1
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
2
|
Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions. Int J Mol Sci 2021; 22:ijms222011113. [PMID: 34681772 PMCID: PMC8540541 DOI: 10.3390/ijms222011113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The fluorescent dye BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) is widely used in various fields of life sciences, however, the photophysical properties of BADAN are not fully understood. The study of the spectral properties of BADAN attached to a number of mutant forms of GGBP, as well as changes in its spectral characteristics during structural changes in proteins, allowed to shed light on the photophysical properties of BADAN. It was shown that spectral properties of BADAN are determined by at least one non-fluorescent and two fluorescent isomers with overlapping absorbing bands. It was found that BADAN fluorescence is determined by the unsolvated "PICT" (planar intramolecular charge transfer state) and solvated "TICT" (twisted intramolecular charge transfer state) excited states. While "TICT" state can be formed both as a result of the "PICT" state solvation and as a result of light absorption by the solvated ground state of the dye. BADAN fluorescence linked to GGBP/H152C apoform is quenched by Trp 183, but this effect is inhibited by glucose intercalation. New details of the changes in the spectral characteristics of BADAN during the unfolding of the protein apo and holoforms have been obtained.
Collapse
|
3
|
Regmi A, Boyd EF. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus. BMC Microbiol 2019; 19:112. [PMID: 31133029 PMCID: PMC6537148 DOI: 10.1186/s12866-019-1487-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Utilizing unique carbohydrates or utilizing them more efficiently help bacteria expand and colonize new niches. Horizontal gene transfer (HGT) of catabolic systems is a powerful mechanism by which bacteria can acquire new phenotypic traits that can increase survival and fitness in different niches. In this work, we examined carbon catabolism diversity among Vibrio parahaemolyticus, a marine species that is also an important human and fish pathogen. RESULTS Phenotypic differences in carbon utilization between Vibrio parahaemolyticus strains lead us to examine genotypic differences in this species and the family Vibrionaceae in general. Bioinformatics analysis showed that the ability to utilize D-galactose was present in all V. parahaemolyticus but at least two distinct transporters were present; a major facilitator superfamily (MFS) transporter and a sodium/galactose transporter (SGLT). Growth and genetic analyses demonstrated that SGLT was a more efficient transporter of D-galactose and was the predominant type among strains. Phylogenetic analysis showed that D-galactose gene galM was acquired multiples times within the family Vibrionaceae and was transferred between distantly related species. The ability to utilize D-gluconate was universal within the species. Deletion of eda (VP0065), which encodes aldolase, a key enzyme in the Entner-Doudoroff (ED) pathway, reached a similar biomass to wild type when grown on D-gluconate as a sole carbon source. Two additional eda genes were identified, VPA1708 (eda2) associated with a D-glucuronate cluster and VPA0083 (eda3) that clustered with an oligogalacturonide (OGA) metabolism cluster. EDA2 and EDA3 were variably distributed among the species. A metabolic island was identified that contained citrate fermentation, L-rhamnose and OGA metabolism clusters as well as a CRISPR-Cas system. Phylogenetic analysis showed that CitF and RhaA had a limited distribution among V. parahaemolyticus, and RhaA was acquired at least three times. Within V. parahaemolyticus, two different regions contained the gene for L-arabinose catabolism and most strains had the ability to catabolism this sugar. CONCLUSION Our data suggest that horizontal transfer of metabolic systems among Vibrionaceae is an important source of metabolic diversity. This work identified four EDA homologues suggesting that the ED pathway plays a significant role in metabolism. We describe previously uncharacterized metabolism islands that were hotspots for the gain and loss of functional modules likely mediated by transposons.
Collapse
Affiliation(s)
- Abish Regmi
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA
| | - Ethna Fidelma Boyd
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Selection and Plasmid Transfer Underlie Adaptive Mutation in Escherichia coli. Genetics 2018; 210:821-841. [PMID: 30194073 DOI: 10.1534/genetics.118.301347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
In the Cairns-Foster adaptive mutation system, a +1 lac frameshift mutant of Escherichia coli is plated on lactose medium, where the nondividing population gives rise to Lac+ revertant colonies during a week under selection. Reversion requires the mutant lac allele to be located on a conjugative F'lac plasmid that also encodes the error-prone DNA polymerase, DinB. Rare plated cells with multiple copies of the mutant F'lac plasmid initiate the clones that develop into revertants under selection. These initiator cells arise before plating, and their extra lac copies allow them to divide on lactose and produce identical F'lac-bearing daughter cells that can mate with each other. DNA breaks can form during plasmid transfer and their recombinational repair can initiate rolling-circle replication of the recipient plasmid. This replication is mutagenic because the amplified plasmid encodes the error-prone DinB polymerase. A new model proposes that Lac+ revertants arise during mutagenic over-replication of the F'lac plasmid under selection. This mutagenesis is focused on the plasmid because the cell chromosome replicates very little. The outer membrane protein OmpA is essential for reversion under selection. OmpA helps cells conserve energy and may stabilize the long-term mating pairs that produce revertants.
