1
|
Yang L, Lee KM, Yu CWH, Imai H, Choi AH, Banfield D, Ito K, Uchiumi T, Wong KB. The flexible N-terminal motif of uL11 unique to eukaryotic ribosomes interacts with P-complex and facilitates protein translation. Nucleic Acids Res 2022; 50:5335-5348. [PMID: 35544198 PMCID: PMC9122527 DOI: 10.1093/nar/gkac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic uL11 contains a conserved MPPKFDP motif at the N-terminus that is not found in archaeal and bacterial homologs. Here, we determined the solution structure of human uL11 by NMR spectroscopy and characterized its backbone dynamics by 15N-1H relaxation experiments. We showed that these N-terminal residues are unstructured and flexible. Structural comparison with ribosome-bound uL11 suggests that the linker region between the N-terminal domain and C-terminal domain of human uL11 is intrinsically disordered and only becomes structured when bound to the ribosomes. Mutagenesis studies show that the N-terminal conserved MPPKFDP motif is involved in interacting with the P-complex and its extended protuberant domain of uL10 in vitro. Truncation of the MPPKFDP motif also reduced the poly-phenylalanine synthesis in both hybrid ribosome and yeast mutagenesis studies. In addition, G→A/P substitutions to the conserved GPLG motif of helix-1 reduced poly-phenylalanine synthesis to 9-32% in yeast ribosomes. We propose that the flexible N-terminal residues of uL11, which could extend up to ∼25 Å from the N-terminal domain of uL11, can form transient interactions with the uL10 that help to fetch and fix it into a position ready for recruiting the incoming translation factors and facilitate protein synthesis.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hirotatsu Imai
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Andrew Kwok-Ho Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
- The Institute of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
2
|
Probing the dynamic stalk region of the ribosome using solution NMR. Sci Rep 2019; 9:13528. [PMID: 31537834 PMCID: PMC6753160 DOI: 10.1038/s41598-019-49190-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022] Open
Abstract
We describe an NMR approach based on the measurement of residual dipolar couplings (RDCs) to probe the structural and motional properties of the dynamic regions of the ribosome. Alignment of intact 70S ribosomes in filamentous bacteriophage enabled measurement of RDCs in the mobile C-terminal domain (CTD) of the stalk protein bL12. A structural refinement of this domain using the observed RDCs did not show large changes relative to the isolated protein in the absence of the ribosome, and we also found that alignment of the CTD was almost independent of the presence of the core ribosome particle, indicating that the inter-domain linker has significant flexibility. The nature of this linker was subsequently probed in more detail using a paramagnetic alignment strategy, which revealed partial propagation of alignment between neighbouring domains, providing direct experimental validation of a structural ensemble previously derived from SAXS and NMR relaxation measurements. Our results demonstrate the prospect of better characterising dynamical and functional regions of more challenging macromolecular machines and systems, for example ribosome–nascent chain complexes.
Collapse
|
3
|
Abstract
The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.
Collapse
|
4
|
Choi KHA, Yang L, Lee KM, Yu CWH, Banfield DK, Ito K, Uchiumi T, Wong KB. Structural and Mutagenesis Studies Evince the Role of the Extended Protuberant Domain of Ribosomal Protein uL10 in Protein Translation. Biochemistry 2019; 58:3744-3754. [PMID: 31419120 DOI: 10.1021/acs.biochem.9b00528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral stalk of ribosomes constitutes the GTPase-associated center and is responsible for recruiting translation factors to the ribosomes. The eukaryotic stalk contains a P-complex, in which one molecule of uL10 (formerly known as P0) protein binds two copies of P1/P2 heterodimers. Unlike bacterial uL10, eukaryotic uL10 has an extended protuberant (uL10ext) domain inserted into the N-terminal RNA-binding domain. Here, we determined the solution structure of the extended protuberant domain of Bombyx mori uL10 by nuclear magnetic resonance spectroscopy. Comparison of the structures of the B. mori uL10ext domain with eRF1-bound and eEF2-bound ribosomes revealed significant structural rearrangement in a "hinge" region surrounding Phe183, a residue conserved in eukaryotic but not in archaeal uL10. 15N relaxation analyses showed that residues in the hinge region have significantly large values of transverse relaxation rates. To test the role of the conserved phenylalanine residue, we created a yeast mutant strain expressing an F181A variant of uL10. An in vitro translation assay showed that the alanine substitution increased the level of polyphenylalanine synthesis by ∼33%. Taken together, our results suggest that the hinge motion of the uL10ext domain facilitates the binding of different translation factors to the GTPase-associated center during protein synthesis.
Collapse
Affiliation(s)
- Kwok-Ho Andrew Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - David K Banfield
- Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , China
| | - Kosuke Ito
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| |
Collapse
|
5
|
De Zaeytijd J, Van Damme EJM. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. Toxins (Basel) 2017; 9:E123. [PMID: 28353660 PMCID: PMC5408197 DOI: 10.3390/toxins9040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper.
Collapse
Affiliation(s)
- Jeroen De Zaeytijd
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
6
|
Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016; 55:989-1002. [PMID: 26818562 DOI: 10.1021/acs.biochem.5b01269] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a major regulatory post-translational modification and is as widespread as phosphorylation. N-Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified into different groups on the basis of their substrate specificity, and in spite of a very low primary sequence identity, GNAT proteins display a common and conserved fold. This Current Topic reviews the different classes of bacterial GNAT proteins, their functions, their structural characteristics, and their mechanism of action.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
7
|
Imai H, Miyoshi T, Murakami R, Ito K, Ishino Y, Uchiumi T. Functional role of the C-terminal tail of the archaeal ribosomal stalk in recruitment of two elongation factors to the sarcin/ricin loop of 23S rRNA. Genes Cells 2015; 20:613-24. [DOI: 10.1111/gtc.12256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hirotatsu Imai
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Tomohiro Miyoshi
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Ryo Murakami
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Kosuke Ito
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology; Kyushu University; 6-10-1 Hakozaki Higashi-ku Fukuoka 812-8581 Japan
| | - Toshio Uchiumi
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
8
|
Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins (Basel) 2015; 7:638-47. [PMID: 25723321 PMCID: PMC4379515 DOI: 10.3390/toxins7030638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA.
