1
|
The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis. Virology 2013; 441:1-11. [PMID: 23561461 DOI: 10.1016/j.virol.2013.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/23/2022]
Abstract
Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient "central DNA flap" in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors.
Collapse
|
2
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
3
|
Strand transfer events during HIV-1 reverse transcription. Virus Res 2008; 134:19-38. [PMID: 18279992 DOI: 10.1016/j.virusres.2007.12.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses replicate through reverse transcription, a process in which the single stranded RNA of the viral genome is converted to a double stranded DNA. The virally encoded reverse transcriptase (RT) mediates reverse transcription through DNA polymerase and RNase H activities. Conversion of the plus strand RNA to plus/minus strand RNA/DNA hybrid involves a transfer of the growing DNA strand from one site on the genomic RNA to another. This is called minus strong-stop DNA transfer. Later synthesis of the second or plus DNA strand involves a second strand transfer, involving a similar mechanism as the minus strand transfer. A basic feature of the strand transfer mechanism is the use of the RT RNase H to remove segments of the RNA template strand from the growing DNA strand, freeing a single stranded region to anneal to the second site. Viral nucleocapsid protein (NC) functions to promote transfer by facilitating this strand exchange process. Two copies of the RNA genomes, sometimes non-identical, are co-packaged in the genomes of retroviruses. The properties of the reverse transcriptase allow a transfer of the growing DNA strand between these genomes to occur occasionally at any point during reverse transcription, producing recombinant viral progeny. Recombination promotes structural diversity of the virus that helps it to survive host immunity and drug therapy. Recombination strand transfer can be forced by a break in the template, or can occur at sites where folding structure of the template pauses the RT, allowing a concentration of RNase H cleavages that promote transfers. Transfer can be a simple one-step process, or can proceed by a complex multi-step invasion mechanism. In this latter process, the second RNA template interacts with the growing DNA strand well behind the DNA 3'-terminus. The newly formed RNA-DNA hybrid expands by branch migration and eventually catches the elongating DNA primer 3'-terminus to complete the transfer. Transfers are also promoted by interactions between the two RNA templates, which accelerate transfer by a proximity effect. Other details of the role of strand transfers in reverse transcription and the biochemical features of the transfer reaction are discussed.
Collapse
|
4
|
Song M, Basu VP, Hanson MN, Roques BP, Bambara RA. Proximity and branch migration mechanisms in HIV-1 minus strand strong stop DNA transfer. J Biol Chem 2007; 283:3141-3150. [PMID: 18073206 DOI: 10.1074/jbc.m707343200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 minus strand transfer was measured using a genomic donor-acceptor template system in vitro. Donor RNA D199, having the minimum region required for minus strong stop DNA synthesis, was previously shown to transfer with 35% efficiency to an acceptor RNA representing the 3' repeat region. Donor D520, having an additional 321-nucleotide segment extending into gag, transferred at 75% efficiency. In this study each transfer step was analyzed to account for the difference. Measurement of terminal transfer indicated that the 3' terminus of the cDNA generated using D520 is more accessible for transfer than that of D199. Nevertheless, acceptor competition experiments demonstrated that D520 has a greater preference for invasion-driven versus terminal transfer than D199. Competition mapping showed that the base of the transactivation response element is the primary invasion site for D520, important for efficient acceptor invasion. Acceptors complementary to the invasion and terminal transfer sites, but not the region between, allowed assessment of the significance of hybrid propagation by branch migration. These bipartite acceptors showed that with D520, invasion raises the local concentration of the acceptor for efficient terminal transfer by a proximity effect. However, with D199, invasion is relatively inefficient, and the cDNA 3' terminus is not very accessible. For most transfers that occurred, the acceptor accessed the cDNA 3' end by branch migration. Results suggest that both proximity and branch migration mechanisms contribute to transfers, with the proportion determined by donor-cDNA structure. D520 transfers better because it has greater accessibility for both invasion and terminus transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Vandana P Basu
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Mark N Hanson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Bernard P Roques
- Departement de Pharmacochimie Moleculaire et Structurale, INSERM U266, CNRS UMR 8600, Faculte de Pharmacie, 4, Avenue De l'Observatoire, 75270 Paris Cedex 06, France
| | - Robert A Bambara
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642.