Collapse
|
5
|
Fonin AV, Golikova AD, Zvereva IA, D'Auria S, Staiano M, Uversky VN, Kuznetsova IM, Turoverov KK. Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. Int J Mol Sci 2017; 18:E2008. [PMID: 28925982 PMCID: PMC5618657 DOI: 10.3390/ijms18092008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Alexandra D Golikova
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Irina A Zvereva
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Sabato D'Auria
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Maria Staiano
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, 195251 St. Petersburg, Russia.
| |
Collapse
|
6
|
Chappell TC, Nair NU. Co-utilization of hexoses by a microconsortium of sugar-specific E. coli strains. Biotechnol Bioeng 2017; 114:2309-2318. [PMID: 28600864 DOI: 10.1002/bit.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/08/2017] [Accepted: 06/07/2017] [Indexed: 11/12/2022]
Abstract
Escherichia coli is an important commercial species used for production of biofuels, biopolymers, organic acids, sugar alcohols, and natural compounds. Processed biomass and agroindustrial byproducts serve as low-cost nutrient sources and contain a variety of hexoses available for bioconversion. However, metabolism of hexose mixtures by E. coli is inefficient due to carbon catabolite repression (CCR), where the transport and catabolic activity of one or more carbon sources is repressed and/or inhibited by the transport and catabolism of another carbon source. In this work, we developed a microconsortium of different E. coli strains, each engineered to preferentially catabolize a different hexose-glucose, galactose, or mannose. We modified the specificity and preference of carbon source using a combination of rational strain design and adaptive evolution. The modifications ultimately resulted in strains that preferentially catabolized their specified sugar. Finally, comparative analysis in galactose- and mannose-rich sugar mixtures revealed that the consortium grew faster and to higher cell densities compared to the wild-type strain. Biotechnol. Bioeng. 2017;114: 2309-2318. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
7
|
Stepanenko OV, Fonin AV, Stepanenko OV, Morozova KS, Verkhusha VV, Kuznetsova IM, Turoverov KK, Staiano M, D’Auria S. New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the d-Galactose/d-Glucose-Binding Protein from E. coli. J Phys Chem B 2011; 115:9022-32. [DOI: 10.1021/jp204555h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Alexander V. Fonin
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Kateryna S. Morozova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Irina M. Kuznetsova
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| | - Sabato D’Auria
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| |
Collapse
|
8
|
Fukasawa T, Sakurai H, Nogi Y, Baruffini E. Galactose transporters discriminate steric anomers at the cell surface in yeast. FEMS Yeast Res 2009; 9:723-31. [DOI: 10.1111/j.1567-1364.2009.00517.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 2009; 77:3117-26. [PMID: 19380470 DOI: 10.1128/iai.00093-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a widespread zoonotic enteropathogen that causes gastroenteritis and fatal typhoidal disease in mammals. During systemic infection of mice, Salmonella enterica serovar Typhimurium resides and replicates in macrophages within the "Salmonella-containing vacuole" (SCV). It is surprising that the substrates and metabolic pathways necessary for growth of S. Typhimurium within the SCV of macrophages have not been identified yet. To determine whether S. Typhimurium utilized sugars within the SCV, we constructed a series of S. Typhimurium mutants that lacked genes involved in sugar transport and catabolism and tested them for replication in mice and macrophages. These mutants included a mutant with a mutation in the pfkAB-encoded phosphofructokinase, which catalyzes a key committing step in glycolysis. We discovered that a pfkAB mutant is severely attenuated for replication and survival within RAW 264.7 macrophages. We also show that disruption of the phosphoenolpyruvate:carbohydrate phosphotransferase system by deletion of the ptsHI and crr genes reduces S. Typhimurium replication within RAW 264.7 macrophages. We discovered that mutants unable to catabolize glucose due to deletion of ptsHI, crr, and glk or deletion of ptsG, manXYZ, and glk showed reduced replication within RAW 264.7 macrophages. This study proves that S. Typhimurium requires glycolysis for infection of mice and macrophages and that transport of glucose is required for replication within macrophages.
Collapse
|
10
|
Sooriyaarachchi S, Ubhayasekera W, Boos W, Mowbray SL. X-ray structure of glucose/galactose receptor from Salmonella typhimurium in complex with the physiological ligand, (2R)-glyceryl-β-d-galactopyranoside. FEBS J 2009; 276:2116-24. [DOI: 10.1111/j.1742-4658.2009.06945.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
The gal regulon of Escherichia coli contains genes involved in galactose transport and metabolism. Transcription of the gal regulon genes is regulated in different ways by two iso-regulatory proteins, Gal repressor (GalR) and Gal isorepressor (GalS), which recognize the same binding sites in the absence of d-galactose. DNA binding by both GalR and GalS is inhibited in the presence of d-galactose. Many of the gal regulon genes are activated in the presence of the adenosine cyclic-3',5'-monophosphate (cAMP)-cAMP receptor protein (CRP) complex. We studied transcriptional regulation of the gal regulon promoters simultaneously in a purified system and attempted to integrate the two small molecule signals, d-galactose and cAMP, that modulate the isoregulators and CRP respectively, at each promoter, using Boolean logic. Results show that similarly organized promoters can have different input functions. We also found that in some cases the activity of the promoter and the cognate gene can be described by different logic gates. We combined the transcriptional network of the galactose regulon, obtained from our experiments, with literature data to construct an integrated map of the galactose network. Structural analysis of the network shows that at the interface of the genetic and metabolic network, feedback loops are by far the most common motif.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
13
|
Abstract
A variety of sodium-substrate cotransport systems are known in bacteria. Sodium enters the cell down an electrochemical concentration gradient. There is obligatory coupling between the entry of the ion and the entry of substrate with a stoichiometry (in the cases studied) of 1:1. Thus, the downhill movement of sodium ion into the cell leads to the accumulation of substrate within the cell. The melibiose carrier of Escherichia coli is perhaps the most carefully studied of the sodium cotransport systems in bacteria. This carrier is of special interest because it can also use protons or lithium ions for cotransport. Other sodium cotransport carriers that have been studied recently are for proline, glutamate, serine-threonine, citrate and branched chain amino acids.