Collapse
|
9
|
Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain. Biochem J 2014; 460:59-67. [PMID: 24576056 DOI: 10.1042/bj20140014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic stalk, which is responsible for the recruitment of translation factors, is a pentamer containing two P1-P2 dimers with unclear modes of action. In Saccharomyces cerevisiae, P1/P2 proteins (individual P1 and P2 proteins) are organized into two distinct dimers, P1A-P2B and P1B-P2A. To investigate the functional contribution of each dimer on the ribosome, RTA (ricin A chain), which binds to the stalk to depurinate the SRL (sarcin/ricin loop), was used as a molecular probe in yeast mutants in which the binding site for one or the other dimer on P0 was deleted. Ribosome depurination and toxicity of RTA were greatly reduced in mutants containing only P1A-P2B on the ribosome, whereas those with only P1B-P2A were reduced less in depurination and were unaffected in toxicity. Ribosomes bearing P1B-P2A were depurinated by RTA at a similar level as wild-type, but ribosomes bearing P1A-P2B were depurinated at a much lower level in vitro. The latter ribosomes showed the lowest association and almost no dissociation with RTA by surface plasmon resonance. These results indicate that the P1B-P2A dimer is more critical for facilitating the access of RTA to the SRL, providing the first in vivo evidence for functional divergence between the two stalk dimers on the ribosome.
Collapse
|
10
|
Davydov II, Wohlgemuth I, Artamonova II, Urlaub H, Tonevitsky AG, Rodnina MV. Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat Commun 2013; 4:1387. [DOI: 10.1038/ncomms2373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
|
11
|
Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13:355-69. [PMID: 22617470 DOI: 10.1038/nrm3359] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than intrinsic regulatory capacity in mRNA translation. However, emerging studies reveal that ribosome activity may be highly regulated. Heterogeneity in ribosome composition resulting from differential expression and post-translational modifications of ribosomal proteins, ribosomal RNA (rRNA) diversity and the activity of ribosome-associated factors may generate 'specialized ribosomes' that have a substantial impact on how the genomic template is translated into functional proteins. Moreover, constitutive components of the ribosome may also exert more specialized activities by virtue of their interactions with specific mRNA regulatory elements such as internal ribosome entry sites (IRESs) or upstream open reading frames (uORFs). Here we discuss the hypothesis that intrinsic regulation by the ribosome acts to selectively translate subsets of mRNAs harbouring unique cis-regulatory elements, thereby introducing an additional level of regulation in gene expression and the life of an organism.
Collapse
Affiliation(s)
- Shifeng Xue
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
12
|
Bartsch M, Kimura M, Subramanian AR. Purification, primary structure, and homology relationships of a chloroplast ribosomal protein. Proc Natl Acad Sci U S A 2010; 79:6871-5. [PMID: 16593249 PMCID: PMC347235 DOI: 10.1073/pnas.79.22.6871] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A chloroplast ribosomal protein that showed immunological homology to Escherichia coli ribosomal protein L12 was purified from spinach (Spinacia oleracea) leaves and its primary structure was determined by manual micro Edman degradation. The protein is composed of 130 amino acid residues and has M(r) 13,576. It shows structural features characteristic of the L12 proteins of eubacterial 70S ribosomes (e.g., identical amino acid residues in about 50% of the sequence) but no apparent homology to the L12-type proteins of eukaryotic cytoplasmic 80S ribosomes. The homology to eubacterial proteins is highest in the COOH-terminal region (70%) and low in the NH(2)-terminal region (<20%).
Collapse
Affiliation(s)
- M Bartsch
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Ihnestrasse 63-73, D-1000 Berlin 33, Germany
| | | | | |
Collapse
|
13
|
Miyoshi T, Nomura T, Uchiumi T. Engineering and characterization of the ribosomal L10.L12 stalk complex. A structural element responsible for high turnover of the elongation factor G-dependent GTPase. J Biol Chem 2008; 284:85-92. [PMID: 18936095 DOI: 10.1074/jbc.m806024200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosomal stalk protein L12 is essential for events dependent on the GTP-binding translation factors. It has been recently shown that ribosomes from Thermus thermophilus contain a heptameric complex L10.(L12)2.(L12)2.(L12)2, rather than the conventional pentameric complex L10.(L12)2.(L12)2. Here we describe the reconstitution of the heptameric complex from purified L10 and L12 and the characterization of its role in elongation factor G-dependent GTPase activity using a hybrid system with Escherichia coli ribosomes. The T. thermophilus heptameric complex resulted in a 2.5-fold higher activity than the E. coli pentameric complex. The structural element of the T. thermophilus complex responsible for the higher activity was investigated using a chimeric L10 protein (Ec-Tt-L10), in which the C-terminal L12-binding site in E. coli L10 was replaced with the same region from T. thermophilus, and two chimeric L12 proteins: Ec-Tt-L12, in which the E. coli N-terminal domain was fused with the T. thermophilus C-terminal domain, and Tt.Ec-L12, in which the T. thermophilus N-terminal domain was fused with the E. coli C-terminal domain. High GTPase turnover was observed with the pentameric chimeric complex formed from E. coli L10 and Ec-Tt-L12 but not with the heptameric complex formed from Ec-Tt-L10 and Tt.Ec-L12. This suggested that the C-terminal region of T. thermophilus L12, rather than the heptameric nature of the complex, was responsible for the high GTPase turnover. Further analyses with other chimeric L12 proteins identified helix alpha6 as the region most likely to contain the responsible element.
Collapse
Affiliation(s)
- Tomohiro Miyoshi
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan and the Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Takaomi Nomura
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan and the Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan and the Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| |
Collapse
|
14
|
Nomura T, Nakatsuchi M, Sugita D, Nomura M, Kaminishi T, Takemoto C, Shirouzu M, Miyoshi T, Yokoyama S, Hachimori A, Uchiumi T. Biochemical evidence for the heptameric complex L10(L12)6 in the Thermus thermophilus ribosome: in vitro analysis of its molecular assembly and functional properties. J Biochem 2008; 144:665-73. [PMID: 18784190 DOI: 10.1093/jb/mvn113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The stalk protein L12 is the only multiple component in 50S ribosomal subunit. In Escherichia coli, two L12 dimers bind to the C-terminal domain of L10 to form a pentameric complex, L10[(L12)(2)](2), while the recent X-ray crystallographic study and tandem MS analyses revealed the presence of a heptameric complex, L10[(L12)(2)](3), in some thermophilic bacteria. We here characterized the complex of Thermus thermophilus (Tt-) L10 and Tt-L12 stalk proteins by biochemical approaches using C-terminally truncated variants of Tt-L10. The C-terminal 44-residues removal (Delta44) resulted in complete loss of interactions with Tt-L12. Quantitative analysis of Tt-L12 assembled onto E. coli 50S core particles, together with Tt-L10 variants, indicated that the wild-type, Delta13 and Delta23 variants bound three, two and one Tt-L12 dimers, respectively. The hybrid ribosomes that contained the T. thermophilus proteins were highly accessible to E. coli elongation factors. The progressive removal of Tt-L12 dimers caused a stepwise reduction of ribosomal activities, which suggested that each individual stalk dimer contributed to ribosomal function. Interestingly, the hybrid ribosomes showed higher EF-G-dependent GTPase activity than E. coli ribosomes, even when two or one Tt-L12 dimer. This result seems to be due to a structural characteristic of Tt-L12 dimer.
