drop Tensiometry. J Phys Chem B 2007; 111:2727-35. [PMID: 17315914 DOI: 10.1021/jp066061m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.
Collapse
Affiliation(s)
- J Juárez
- Departamento de Investigación en Polímeros y Materiales, Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo Sonora, México
| | | | | | | | | | | | | |
Collapse
|
49
|
Yoshikawa C, Goto A, Ishizuka N, Nakanishi K, Kishida A, Tsujii Y, Fukuda T. Size-Exclusion Effect and Protein Repellency of Concentrated Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/masy.200750220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Yoshikawa C, Goto A, Tsujii Y, Ishizuka N, Nakanishi K, Fukuda T. Surface interaction of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes with proteins. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.22224] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|