Collapse
Affiliation(s)
- T H Wilson
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
14
|
Büttner M, Sauer N. Monosaccharide transporters in plants: structure, function and physiology. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:263-74. [PMID: 10748259 DOI: 10.1016/s0005-2736(00)00143-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Monosaccharide transport across the plant plasma membrane plays an important role both in lower and higher plants. Algae can switch between phototrophic and heterotrophic growth and utilize organic compounds, such as monosaccharides as additional or sole carbon sources. Higher plants represent complex mosaics of phototrophic and heterotrophic cells and tissues and depend on the activity of numerous transporters for the correct partitioning of assimilated carbon between their different organs. The cloning of monosaccharide transporter genes and cDNAs identified closely related integral membrane proteins with 12 transmembrane helices exhibiting significant homology to monosaccharide transporters from yeast, bacteria and mammals. Structural analyses performed with several members of this transporter superfamily identified protein domains or even specific amino acid residues putatively involved in substrate binding and specificity. Expression of plant monosaccharide transporter cDNAs in yeast cells and frog oocytes allowed the characterization of substrate specificities and kinetic parameters. Immunohistochemical studies, in situ hybridization analyses and studies performed with transgenic plants expressing reporter genes under the control of promoters from specific monosaccharide transporter genes allowed the localization of the transport proteins or revealed the sites of gene expression. Higher plants possess large families of monosaccharide transporter genes and each of the encoded proteins seems to have a specific function often confined to a limited number of cells and regulated both developmentally and by environmental stimuli.
Collapse
Affiliation(s)
- M Büttner
- Lehrstuhl Botanik II, Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | | |
Collapse
|
15
|
Bettenbrock K, Siebers U, Ehrenreich P, Alpert CA. Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants. J Bacteriol 1999; 181:225-30. [PMID: 9864334 PMCID: PMC103553 DOI: 10.1128/jb.181.1.225-230.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1998] [Accepted: 10/26/1998] [Indexed: 11/20/2022] Open
Abstract
Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different.
Collapse
Affiliation(s)
- K Bettenbrock
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
16
|
Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 1998; 30:487-98. [PMID: 9822815 DOI: 10.1046/j.1365-2958.1998.01053.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The main mechanism causing catabolite repression in Escherichia coli is the dephosphorylation of enzyme IIAGlc, one of the enzymes of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS is involved in the uptake of a large number of carbohydrates that are phosphorylated during transport, phosphoenolpyruvate (PEP) being the phosphoryl donor. Dephosphorylation of enzyme IIAGlc causes inhibition of uptake of a number of non-PTS carbon sources, a process called inducer exclusion. In this paper, we show that dephosphorylation of enzyme IIAGlc is not only caused by the transport of PTS carbohydrates, as has always been thought, and that an additional mechanism causing dephosphorylation exists. Direct monitoring of the phosphorylation state of enzyme IIAGlc also showed that many carbohydrates that are not transported by the PTS caused dephosphorylation during growth. In the case of glucose 6-phosphate, it was shown that transport and the first metabolic step are not involved in the dephosphorylation of enzyme IIAGlc, but that later steps in the glycolysis are essential. Evidence is provided that the [PEP]-[pyruvate] ratio, the driving force for the phosphorylation of the PTS proteins, determines the phosphorylation state of enzyme IIAGlc. The implications of these new findings for our view on catabolite repression and inducer exclusion are discussed.
Collapse
Affiliation(s)
- B M Hogema
- E.C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bettenbrock K, Alpert CA. The gal genes for the Leloir pathway of Lactobacillus casei 64H. Appl Environ Microbiol 1998; 64:2013-9. [PMID: 9603808 PMCID: PMC106272 DOI: 10.1128/aem.64.6.2013-2019.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gal genes from the chromosome of Lactobacillus casei 64H were cloned by complementation of the galK2 mutation of Escherichia coli HB101. The pUC19 derivative pKBL1 in one complementation-positive clone contained a 5.8-kb DNA HindIII fragment. Detailed studies with other E. coli K-12 strains indicated that plasmid pKBL1 contains the genes coding for a galactokinase (GalK), a galactose 1-phosphate-uridyltransferase (GalT), and a UDP-galactose 4-epimerase (GalE). In vitro assays demonstrated that the three enzymatic activities are expressed from pKBL1. Sequence analysis revealed that pKBL1 contained two additional genes, one coding for a repressor protein of the LacI-GalR-family and the other coding for an aldose 1-epimerase (mutarotase). The gene order of the L. casei gal operon is galKETRM. Because parts of the gene for the mutarotase as well as the promoter region upstream of galK were not cloned on pKBL1, the regions flanking the HindIII fragment of pKBL1 were amplified by inverse PCR. Northern blot analysis showed that the gal genes constitute an operon that is transcribed from two promoters. The galKp promoter is inducible by galactose in the medium, while galEp constitutes a semiconstitutive promoter located in galK.
Collapse
Affiliation(s)
- K Bettenbrock
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | | |
Collapse
|
18
|
Affiliation(s)
- L P Macfadyen
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
19
|
Sarker RI, Ogawa W, Tsuda M, Tanaka S, Tsuchiya T. Properties of a Na+/galactose (glucose) symport system in Vibrio parahaemolyticus. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1279:149-56. [PMID: 8603081 DOI: 10.1016/0005-2736(95)00252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated galactose transport in a mutant strain of Vibrio parahaemolyticus that lacks a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system) and a trehalose-PTS. Cells of the V. parahaemolyticus actively transported D-galactose and Na+ greatly stimulated the transport. Maximum stimulation of D-galactose transport activity was observed at 10mM NaCl, and Na+ could be replaced with Li+. Addition of galactose to the cell suspension under anaerobic conditions elicited Na+ uptake. Therefore, we conclude that this organism accomplishes galactose transport by a Na+/solute symport mechanism. Judging from inhibition results, D-galactose, D-glucose and to a lesser extent alpha-D-fucose are substrates of this transport system. The Na+/galactose symport system exhibited a high affinity for D-galactose (Km: 40 microM) and showed a relatively lower affinity for D-glucose (Km: 420 microM), but the maximum velocities for galactose and glucose transport were almost same (about 52 nmol/min per mg protein). The Na+/D-galactose symport system was induced by either D-galactose or alpha-D-fucose, and repressed by D-glucose.