Collapse
Affiliation(s)
- Takaomi Nomura
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gordiyenko Y, Deroo S, Zhou M, Videler H, Robinson CV. Acetylation of L12 increases interactions in the Escherichia coli ribosomal stalk complex. J Mol Biol 2008; 380:404-14. [PMID: 18514735 DOI: 10.1016/j.jmb.2008.04.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/23/2008] [Accepted: 04/26/2008] [Indexed: 11/18/2022]
Abstract
The ribosomal stalk complex in Escherichia coli consists of L10 and four copies of L7/L12, and is largely responsible for binding and recruiting translation factors. Structural characterisation of this stalk complex is difficult, primarily due to its dynamics. Here, we apply mass spectrometry to follow post-translational modifications and their effect on structural changes of the stalk proteins on intact ribosomes. Our results show that increased acetylation of L12 occurs during the stationary phase on ribosomes harvested from cells grown under optimal conditions. For cells grown in minimal medium, L12 acetylation and processing is altered, resulting in deficient removal of N-terminal methionine in approximately 50% of the L12 population, while processed L12 is almost 100% acetylated. Our results show also that N-acetylation of L12 correlates with an increased stability of the stalk complex in the gas phase. To investigate further the basis of this increased stability, we applied a solution phase hydrogen deuterium exchange protocol to compare the rate of deuterium incorporation in the proteins L9, L10, L11 and L12 as well as the acetylated form of L12 (L7), in situ on the ribosome. Results show that deuterium incorporation is consistently slower for L7 relative to L12 and for L10 when L7 is predominant. Our results imply a tightening of the interaction between L7 and L10 relative to that between L12 and L10. Since acetylation is predominant when cells are grown in minimal medium, we propose that these modifications form part of the cell's strategy to increase stability of the stalk complex under conditions of stress. More generally, our results demonstrate that it is possible to discern the influence of a 42 Da post-translational modification by mass spectrometry and to record subtle changes in hydrogen/deuterium exchange within the context of an intact 2.5 MDa particle.
Collapse
Affiliation(s)
- Yuliya Gordiyenko
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
16
|
Delage L, Giegé P, Sakamoto M, Maréchal-Drouard L. Four paralogues of RPL12 are differentially associated to ribosome in plant mitochondria. Biochimie 2007; 89:658-68. [PMID: 17395357 DOI: 10.1016/j.biochi.2007.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
Ribosomal protein L12 is the only component present in four copies in the ribosome. In prokaryotes as well as in yeast and human mitochondria, all copies correspond to the same RPL12. By contrast, we present here evidence that plant mitochondria contain four different RPL12 proteins. Compared to E. coli RPL12, the four mature RPL12 variants show a conserved C-terminal region that contains all the functional domains of prokaryotic RPL12 but three of them present an additional N-terminal extension containing either an acidic or a basic domain and a high level of proline residues. All proteins have a potential mitochondrial N-terminal targeting sequence and were imported in vitro into isolated mitochondria. Using RPL12 antibodies, the four variants were shown to be present in a potato mitochondrial ribosome fraction. Moreover, the four proteins reacted differently to the destabilization of ribosomes. This suggests either a heterogeneous RPL12 composition among each ribosome and/or a heterogeneous population of plant mitochondrial ribosomes.
Collapse
Affiliation(s)
- Ludovic Delage
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR2357) Conventionné avec l'Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
17
|
Koumarianou P, Marcos AG, Ballesta JPG, Kouyanou-Koutsoukou S. In vivo analysis of the acidic ribosomal proteins BmP1 and BmP2 of the silkworm Bombyx mori in the yeast Saccharomyces cerevisiae. Gene 2006; 388:27-33. [PMID: 17134850 DOI: 10.1016/j.gene.2006.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/11/2006] [Accepted: 09/19/2006] [Indexed: 11/17/2022]
Abstract
In the silkworm Bombyx mori the ribosomal stalk P-protein family consists of two low MW acidic proteins, BmP1 and BmP2, and of one higher MW protein, BmP0, as shown by electrophoretical and immunoblotting western blot analysis of purified ribosomes. Treatment of ribosomes with alkaline phosphatase followed by electrofocusing shifted the isoelectric points to higher pH, implying phosphorylation of the proteins. The cDNAs encoding BmP1 and BmP2 proteins were constructed and expressed in the Saccharomyces cerevisiae mutant strains defective in either the endogenous P1 or P2 proteins. The recombinant silkworm proteins could complement the absence of the homologous yeast proteins and were incorporated to the ribosomes of the transformed strains, helping the binding of the remaining endogenous acidic proteins, present in the cytoplasm in different extent. Thus, BmP1 was able to replace YP1alpha, preferentially binding YP2beta to the ribosome, while BmP2 replaced both yeast P2 proteins and induced the binding of both YP1alpha and YP1beta.
Collapse
Affiliation(s)
- Petrina Koumarianou
- University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Panepistimiopolis, 15701 Athens, Greece
| | | | | | | |
Collapse
|
18
|
McIntosh KB, Bonham-Smith PC. Ribosomal protein gene regulation: what about plants? ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome is an intricate ribonucleoprotein complex with a multitude of protein constituents present in equimolar amounts. Coordination of the synthesis of these ribosomal proteins (r-proteins) presents a major challenge to the cell. Although most r-proteins are highly conserved, the mechanisms by which r-protein gene expression is regulated often differ widely among species. While the primary regulatory mechanisms coordinating r-protein synthesis in bacteria, yeast, and animals have been identified, the mechanisms governing the coordination of plant r-protein expression remain largely unexplored. In addition, plants are unique among eukaryotes in carrying multiple (often more than two) functional genes encoding each r-protein, which substantially complicates coordinate expression. A survey of the current knowledge regarding coordinated systems of r-protein gene expression in different model organisms suggests that vertebrate r-protein gene regulation provides a valuable comparison for plants.