Collapse
Affiliation(s)
- R I Sarker
- Department of Microbiology, Okayama University, Japan
| | | | | | | | | |
Collapse
|
20
|
Weickert MJ, Adhya S. Control of transcription of gal repressor and isorepressor genes in Escherichia coli. J Bacteriol 1993; 175:251-8. [PMID: 8416900 PMCID: PMC196120 DOI: 10.1128/jb.175.1.251-258.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two regulatory proteins, Gal repressor and isorepressor, control the expression of the gal and mgl operons in Escherichia coli. The transcription start sites for galR and galS, the genes for the repressor and isorepressor, were determined by primer extension of in vivo transcripts. Study of the promoter-lacZ gene fusions introduced into the chromosome indicated that galS expression was elevated in cells in which the normal galS gene was interrupted, but not in cells in which the galR gene was deleted. When both genes were disrupted, galS expression was further elevated. Expression from the galS promoter was stimulated by the addition of D-fucose, repressed by glucose, and dependent on cyclic AMP receptor protein (CRP). Expression of a similar gene fusion of the galR promoter to lacZ was unregulated. Both galR and galS genes contain two potential operator sites (OE and OI) and a CRP-binding site. The arrangement of OE, OI, and the CRP-binding site in the galS gene is analogous to the arrangement in the gal and mgl promoters, but the arrangement in galR is atypical. The increased concentration of the isorepressor when inducer is present may facilitate early shutoff of the isorepressor-regulated genes of the gal regulon when inducer (substrate) concentration falls.
Collapse
Affiliation(s)
- M J Weickert
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
21
|
Abstract
Lactobacillus plantarum ATCC 8014 grew on melibiose at 30 C, but not at 37 C, although it grew on galactose or lactose at either temperature. ATCC 8014 grown on lactose at 30 or 37 C accumulated melibiose slowly, suggesting that melibiose may partly be transported by a lactose transport system. A lactose-negative mutant, NTG 21, derived from ATCC 8014 was isolated. The mutant was totally deficient in lactose transport, but retained normal melibiose transport activity. In NTG 21, the melibiose transport activity was induced by melibiose at 30 C, but not at 37 C. The transport activity itself was found to be stable for at least 3 hr at 37 C, suggesting that the induction process in the cytoplasm rather than the inducer entrance is temperature-sensitive in the organism. The organism also failed to form alpha-galactosidase at 37 C when grown on melibiose. The enzyme synthesis, however, was induced by galactose in NTG 21 (and also by lactose in ATCC 8014) even at 37 C, indicating that the induction of the enzyme is essentially not temperature-sensitive. In NTG 21, melibiose transport system and alpha-galactosidase were induced by galactose, melibiose and o-nitrophenyl-alpha-D-galactopyranoside when the strain was grown at 30 C. Raffinose induced melibiose transport system only a little, while it was a good inducer for alpha-galactosidase. Inhibition studies revealed that galactose may be a weak substrate of the melibiose transport system; no inhibition was demonstrated with lactose and raffinose.
Collapse
Affiliation(s)
- C Tamura
- Department of Microbiology, Okayama University Medical School, Japan
| | | |
Collapse
|
22
|
Abstract
Inducible overexpression of the Escherichia coli gal operon in the absence of the Gal repressor is known as ultrainduction. The requirement of induction can be eliminated by mutation of a new locus, galS, resulting in constitutive and ultrainduced levels of gal expression. Characterization of the galS gene and its product has revealed an isorepressor of the gal regulon. The Gal isorepressor is a protein of 346 amino acid residues whose amino acid sequence and cellular function, as described here, are very similar to that of Gal repressor, encoded by the galR gene. Transcription from different promoters of the gal regulon, galP1, galP2 and mglP, was examined by primer extension and reverse transcription of mRNA isolated from strains containing mutations in galR and/or galS. In strains containing a galS mutation, overexpression of gal message occurred only in the presence of inducer, while mgl message was constitutively derepressed. The galS mutation also constitutively derepressed an mglA::lacZ fusion, demonstrating that GalS is the mgl repressor. A potential operator site in the mgl promoter was identified at a position analogous to OE in gal. Thus, the gal and mgl operons constitute a regulon. Crosstalk, temporal action, induction spectrum or heteromer formation between repressor and isorepressor may help co-ordinate high affinity galactose transport and galactose utilization.