Collapse
Affiliation(s)
- Kerri B. McIntosh
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Peta C. Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
19
|
Diaconu M, Kothe U, Schlünzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 2005; 121:991-1004. [PMID: 15989950 DOI: 10.1016/j.cell.2005.04.015] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/04/2005] [Accepted: 04/14/2005] [Indexed: 11/23/2022]
Abstract
The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.
Collapse
Affiliation(s)
- Mihaela Diaconu
- Röntgenkristallographie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vetting MW, de Carvalho LPS, Roderick SL, Blanchard JS. A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium. J Biol Chem 2005; 280:22108-14. [PMID: 15817456 DOI: 10.1074/jbc.m502401200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RimL is responsible for converting the prokaryotic ribosomal protein from L12 to L7 by acetylation of its N-terminal amino group. We demonstrate that purified RimL is capable of posttranslationally acetylating L12, exhibiting a V(max) of 21 min(-1). We have also determined the apostructure of RimL from Salmonella typhimurium and its complex with coenzyme A, revealing a homodimeric oligomer with structural similarity to other Gcn5-related N-acetyltransferase superfamily members. A large central trough located at the dimer interface provides sufficient room to bind both L12 N-terminal helices. Structural and biochemical analysis indicates that RimL proceeds by single-step transfer rather than a covalent-enzyme intermediate. This is the first structure of a Gcn5-related N-acetyltransferase family member with demonstrated activity toward a protein N(alpha)-amino group and is a first step toward understanding the molecular basis for N(alpha)acetylation and its function in cellular regulation.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1602, USA
| | | | | | | |
Collapse
|
21
|
Nomura T, Mochizuki R, Dabbs ER, Shimizu Y, Ueda T, Hachimori A, Uchiumi T. A point mutation in ribosomal protein L7/L12 reduces its ability to form a compact dimer structure and to assemble into the GTPase center. Biochemistry 2003; 42:4691-8. [PMID: 12705832 DOI: 10.1021/bi027087g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An Escherichia coli mutant, LL103, harboring a mutation (Ser15 to Phe) in ribosomal protein L7/L12 was isolated among revertants of a streptomycin-dependent strain. In the crystal structure of the L7/L12 dimer, residue 15 within the N-terminal domain contacts the C-terminal domain of the partner monomer. We tested effects of the mutation on molecular assembly by biochemical approaches. Gel electrophoretic analysis showed that the Phe15-L7/L12 variant had reduced ability in binding to L10, an effect enhanced in the presence of 0.05% of nonionic detergent. Mobility of Phe15-L7/L12 on gel containing the detergent was very low compared to the wild-type proteins, presumably because of an extended structural state of the mutant L7/L12. Ribosomes isolated from LL103 cells contained a reduced amount of L7/L12 and showed low levels (15-30% of wild-type ribosomes) of activities dependent on elongation factors and in translation of natural mRNA. The ribosomal activity was completely recovered by addition of an excess amount of Phe15-L7/L12 to the ribosomes, suggesting that the mutant L7/L12 exerts normal functions when bound on the ribosome. The interaction of Ser15 with the C-terminal domain of the partner molecule seems to contribute to formation of the compact dimer structure and its efficient assembly into the ribosomal GTPase center. We propose a model relating compact and elongated forms of L7/L12 dimers. Phe15-L7/L12 provides a new tool for studying the functional structure of the homodimer.
Collapse
Affiliation(s)
- Takaomi Nomura
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Lalioti VS, Pérez-Fernández J, Remacha M, Ballesta JPG. Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Mol Microbiol 2002; 46:719-29. [PMID: 12410829 DOI: 10.1046/j.1365-2958.2002.03179.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions among the yeast stalk components (P0, P1alpha, P1beta, P2alpha and P2beta) and with EF-2 have been explored using immunoprecipitation, affinity chromatography and the two-hybrid system. No stable association was detected between acidic proteins of the same type. In contrast, P1alpha and P1beta were found to interact with P2beta and P2alpha respectively. An interaction of P0 with P1 proteins, but not with P2 proteins, was also detected. This interaction is strongly increased with the P0 carboxyl end, which is able to form a pentameric complex with the four acidic proteins. The P1/P2 binding site has been located between residues 212 and 262 using different C-terminal P0 fragments. Immunoprecipitation shows the association of EF-2 with protein P0. However, the interaction is stronger with the P1/P2 proteins than with P0 in the two-hybrid assay. This interaction improves using the 100-amino-acid-long C-end of P0 and is even higher with the last 50 amino acids. The data indicate a specific association of P1alpha with P2beta and of P1beta with P2alpha rather than the dimerization of the acidic proteins found in prokaryotes. In addition, they suggest that stalk assembly begins by the interaction of the P1 proteins with P0. Moreover, as functional interactions of the complete P0 were found to increase using protein fragments, the data suggest that some active sites are exposed in the ribosome as a result of conformational changes that take place during stalk assembly and function.
Collapse
Affiliation(s)
- V S Lalioti
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid--CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Thielen TPGM, Maassen JA, Kriek J, Moeller W. Mutual orientation of the two L7/L12 dimers on the 50S ribosome of Escherichia coli as measured by energy transfer between covalently bound probes. Biochemistry 2002. [DOI: 10.1021/bi00309a031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
A protein phosphatase dephosphorylating acidic ribosomal proteins was purified from Saccharomyces cerevisiae ribosome-free extract. It was shown that phosphoproteins from both P1 and P2 subfamilies as well as 60S "core" P0 protein were substrates for the enzyme. The phosphatase can dephosphorylate ribosomes as well as histones and casein but the two last substrates with significantly lower efficiency. It was found that the enzyme activity is Mn(2+)-dependent and inhibited by okadaic acid, tautomycin, cantharidin and nodularin at concentrations typical for protein phosphatase type 2A. The possible implications of those findings in the control of ribosome phosphorylation and therefore in the control of translation is discussed.