Collapse
Affiliation(s)
- M J Weickert
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
23
|
Chapter 6 Mechanisms of active and passive transport in a family of homologous sugar transporters found in both prokaryotes and eukaryotes. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Sugar—Cation Symport Systems in Bacteria. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0074-7696(08)62676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
25
|
Cairns M, McDonald T, Horne P, Henderson P, Baldwin S. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92958-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Kopetzki E, Schumacher G, Buckel P. Control of formation of active soluble or inactive insoluble baker's yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:149-55. [PMID: 2659969 DOI: 10.1007/bf00332244] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using standard growth conditions (LB medium, 37 degrees C, induction with 5 mM IPTG) yeast alpha-glucosidase PI expressed under the control of the regulated tac-hybrid promoter results in the synthesis of insoluble aggregated alpha-glucosidase granules in Escherichia coli. Under these conditions active soluble alpha-glucosidase amounts to less than 1% of the heterologously produced protein. However, the amount of soluble active alpha-glucosidase was dramatically increased when the strong tac-hybrid promoter was to a limited extent induced. This was achieved at concentrations of 0.01 mM IPTG or of 1% lactose or lower in a lactose-permease deficient host strain containing the lacIq repressor gene on an R-plasmid. The formation of active soluble alpha-glucosidase was almost 100% when E. coli cells induced in this manner were cultivated under conditions that reduced growth rate, i.e. at decreased temperature, extreme pH values or in minimal and complete media supplemented with different carbon sources.
Collapse
Affiliation(s)
- E Kopetzki
- Boehringer Mannheim GmbH, Department of Genetics, Penzberg, Federal Republic of Germany
| | | | | |
Collapse
|
27
|
Müller N, Vogel M, Gottstein B, Scholle A, Seebeck T. Plasmid vector for overproduction and export of recombinant protein in Escherichia coli: efficient one-step purification of a recombinant antigen from Echinococcus multilocularis (Cestoda). Gene 1989; 75:329-34. [PMID: 2523840 DOI: 10.1016/0378-1119(89)90279-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe the use of the Escherichia coli plasmid vector, pVB2, for high-level expression and export of recombinant protein. The pBR322 derivative pVB2 harbors the mglB gene, which codes for the galactose-binding protein (GBP) of E. coli. GBP is exported into the periplasmic space of the bacterial cell. Gene mglB contains an EcoRI restriction site close to its 3' end which allows simple in-frame insertion of EcoRI fragments obtained from recombinant lambda gt11 phages. The pVB2 vector was used to express an antigen from Echinococcus multilocularis. The recombinant protein amounted to over 50% of total cellular protein and could be efficiently isolated from the periplasm by osmotic shock. The application of the purified antigen in an ELISA enabled a clear and specific detection of anti-Ec. multilocularis antibodies in human patients' sera, which had been immunosorbed with a periplasmic extract (containing wt GBP) before investigation. These data show the general usefulness of pVB2 as an expression vector for producing in E. coli diagnostically relevant antigens from any infective organism.
Collapse
Affiliation(s)
- N Müller
- Institute of General Microbiology, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Wilson DM, Wilson TH. Cation specificity for sugar substrates of the melibiose carrier in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 904:191-200. [PMID: 3311166 DOI: 10.1016/0005-2736(87)90368-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A study has been made of the sugar substrate specificities and the cation specificities of the melibiose transport system of Escherichia coli. The following beta-galactosides were found to be transported: lactose, L-arabinose-beta-D-galactoside, D-fructose-beta-D-galactoside, o- and p-nitrophenyl-beta-D-galactosides. These beta-galactosides were cotransported with Na+ but not with H+. The alpha-galactosides raffinose, melibiose and p-nitrophenyl-alpha-galactoside were transported with either H+ or Na+. Of the monosaccharides tested D-galactose could use either Na+ or H+ for cotransport whereas D-fucose, L-arabinose and D-galactosamine could use only Na+. The sugar specificity requirements for H+ cotransport are therefore more exacting than those for Na+ cotransport.
Collapse
Affiliation(s)
- D M Wilson
- Department of Physiology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
29
|
Gray JS, Lindner WA, Brand JM, Mildenhall JP. Lactose and melibiose metabolism in Erwinia chrysanthemi. J Bacteriol 1986; 168:886-91. [PMID: 3023289 PMCID: PMC213567 DOI: 10.1128/jb.168.2.886-891.1986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A Lac+ mutant of Erwinia chrysanthemi was isolated from the Lac- wild type on lactose agar. beta-Galactosidase was expressed independently of lactose transport in both the mutant and the wild type, and neither strain expressed thiogalactoside transacetylase. Lactose transport and alpha-galactosidase, constitutive in the Lac+ strain, were coordinately induced in the Lac- strain by melibiose and raffinose but not by isopropyl-beta-D-thiogalactopyranoside or thiomethyl-beta-D-galactopyranoside. Melibiose was a strong inhibitor of both the melibiose- and the raffinose-induced lactose permeases, whereas raffinose was a strong inhibitor of only the raffinose-induced lactose permease.
Collapse
|
30
|
Hommes R, Loenen W, Neijssel O, Postma P. Galactose metabolism ingalmutants ofSalmonella typhimuriumandEscherichia coli. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01693.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Henderson PJ, Macpherson AJ. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli. Methods Enzymol 1986; 125:387-429. [PMID: 3520228 DOI: 10.1016/s0076-6879(86)25033-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Giffard PM, Rowland GC, Kroll RG, Stewart LM, Bakker EP, Booth IR. Phenotypic properties of a unique rpoA mutation (phs) of Escherichia coli. J Bacteriol 1985; 164:904-10. [PMID: 2865250 PMCID: PMC214337 DOI: 10.1128/jb.164.2.904-910.1985] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phs mutation of Escherichia coli has been suggested to affect the Na+/H+ antiport (D. Zilberstein, E. Padan, and S. Schuldiner, FEBS Lett. 168:327-330, 1980). We have recently shown that the mutation affects the rpoA gene and thus affects transcription. The extent of the pleiotropy of the phs mutation was investigated. In addition to the previously reported growth defect on L-glutamate and melibiose, the mutation also affects at least two other metabolic systems. The transport and metabolism of arabinose is impaired and the transport of sulfate is reduced. The extent to which the effects of the phs mutation on metabolism are due to a defect in the Na+/H+ antiport was investigated, and no causal role for this transport system in the metabolic defects was found.