Collapse
Affiliation(s)
- M Pilecki
- Department of Molecular Biology, Faculty of Mathematics and Natural Science, Catholic University of Lublin, Poland
| | | | | | | | | |
Collapse
|
25
|
Blanco G, Sánchez C, Rodicio MR, Méndez C, Salas JA. Identification of a growth phase-dependent promoter in the rplJL operon of Streptomyces coelicolor A3(2). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1517:243-9. [PMID: 11342105 DOI: 10.1016/s0167-4781(00)00280-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single promoter, rplJp (P(L10)), has been identified in the rplJL operon from Streptomyces coelicolor A3(2) by promoter probe and primer extension analyses. P(L10) is located upstream of the rplL gene and of the DNA encoding the mRNA leader region that contains the putative L10 (or L10.L12(4)) binding site for translational autogenous regulation. The potential start point for transcription was found 239 nucleotides upstream of the predicted translational start codon of rplJ. The promoter sequence shows -35 and -10 hexamers that resemble those of Streptomyces consensus Escherichia coli sigma(70)-like promoters and the rplJp from Streptomyces griseus. The amount of the transcript detected by primer extension analysis decreases during growth immediately after the transition phase, a slowdown in growth occurring during exponential phase associated with increases in ppGpp level. The temporal pattern of transcripts shows a clear correlation with the temporal pattern of L10 and L7/L12 protein synthesis reported in previous kinetic studies. This indicates that P(L10) is a growth phase-dependent promoter which may contribute, together with translational regulation, to the decrease in the synthesis of L10 and L7/L12 observed in liquid minimal medium. This is supported by results of promoter probe experiments. Although no significant promoter activity has been found by promoter probing in the rplJ and rplL intergenic region, an additional 5'-transcript end was detected by primer extension, probably as a result of mRNA processing event from a longer transcript. This may be required to maintain the 1:4 ratio observed for L10 and L7/L12 in the ribosomes.
Collapse
Affiliation(s)
- G Blanco
- Departamento de Biología Funcional, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
26
|
Yamaguchi K, Subramanian AR. The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 2000; 275:28466-82. [PMID: 10874046 DOI: 10.1074/jbc.m005012200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Biochemistry, The University of Arizona, Tucson, Arizona 85712, USA
| | | |
Collapse
|
27
|
Griaznova O, Traut RR. Deletion of C-terminal residues of Escherichia coli ribosomal protein L10 causes the loss of binding of one L7/L12 dimer: ribosomes with one L7/L12 dimer are active. Biochemistry 2000; 39:4075-81. [PMID: 10747797 DOI: 10.1021/bi992621e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.
Collapse
Affiliation(s)
- O Griaznova
- Department of Biological Chemistry, School of Medicine, University of California, Davis, California 95616, USA
| | | |
Collapse
|
28
|
Wahl MC, Huber R, Marinkoviç S, Weyher-Stingl E, Ehlert S. Structural investigations of the highly flexible recombinant ribosomal protein L12 from Thermotoga maritima. Biol Chem 2000; 381:221-9. [PMID: 10782993 DOI: 10.1515/bc.2000.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal protein L7/L12, the only multicopy component of the ribosome, is involved in translation factor binding and in the ribosomal GTPase center. The gene for L7/L12 from Thermotoga maritima was cloned and the protein expressed at high levels in Escherichia coli. Purification of L7/L12 was achieved under non-denaturing conditions via heat treatment and two chromatographic steps. Circular dichroism melting profiles were monitored at 222 nm, showing the melting temperature of the protein at pH 7.5 around 110 degrees C, compared to approximately 60 degrees C for the highly homologous Escherichia coli protein. The unfolding was reversible and renaturation closely followed the path of the thermal melting. Dynamic light scattering, gel filtration chromatography, and crosslinking experiments suggested that under physiological buffer conditions Thermotoga maritima L7/L12 exists as a tetramer. The protein was crystallized under two conditions, yielding an orthorhombic (C222(1)) and a cubic (12(1)3) space group with an estimated two and three to four L7/L12 molecules per asymmetric unit, respectively. The crystals contained the full-length protein, and cryogenic buffers were developed which improved the mosaic spreads and the resolution limits. For the structure solution isoleucine was mutated to methionine at two separate positions, the mutant forms expressed as selenomethionine variants and crystallized.
Collapse
Affiliation(s)
- M C Wahl
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Martinsried, Germany
| | | | | | | | | |
Collapse
|
29
|
Wahl MC, Bourenkov GP, Bartunik HD, Huber R. Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12. EMBO J 2000; 19:174-86. [PMID: 10637222 PMCID: PMC305552 DOI: 10.1093/emboj/19.2.174] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein L12, the only multicopy component of the ribosome, is presumed to be involved in the binding of translation factors, stimulating factor-dependent GTP hydrolysis. Crystal structures of L12 from Thermotogamaritima have been solved in two space groups by the multiple anomalous dispersion method and refined at 2.4 and 2.0 A resolution. In both crystal forms, an asymmetric unit comprises two full-length L12 molecules and two N-terminal L12 fragments that are associated in a specific, hetero-tetrameric complex with one non-crystallographic 2-fold axis. The two full-length proteins form a tight, symmetric, parallel dimer, mainly through their N-terminal domains. Each monomer of this central dimer additionally associates in a different way with an N-terminal L12 fragment. Both dimerization modes are unlike models proposed previously and suggest that similar complexes may occur in vivo and in situ. The structures also display different L12 monomer conformations, in accord with the suggested dynamic role of the protein in the ribosomal translocation process. The structures have been submitted to the Protein Databank (http://www.rcsb.org/pdb) under accession numbers 1DD3 and 1DD4.