Collapse
|
33
|
|
34
|
Müller N, Heine HG, Boos W. Characterization of the Salmonella typhimurium mgl operon and its gene products. J Bacteriol 1985; 163:37-45. [PMID: 3924896 PMCID: PMC219077 DOI: 10.1128/jb.163.1.37-45.1985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Salmonella typhimurium and Escherichia coli the high-affinity galactose transport system, which contains a periplasmic galactose-binding protein as an essential component, is encoded by the mgl genes. The entire mgl region of S. typhimurium is contained on a 6.3-kilobase EcoRI restriction fragment, which has been cloned into plasmid vectors. We determined the extent of the mgl region on this fragment by Tn5 mutagenesis, examination of lacZ fusions to mgl genes, and subcloning smaller restriction fragments. Polyacrylamide gel electrophoresis of protein preparations derived from strains carrying different plasmids was used to identify the mgl gene products. We conclude that the mgl operon consists of four genes that form a single transcription unit: mglB, mglA, mglE, and mglC. The mglB gene codes for galactose-binding protein (33,000 daltons), mglA codes for a membrane-bound protein of 51,000 daltons, and mglC codes for a 29,000-dalton membrane protein. The mglE product was less well characterized. Its existence was inferred from a mglE-lacZ protein fusion located between mglA and mglC. In addition, the coupled transcription-translation in vitro system indicated that mglE codes for a 21,000-dalton protein.
Collapse
|
35
|
Henderson PJ, Kagawa Y, Hirata H. Reconstitution of the GalP galactose transport activity of Escherichia coli into liposomes made from soybean phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:204-9. [PMID: 6347256 DOI: 10.1016/0005-2736(83)90204-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Galactose transport activity from Escherichia coli was solubilized with octyl glucoside, and reconstituted into liposomes made from soybean or E. coli lipid. Galactose counterflow in the proteoliposomes was inhibited by glucose, talose, 2-deoxygalactose and 6-deoxygalactose, confirming that it was due to GalP and not one of the other E. coli galactose transport systems.
Collapse
|
36
|
|
37
|
Horne P, Henderson PJ. The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli. Biochem J 1983; 210:699-705. [PMID: 6307268 PMCID: PMC1154280 DOI: 10.1042/bj2100699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Subcellular membrane vesicles were prepared from a strain of Escherichia coli constitutive for the GalP galactose-transport system. 2. The addition of substrates of the GalP transport system to vesicle suspensions promoted alkaline pH changes, which provided direct evidence for the coupling of sugar and proton transport. 3. Respiration-energized galactose transport was progressively inhibited at pH values above 6.0, and was abolished by agents that render the membrane permeable to protons. 4. The combined effects of valinomycin, the nigericin-like compound A217 and pH on galactose transport suggested that both delta pH and delta psi components of the protonmotive force contributed to energization of galactose transport. 5. These results substantiate the conclusion that the GalP transport system operates by a chemiosmotic mechanism.
Collapse
|
38
|
Harayama S, Bollinger J, Iino T, Hazelbauer GL. Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning. J Bacteriol 1983; 153:408-15. [PMID: 6294056 PMCID: PMC217387 DOI: 10.1128/jb.153.1.408-415.1983] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We used transposon insertion mutagenesis, molecular cloning, and a novel procedure for in vitro construction of polar and nonpolar insertion mutations to characterize the genetic organization and gene products of the beta-methylgalactoside (Mgl) transport system, which utilizes the galactose-binding protein. The data indicate that the mgl operon contained three genes, which were transcribed in the order mglB, mglA, and mglC. The first gene coded for the 31,000 Mr galactose-binding protein, which was synthesized as a 3,000-dalton-larger precursor form. The mglA product was a 50,000 Mr protein which was tightly associated with the membrane, and the mglC product was a 38,000 Mr protein which was apparently loosely associated with the membrane and was probably located on the internal face of the cytoplasmic membrane. Identification of gene products was facilitated by in vitro insertion of a fragment of Tn5 containing the gene conferring kanamycin resistance into a restriction site in the operon. The fragment proved to have a polar effect on the expression of promoter-distal genes only when inserted in one of the two possible orientations. The three identified gene products were necessary and apparently sufficient for transport activity, but only the binding protein was required for chemotaxis towards galactose. The transport system appeared to contain the minimum number of components for a binding protein-related system: a periplasmic recognition component, a transmembrane protein, and a peripheral membrane protein that may be involved in energy linkage.
Collapse
|
39
|
Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)45414-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Daruwalla KR, Paxton AT, Henderson PJ. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 1981; 200:611-27. [PMID: 6282256 PMCID: PMC1163584 DOI: 10.1042/bj2000611] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Strains of Escherichia coli were obtained containing either the AraE or the AraF transport system for arabinose. AraE+,AraF- strains effected energized accumulation and displayed an arabinose-evoked alkaline pH change indicative of arabinose-H+ symport. In contrast, AraE-,AraF+ strains accumulated arabinose but did not display H+ symport. 2. The ability of different sugars and their derivatives to elicit sugar-H+ symport in AraE+ strains was examined. Only L-arabinose and D-fucose were good substrates, and arabinose was the only inducer. 3. Membrane vesicles prepared from an AraE+,AraF+ strain accumulated the sugar, energized most efficiently by the respiratory substrates ascorbate + phenazine methosulphate. Addition of arabinose or fucose to an anaerobic suspension of membrane vesicles caused an alkaline pH change indicative or sugar-H+ symport on the membrane-bound transport system. 4. Kinetic studies and the effects of arsenate and uncoupling agents in intact cells and membrane vesicles gave further evidence that AraE is a low-affinity membrane-bound sugar-H+ symport system and that AraF is a binding-protein-dependent high-affinity system that does not require a transmembrane protonmotive force for energization. 5. The interpretation of these results is that arabinose transport into E. coli is energized by an electrochemical gradient of protons (AraE system) or by phosphate bond energy (AraF system). 6. In batch cultures the rates of growth and carbon cell yields on arabinose were lower in AraE-,AraF+ strains than in AraE+,AraF- or AraE+,AraF+ strains. The AraF system was more susceptible to catabolite repression than was the AraE system. 7. The properties of the two transport systems for arabinose are compared with those of the genetically and biochemically distinct transport systems for galactose, GalP and MglP. It appears that AraE is analogous to GalP, and AraF to MglP.
Collapse
|
41
|
Postma PW, Schuitema A, Kwa C. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:448-53. [PMID: 6267419 DOI: 10.1007/bf00428734] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have studied the regulation of the synthesis and activity of a major galactose transport system, that of methyl beta-galactoside (MglP), in mutants of Salmonella typhimurium. Two classes of mutation that result in a (partially) defective phosphoenolpyruvate: sugar phosphotransferase system (PTS) interfere with MglP synthesis. pts mutations, which eliminate the general proteins of the PTS Enzyme I and/or HPr and crr mutations, which result in a defective glucose-specific factor IIIGlc of the PTS, lead to a low MglP activity, as measured by methyl beta-galactoside transport. In both ptsH,I, and crr mutants the amount of galactose binding protein, one of the components of MglP, is only 5%-20% of that in wild-type cells, as measured with a specific antibody. We conclude that synthesis of MGlP is inhibited in pts and crr mutants. Once the transport system is synthesized, its transport activity is not sensitive to PTS sugars (i.e., no inducer exclusion occurs). The defect in pts and crr mutants with respect to MGlP synthesis can be relieved in two ways: by externally added cyclic adenosine 3',5-monophosphate (cAMP) or by a mutation in the cAMP binding protein. The conclusion that MglP synthesis is dependent on cAMP is supported by the finding that its synthesis is also defective in mutants that lack adenylate cyclase. pts and crr mutations do not affect growth of S. typhimurium on galactose, however, since the synthesis and activity of the other major galactose transport system, the galactose permease (GalP), is not sensitive to these mutations. If the galactose permease is eliminated by mutation, growth of pts and crr mutants on low concentrations of galactose becomes very slow due to inhibited MglP synthesis. Residual growth observed at high galactose concentrations is the result of yet another transport system with low affinity for galactose.
Collapse
|
42
|
MacPherson AJ, Jones-Mortimer MC, Henderson PJ. Identification of the AraE transport protein of Escherichia coli. Biochem J 1981; 196:269-83. [PMID: 7030324 PMCID: PMC1162991 DOI: 10.1042/bj1960269] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Two arabinose-inducible proteins are detected in membrane preparations from strains of Escherichia coli containing arabinose-H+ (or fucose-H+) transport activity; one protein has an apparent subunit relative molecular mass (Mr) of 36 000-37 000 and the other has Mr 27 000. 2. An araE deletion mutant was isolated and characterized; it has lost arabinose-H+ symport activity and the arabinose-inducible protein of Mr 36 000, but not the protein of Mr 27 000. 3. An araE+ specialized transducing phage was characterized and used to re-introduce the araE+ gene into the deletion strain, a procedure that restores both arabinose-H+ symport activity and the protein of Mr 36,000. 4. N-Ethylmaleimide inhibits arabinose transport and partially inhibits arabinose-H+ symport activity. 5. N-Ethylmaleimide modifies an arabinose-inducible protein of Mr 36 000-38 000, and arabinose protects the protein against the reagent. 6. These observations identify an arabinose-transport protein of Escherichia coli as the product of the araE+ gene. 7. The protein was recognized as a single spot staining with Coomassie Blue after two-dimensional gel electrophoresis.
Collapse
|
43
|
Gent MP, Cottam PF, Ho C. A biophysical study of protein-lipid interactions in membranes of Escherichia coli. Fluoromyristic acid as a probe. Biophys J 1981; 33:211-23. [PMID: 7013842 PMCID: PMC1327421 DOI: 10.1016/s0006-3495(81)84882-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fluorine-19 nuclear magentic resonance spectroscopy and transport assays have been used to investigate and compare the membrane properties of unsaturated fatty acid auxotrophs of two strains of Escherichia coli, K1060B5 and ML 308-225-UFA-8. A fluorinated analog of myristic acid, 8, 8-difluoromyristic acid, can be incorporated into the membrane phospholipids by substitution for oleate in the growth medium. Growth for one generation on 8, 8-difluoromyristate results in a 20% content of fluorinated fatty acid in the membranes, changes in the protein to lipid ratio, and altered transport of methyl beta-D-thiogalactopyranoside. The differences in membrane composition and transport behavior seen in oleate supplemented E. coli K1060B5 relative to ML 308-225-UFA-8 are enhanced by the incorporation of 8, 8-difluoromyristate. The phase transition behavior becomes distinctly different and some differences in lipid organization persist above the transition temperature. Concomitantly, the rate and extent of concentration of methyl beta-D-thiogalactopyranoside are reduced two-fold more in E. coli K1060B5 compared to ML 308-225-UFA-8. Such behavior suggests that these fluorinated fatty acid supplemented strains of E. coli are useful to study subtle differences in protein-lipid interactions and their effects on the function of membrane-bound enzymes.