Collapse
Affiliation(s)
- M C Wahl
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
30
|
Le Dantec L, Castroviejo M, Bové JM, Saillard C. Purification, cloning, and preliminary characterization of a Spiroplasma citri ribosomal protein with DNA binding capacity. J Biol Chem 1998; 273:24379-86. [PMID: 9733727 DOI: 10.1074/jbc.273.38.24379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rpsB-tsf-x operon of Spiroplasma citri encodes ribosomal protein S2 and elongation factor Ts, two components of the translational apparatus, and an unidentified X protein. A potential DNA-binding site (a 20-base pair (bp) inverted repeat sequence) is located at the 3' end of rpsB. Southwestern analysis of S. citri proteins, with a 30-bp double-stranded oligonucleotide probe (IRS), containing the 20-bp inverted repeat sequence and the genomic flanking sequences, detected an IRS-binding protein of 46 kDa (P46). P46 protein, which displays preferential affinity for the IRS, was purified from S. citri by a combination of affinity and gel filtration chromatographies. The native form of P46 seems to be homomultimeric as estimated by SDS-polyacrylamide gel electrophoresis analysis and gel filtration. A 3.5-kilobase pair S. citri DNA fragment comprising the P46 gene and flanking sequences was cloned and sequenced. Sequence analysis of this DNA fragment indicated that the P46 gene is located within the S10-spc operon of S. citri at the position of the gene coding for ribosomal protein L29 in the known S10-spc operons. The similarity between the N-terminal domain of P46 and the L29 ribosomal protein family and the presence of a 46-kDa IRS-binding protein in S. citri ribosomes indicated that P46 is the L29 ribosomal protein of S. citri. We suggest that P46 is a bifunctional protein with an L29 N-terminal domain and a C-terminal domain involved in IRS binding.
Collapse
Affiliation(s)
- L Le Dantec
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
31
|
Weglöhner W, Jünemann R, von Knoblauch K, Subramanian AR. Different consequences of incorporating chloroplast ribosomal proteins L12 and S18 into the bacterial ribosomes of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:383-92. [PMID: 9370344 DOI: 10.1111/j.1432-1033.1997.00383.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have incorporated chloroplast ribosomal proteins (R-proteins) L12 and S18 into Escherichia coli ribosomes and examined the hybrid ribosomes for their ability to form polysomes in vivo and perform poly(U)-dependent poly(Phe) synthesis in vitro. The rye chloroplast S18 used for the experiment is a highly divergent protein (170 amino acid residues; E. coil S18, 74 residues), containing a repeating, chloroplast-specific, heptapeptide motif, and has amino acid sequence identity of only 35% to E. coli S18. When expressed in E. coli, chloroplast S18 was assembled in E. coli ribosomes. The latter formed polysomes in vivo at about the same rate as the host ribosomes, indicating that the replacement of E. coli S18 with its chloroplast homologue has only a minor, if any, effect on function. The L12 protein is much more conserved in sequence and chain length, and is known to have a very important function. The Arabidopsis chloroplast L12 used in the experiment was incorporated into E. coli 50S subunits that associated with the 30S subunits to form ribosomes, but the latter were unable to form polysomes. This result indicates functional inactivation of E. coil ribosomes by a chloroplast R-protein. To further confirm this result, we overproduced chloroplast L12 through the use of a secretion vector and purified the protein to homogeneity. Chloroplast L12 could be efficiently incorporated in vitro into L7/12-lacking E. coli ribosomes, but the hybrid ribosomes were totally inactive in poly(U)-dependent poly(Phe) synthesis. Computer modeling of the spatial structure of all known chloroplast L12 proteins (using E. coli L12 coordinates) indicated a 'chloroplast loop' present only in chloroplast L12. The presence of this loop might have a role in the observed inactivation. Taken together with previously reported results (summarized in this paper), it would appear that the features of chloroplast R-proteins concerned with specific functions are more divergent than their assembly properties. We have previously described methods suitable for overproduction and purification of chloroplast R-proteins that are encoded in organellar DNA (approximately 20), but that gave poor yield for those encoded in the nuclear DNA (approximately 45). Here we describe a method that overcomes this problem and allows the purification of nucleus-encoded chloroplast R-proteins in milligram quantities.
Collapse
Affiliation(s)
- W Weglöhner
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
The L7/L12 protein forms a functionally important domain in the ribosome. This domain is involved in interaction with translation factors during protein biosynthesis. The tertiary and quaternary structure of the L7/L12 protein was established as a result of intensive studies in solution and in the ribosome. The conformational changes of L7/L12, the elongation factors Tu and G and other ribosomal proteins were traced by different experimental techniques. These changes occur upon interaction of the ribosome with the elongation factors and depend on GTP hydrolysis in accordance with the functional states of the ribosome.
Collapse
Affiliation(s)
- A T Gudkov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region.
| |
Collapse
|
33
|
Todorova R. Generation of chromophore Tyr-containing mutants of the ribosomal protein L7/L12 from Escherichia coli by site-directed mutagenesis and characterization. Int J Biochem Cell Biol 1997; 29:841-8. [PMID: 9251251 DOI: 10.1016/s1357-2725(97)00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ribosomal protein L7/L12 from Escherichia coli has two domains with different structure-a globular C-terminal domain and a non-globular elongated N-terminal domain. The N-terminal domain of the protein has been subjected to site-directed mutagenesis to introduce the chromophore Tyr and to study its structure by spectroscopic methods. The mutant proteins S1Y, M14Y and M26Y were expressed at high levels in Escherichia coli and purified to homogeneity by ion-exchange chromatography and gel-filtration. Growth and purification protocols were optimized to allow reproducible and efficient production of mutant proteins. The effects of the replacements were assessed by UV, far-UV circular dichroism (CD), DSC and 1H-NMR studies. The spectroscopic characteristics (far-UV CD and 1H-NMR) and the thermal unfolding (far-UV CD and DSC) of the mutants have shown that these single mutations in the N-terminal region of the protein have no appreciable effect on its secondary and tertiary structures. 1H-NMR spectroscopy was used to show that the Tyr mutants retain their dimer structure. The initiating Met is the first amino acid in the mutant protein S1Y. Y2(S1) is located in a structurally disordered region of the N-terminal domain of the protein S1Y and does not seem to have close amino acid neighbours. Y14(M14) and Y26(M26) participate in the structurally ordered regions of the molecule. Phe30 is situated in the surroundings of Y14. The unchanged structure resulting from the mutations makes these proteins highly suitable for structural studies by multidimentional NMR to determine the structure of the N-terminal domain of protein L7/L12.