Collapse
|
44
|
Mohn GR, Ellenberger J. Appreciation of the value of different bacterial test systems for detecting and for ranking chemical mutagens. Arch Toxicol 1980; 46:45-60. [PMID: 7235998 DOI: 10.1007/bf00361245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Lam VM, Daruwalla KR, Henderson PJ, Jones-Mortimer MC. Proton-linked D-xylose transport in Escherichia coli. J Bacteriol 1980; 143:396-402. [PMID: 6995439 PMCID: PMC294254 DOI: 10.1128/jb.143.1.396-402.1980] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The addition of xylose to energy-depleted cells of Escherichia coli elicited an alkaline pH change which failed to appear in the presence of uncoupling agents. Accumulation of [14C]xylose by energy-replete cells was also inhibited by uncoupling agents, but not by fluoride or arsenate. Subcellular vesicles of E. coli accumulated [14C]xylose provided that ascorbate plus phenazine methosulfate were present for respiration, and this accumulation was inhibited by uncoupling agents or valinomycin. Therefore, the transport of xylose into E. coli appears to be energized by a proton-motive force, rather than by a phosphotransferase or directly energized mechanism. Its specificity for xylose as inducer and substrate and the genetic location of a xylose-H+ transport-negative mutation near mtl showed that the xylose-H+ system is distinct from other proton-linked sugar transport systems of E. coli.
Collapse
|
46
|
Booth IR, Hamilton WA. Quantitative analysis of proton-linked transport system. beta-Galactoside exit in Escherichia coli. Biochem J 1980; 188:467-73. [PMID: 6249273 PMCID: PMC1161890 DOI: 10.1042/bj1880467] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The exit of lactose and thiomethyl-beta-D-galactoside from Escherichia coli ML308-225 has been studied to determine the role of carrier-dependent (zero-trans efflux) and carrier-independent (leak) processes. On the basis of its sensitivity to p-chloromercuribenzene sulphonate the exit of lactose was found to be almost wholly mediated by the carrier. Consistent with this conclusion was the finding that the rate of exit of this sugar was dependent on the external pH, being considerably slower at acid pH. On the other hand exit of thiomethyl-beta-D-galactoside was found to be composed of both carrier-dependent and carrier-independent processes. Both processes exhibited first-order kinetics with the rate constants for zero-trans efflux and leak being 0.137 min-1 and 0.079 min-1, respectively. The relevance of these findings for out earlier proposal for the methods of attenuation of solute accumulation is discussed [Booth, Mitchell & Hamilton (1979) Biochem. J. 182, 687--696].
Collapse
|
47
|
Kaethner TM, Horne P. Glucose protection against [14C]N-ethylmaleimide labelling of a protein in galactose-transporting membrane vesicles of Escherichia coli. FEBS Lett 1980; 113:258-63. [PMID: 6993223 DOI: 10.1016/0014-5793(80)80605-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Wagner EF, Fabricant JD, Schweiger M. A novel ATP-driven glucose transport system in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 102:231-6. [PMID: 391565 DOI: 10.1111/j.1432-1033.1979.tb06284.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Escherichia coli wild-type cells and in ATPase-deficient cells (unc mutants), glucose was found to be transported mainly by an ATP-driven system. The evidence is based on experiments involving interference at different sites of energy metabolism with the use of uncouplers, arsenate, and starved cells. Furthermore, addition of succinate to starved cells increased glucose uptake only in the wild-type cells, where ATP could be regenerated. Glucose transport was also ATP-dependent in cells deficient in methyl-beta-galactoside transport (a system that carries glucose specificity). It was found to be shock-sensitive in all strains tested. The NOVEL ATP-driven glucose transport is a high-affinity (Km 3-10 microM) and high-capacity (V 240-330 Mmol . min-1 . mg cell protein-1) uptake system.
Collapse
|
49
|
Fahnestock M, Koshland DE. Control of the receptor for galactose taxis in Salmonella typhimurium. J Bacteriol 1979; 137:758-63. [PMID: 370099 PMCID: PMC218354 DOI: 10.1128/jb.137.2.758-763.1979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The chemotactic response to galactose in wild-type Salmonella typhimurium is not inducible by galactose, but is inducible by fucose, a non-metabolizable analog. In a galactokinase mutant, however, the galactose receptor is inducible by galactose. These data indicate that the concentration of free galactose in the cell controls the levels of the galactose receptor. The intensities of the chemotactic responses were found to vary in proportion to the concentration of galactose receptors. In bacteria with higher levels of galactose receptors, the ribose response is inhibited by galactose. This supports the model in which the ribose and galactose receptors compete for a common component of the signaling system.
Collapse
|
50
|
Lopilato J, Tsuchiya T, Wilson TH. Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli. J Bacteriol 1978; 134:147-56. [PMID: 25882 PMCID: PMC222229 DOI: 10.1128/jb.134.1.147-156.1978] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thiomethyl-beta-galactoside (TMG) accumulation via the melibiose transport system was studied in lactose transport-negative strains of Escherichia coli. TMG uptake by either intact cells or membrane vesicles was markedly stimulated by Na+ or Li+ between pH 5.5 and 8. The Km for uptake of TMG was approximately 0.2 mM at an external Na+ concentration of 5 mM (pH 7). The alpha-galactosides, melibiose, methyl-alpha-galactoside, and o-nitrophenyl-alpha-galactoside had a high affinity for this system whereas lactose, maltose and glucose had none. Evidence is presented for Li+-TMG or Na+-TMG cotransport.
Collapse
|