Collapse
Affiliation(s)
- R Todorova
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
34
|
Bocharov EV, Gudkov AT, Arseniev AS. Topology of the secondary structure elements of ribosomal protein L7/L12 from E. coli in solution. FEBS Lett 1996; 379:291-4. [PMID: 8603708 DOI: 10.1016/0014-5793(95)01531-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Topology of the secondary structure elements of ribosomal protein L7/L12 has been studied. The sequential assignment was obtained for main and side chain resonances. This allows the overall secondary structure to be described. The results of high resolution NMR studies show that dimer of the ribosomal protein L7/L12 from Escherichia coli has a parallel (head-to-head) orientation of subunits, and N-terminal domain (NTD, residues Ser1-Ser33) has no contacts with the C-terminal domain (CTD, residues Lys51-Lys120). The NMR data for CTD are in line with crystallographic structure. The flexible interdomain (hinge) region (residues Ala34-Glu50) has an unordered structure, the Pro44 forming both cis and trans peptide bonds. Due to the conformational exchange the intensities of the peaks from the NTD are low. The conformation of the NTD, which is responsible for the formation of the L7/L12 dimer, is alpha-helical hairpin. the NTD dimer forms an antiparallel four-alpha-helix bundle.
Collapse
Affiliation(s)
- E V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | |
Collapse
|
35
|
Wool IG, Chan YL, Glück A. Structure and evolution of mammalian ribosomal proteins. Biochem Cell Biol 1995; 73:933-47. [PMID: 8722009 DOI: 10.1139/o95-101] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mammalian (rat) ribosomes have 80 proteins; the sequence of amino acids in 75 have been determined. What has been learned of the structure of the rat ribosomal proteins is reviewed with particular attention to their evolution and to amino acid sequence motifs. The latter include: clusters of basic or acidic residues; sequence repeats or shared sequences; zinc finger domains; bZIP elements; and nuclear localization signals. The occurrence and the possible significance of phosphorylated residues and of ubiquitin extensions is noted. The characteristics of the mRNAs that encode the proteins are summarized. The relationship of the rat ribosomal proteins to the proteins in ribosomes from humans, yeast, archaebacteria, and Escherichia coli is collated.
Collapse
Affiliation(s)
- I G Wool
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
36
|
Gudkov AT, Budovskaya EV, Sherstobaeva NM. The first 37 residues are sufficient for dimerization of ribosomal L7/L12 protein. FEBS Lett 1995; 367:280-2. [PMID: 7607323 DOI: 10.1016/0014-5793(95)00564-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ribosomal protein L7/L12 with the substitution of Cys38 for the Val38 residue was obtained and studied to test the orientation of polypeptide chains in the N-terminal region of the dimer. The results show that the L7/L12 dimer has a parallel (head-to-head) orientation of subunits and that its first 37 N-terminal residues are sufficient for dimerization.
Collapse
Affiliation(s)
- A T Gudkov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region
| | | | | |
Collapse
|
37
|
Jose MP, Santana-Roman H, Remacha M, Ballesta JP, Zinker S. Eukaryotic acidic phosphoproteins interact with the ribosome through their amino-terminal domain. Biochemistry 1995; 34:7941-8. [PMID: 7794906 DOI: 10.1021/bi00024a019] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variable-size fragments of the four yeast acidic ribosomal protein genes rpYP1 alpha, rpYP1 beta, rpYP2 alpha and rpYP2 beta were fused to the LacZ gene in the vector series YEp356-358. The constructs were used to transform wild-type Saccharomyces cerevisiae and several gene-disrupted strains lacking different acidic ribosomal protein genes. The distribution of the chimeric proteins between the cytoplasm and the ribosomes, tested as beta-galactosidase activity, was estimated. Hybrid proteins containing around a minimum of 65-75 amino acids from their amino-terminal domain are able to bind to the ribosomes in the presence of the complete native proteins. Hybrid proteins containing no more than 36 amino terminal amino acids bind to the ribosomes in the absence of a competing native protein. The fused YP1-beta-galactosidase proteins are also able to form a complex with the native YP2 type proteins, promoting their binding to the ribosome. The stability of the hybrid polypeptides seems to be inversely proportional to the size of their P protein fragment. These results indicate that only the amino-terminal domain of the eukaryotic P proteins is needed for the P1-P2 complex formation required for interaction with the ribosome. The highly conserved P protein carboxyl end is not implicated in the binding to the particles and is exposed to the medium.
Collapse
Affiliation(s)
- M P Jose
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Canto Blanco, Madrid
| | | | | | | | | |
Collapse
|
38
|
Weglöhner W, Subramanian A. Multicopy GTPase center protein L12 of Arabidopsis chloroplast ribosome is encoded by a clustered nuclear gene family with the expressed members closely linked to tRNA(Pro) genes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37288-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Bermejo B, Remacha M, Ortiz-Reyes B, Santos C, Ballesta J. Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Schmidt J, Bubunenko M, Subramanian AR. A novel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rplKAJL) in cyanobacterium Synechocystis PCC 6803. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74268-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
White-Ziegler CA, Low DA. Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 1992; 174:7003-12. [PMID: 1356970 PMCID: PMC207381 DOI: 10.1128/jb.174.21.7003-7012.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous work showed that pap pilin gene transcription is subject to a thermoregulatory control mechanism under which pap pilin is not transcribed at a low temperature (23 degrees C) (L. B. Blyn, B. A. Braaten, C. A. White-Ziegler, D. H. Rolfson, and D. A. Low, EMBO J. 8:613-620, 1989). In order to isolate genes involved in this temperature regulation of gene expression, chromosomal mini-Tn10 (mTn10) mutations that allowed transcription of the pap pilin gene at 23 degrees C were identified, and the locus was designated tcp, for "thermoregulatory control of pap" (C. A. White-Ziegler, L. B. Blyn, B. A. Braaten, and D. A. Low, J. Bacteriol. 172:1775-1782, 1990). In the present study, quantitative analysis showed that the tcp mutations restore pap pilin transcription at 23 degrees C to levels similar to those measured at 37 degrees C. By in vivo recombination, the tcp mutations were mapped to phage E4H10S of the Kohara library of the Escherichia coli chromosome (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). The tcp locus was cloned by complementation, in which a 1.3-kb DNA fragment, derived from the Kohara phage, was shown to restore thermoregulation to the mTn10 mutants. DNA sequencing revealed two open reading frames (ORFs) encoding proteins with calculated molecular masses of 22.7 and 20.3 kDa. The sequence of the 22.7-kDa ORF was identical to that of rimJ, the N-terminal acetylase of the ribosomal protein S5. The gene encoding the 20.3-kDa ORF, designated g20.3 here, did not display significant homology to any known DNA or protein sequence. On the basis of Northern (RNA) blot data, rimJ and g20.3 are located within the same operon. Two of the mTn10 transposons in the thermoregulatory mutants were inserted within the coding region of rimJ, indicating that the RimJ protein plays an important role in the temperature regulation of pap pilin gene transcription. However, rimJ itself is not thermoregulated, since rimJ transcripts were detected at both 23 and 37 degrees C. Disruption of the g20.3 gene by insertion and deletion mutagenesis did not affect thermoregulation of the pap operon, suggesting that, although g20.3 lies within the same operon as rimJ, it does not play a role in thermoregulation.
Collapse
Affiliation(s)
- C A White-Ziegler
- Department of Pathology, University of Utah Medical Center, Salt Lake City 84132
| | | |
Collapse
|
42
|
Liao D, Dennis P. The organization and expression of essential transcription translation component genes in the extremely thermophilic eubacterium Thermotoga maritima. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50016-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Zecherle G, Oleinikov A, Traut R. The proximity of the C-terminal domain of Escherichia coli ribosomal protein L7/L12 to L10 determined by cysteine site-directed mutagenesis and protein-protein cross-linking. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42637-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Elhag GA, Thomas FJ, McCreery TP, Bourque DP. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor. Nucleic Acids Res 1992; 20:689-97. [PMID: 1542565 PMCID: PMC312006 DOI: 10.1093/nar/20.4.689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco.
Collapse
Affiliation(s)
- G A Elhag
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
45
|
Chan YL, Wool IG. The structure of a gene containing introns and encoding rat ribosomal protein P2. Nucleic Acids Res 1991; 19:4895-900. [PMID: 1923757 PMCID: PMC328786 DOI: 10.1093/nar/19.18.4895] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The single rat ribosomal protein P2 gene containing introns has been characterized. It has 2275 nucleotides distributed in 5 exons and 4 introns. The sequence of amino acids encoded in the exons corresponds exactly to that derived before from a cDNA. Only this one P2 gene in a family of approximately 9 members has introns and is expressed. There are two transcriptional start sites (adjacent cytidine residues) located in a tract of 10 pyrimidines flanked by GC-rich regions. The P2 gene, like other mammalian ribosomal protein genes, lacks a TATA box; however, it has at positions -30 to -27 the sequence TTTA which may be a degenerate TATA box and may serve the same function. The architecture of the P2 gene, and especially the structure of the promoter region, resembles that of other mammalian ribosomal protein genes. This suggests that the common features contribute to the coordinate regulation of their transcription and that the stoichiometry of P2 (it is present in 2 copies in the ribosome) is achieved by regulation of the translation of its mRNA.
Collapse
Affiliation(s)
- Y L Chan
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | |
Collapse
|
46
|
Wool IG, Chan YL, Glück A, Suzuki K. The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 1991; 73:861-70. [PMID: 1742361 DOI: 10.1016/0300-9084(91)90127-m] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The covalent structures of rat ribosomal proteins P0, P1, and P2 were deduced from the sequences of nucleotides in recombinant cDNAs. P0 contains 316 amino acids and has a molecular weight of 34,178; P1 has 114 residues and a molecular weight of 11,490: and P2 has 115 amino acids and a molecular weight of 11,684. The rat P-proteins have a near identical (16 of 17 residues) sequence of amino acids at their carboxyl termini and are related to analogous proteins in other eukaryotic species. A proposal is made for a uniform nomenclature for rat and yeast ribosomal proteins.
Collapse
Affiliation(s)
- I G Wool
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
47
|
Smooker PM, Schmidt J, Subramanian AR. The nuclear:organelle distribution of chloroplast ribosomal proteins genes. Features of a cDNA clone encoding the cytoplasmic precursor of L11. Biochimie 1991; 73:845-51. [PMID: 1764529 DOI: 10.1016/0300-9084(91)90064-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of chloroplast ribosomal proteins are encoded in the nuclear genome. In order to characterize these proteins through their mRNA, we have previously constructed a spinach cDNA expression library and raised antisera to several spinach chloroplast ribosomal proteins. Here we describe the immuno isolation of cDNA clones encoding protein L11 and its chloroplast-targeting presequence. The cytoplasmic precursor form of L11 is 224 amino acid residues long (Mr 23,662); the mature L11 and the transit sequence are predicted to be of approximately 159 and approximately 65 residues, respectively. The predicted chloroplast L11 is significantly longer than the E coli L11, but similar (in size) to archaebacterial and yeast cytoplasmic L11. In sequence it is closer to E coli L11 (54% identity) than to the archaebacterial (32%) or yeast (23%) proteins. These results and the conservation of the contexts of the 3 methyl modified residues found in E coli L11 are discussed in the light of the endosymbiont theory and nuclear relocation of the rp/KAJL gene cluster.
Collapse
Affiliation(s)
- P M Smooker
- Max-Planck-Institut für Molekuläre Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| | | | | |
Collapse
|
48
|
Uemura Y, Isono S, Isono K. Cloning, characterization, and physical location of the rplY gene which encodes ribosomal protein L25 in Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:341-4. [PMID: 2034228 DOI: 10.1007/bf00273625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rplY gene of Escherichia coli K12 encoding ribosomal protein L25 was cloned from the ordered clone bank and located at coordinate 2,291 kb on the physical map of E. coli. Determination of the nucleotide sequence indicated that the coding region contains 285 nucleotide pairs including a translational initiator and terminator. The amino acid sequence of the protein deduced from the nucleotide sequence matched completely the sequence determined for ribosomal protein L25. The coding region was found to be preceded by a typical promoter-like sequence and was followed by a DNA region capable of forming a secondary structure characteristic of a transcriptional terminator. Thus, the gene was concluded to constitute a transcriptional unit (operon). A preliminary analysis by Northern blot supported this conclusion. The codon usage pattern of the rplY gene is characteristic of the ribosomal protein genes in E. coli.
Collapse
Affiliation(s)
- Y Uemura
- Department of Biology, Faculty of Science, Kobe University, Japan
| | | | | |
Collapse
|
49
|
Liljas A. Comparative biochemistry and biophysics of ribosomal proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 124:103-36. [PMID: 2001915 DOI: 10.1016/s0074-7696(08)61525-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Liljas
- Department of Molecular Biophysics, Lund University, Sweden
| |
Collapse
|
50
|
Occurrence in the archaebacterium Sulfolobus solfataricus of a ribosomal protein complex corresponding to Escherichia coli (L7/L12)4.L10 and eukaryotic (P1)2/(P2)2.P0. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30576-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|