| |
Collapse
|
5
|
Thomas DC, Voronin YA, Nikolenko GN, Chen J, Hu WS, Pathak VK. Determination of the ex vivo rates of human immunodeficiency virus type 1 reverse transcription by using novel strand-specific amplification analysis. J Virol 2007; 81:4798-807. [PMID: 17314159 PMCID: PMC1900155 DOI: 10.1128/jvi.02471-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1), like all organisms, involves synthesis of a minus-strand and a plus-strand of nucleic acid. Currently available PCR methods cannot distinguish between the two strands of nucleic acids. To carry out detailed analysis of HIV-1 reverse transcription from infected cells, we have developed a novel strand-specific amplification (SSA) assay using single-stranded padlock probes that are specifically hybridized to a target strand, ligated, and quantified for sensitive analysis of the kinetics of HIV-1 reverse transcription in cells. Using SSA, we have determined for the first time the ex vivo rates of HIV-1 minus-strand DNA synthesis in 293T and human primary CD4(+) T cells ( approximately 68 to 70 nucleotides/min). We also determined the rates of minus-strand DNA transfer ( approximately 4 min), plus-strand DNA transfer ( approximately 26 min), and initiation of plus-strand DNA synthesis ( approximately 9 min) in 293T cells. Additionally, our results indicate that plus-strand DNA synthesis is initiated at multiple sites and that several reverse transcriptase inhibitors influence the kinetics of minus-strand DNA synthesis differently, providing insights into their mechanism of inhibition. The SSA technology provides a novel approach to analyzing DNA replication processes and should facilitate the development of new antiretroviral drugs that target specific steps in HIV-1 reverse transcription.
Collapse
Affiliation(s)
- David C Thomas
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
6
|
Song M, Balakrishnan M, Chen Y, Roques BP, Bambara RA. Stimulation of HIV-1 minus strand strong stop DNA transfer by genomic sequences 3' of the primer binding site. J Biol Chem 2006; 281:24227-35. [PMID: 16782713 DOI: 10.1074/jbc.m603097200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) minus strand transfer was examined using a genomic RNA sequence-based donor-acceptor template system. The donor RNA, D199, was a 199-nucleotide sequence from the 5'-end of the genome to the primer binding site (PBS) and shared 97 nucleotides of homology with the acceptor RNA. To investigate the influence of RNA structure on transfer, a second donor RNA, D520, was generated by extending the 3'-end of D199 to include an additional 321 nucleotides of the genome. The position of priming, length of homology with the acceptor, and length of cDNA synthesized were identical with the two donors. Interestingly, at 200% NC coating, donor D520 yielded a transfer efficiency of about 75% compared with about 35% with D199. A large proportion of the D520 promoted transfers occurred after the donor RNA was copied to the end. Analysis of donor RNA cleavage, the acceptor invasion site and R homology requirements indicated that transfers with D520 involved a similar but more efficient acceptor invasion mechanism compared with D199. RNA structure probing by RNase T1 and the RT pause profile during synthesis indicated conformational differences between D199 and D520 in the starting structure, and in dynamic structures formed during synthesis within the R region. Overall observations suggest that regions 3' of the primer binding site influence the conformation of the R region of D520 to facilitate steps that promote strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
7
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
8
|
Chen Y, Balakrishnan M, Roques BP, Bambara RA. Steps of the acceptor invasion mechanism for HIV-1 minus strand strong stop transfer. J Biol Chem 2003; 278:38368-75. [PMID: 12878597 DOI: 10.1074/jbc.m305700200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minus strand strong stop transfer is obligatory for completion of HIV-1 minus strand synthesis. We previously showed evidence for an acceptor invasion-initiated mechanism for minus strand transfer. In the present study, we examined the major acceptor invasion initiation site using a minus strand transfer system in vitro, containing the 97-nucleotide full-length R region. A series of DNA oligonucleotides complementary to different regions of the cDNA was designed to interfere with transfer. Oligomers covering the region around the base of the TAR hairpin were most effective in inhibiting transfer, suggesting that the hairpin base is a preferred site for acceptor invasion. The strong pausing of reverse transcriptase at the base of the TAR and the concomitant RNase H cleavages 10-19 nucleotides behind the pause site correlated with the location of the invasion site. Oligomers closer to the 5'-end of R also inhibited transfer, though less effectively, presumably by blocking strand exchange and branch migration. We propose that pausing of reverse transcriptase at the base of TAR increases RNase H cleavages, creating gaps for acceptor invasion and transfer initiation. Strand exchange then propagates by branch migration, displacing the fragmented donor RNA, including the fragment at the 5' terminus. The primer terminus switches to the acceptor, completing the transfer. Nucleocapsid (NC) protein stimulated transfer efficiency by 5-7-fold. NC enhanced RNase H cleavages close to the TAR base, creating more effective invasion sites for efficient transfer. Most likely, NC also stimulates transfer by promoting strand exchange invasion and branch migration.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
9
|
Marr SF, Telesnitsky A. Mismatch extension during strong stop strand transfer and minimal homology requirements for replicative template switching during Moloney murine leukemia virus replication. J Mol Biol 2003; 330:657-74. [PMID: 12850138 PMCID: PMC7173232 DOI: 10.1016/s0022-2836(03)00597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reverse transcription requires two replicative template switches, called minus and plus strand strong stop transfer, and can include additional, recombinogenic switches. Donor and acceptor template homology facilitates both replicative and recombinogenic transfers, but homology-independent determinants may also contribute. Here, improved murine leukemia virus-based assays were established and the effects of varying extents of mismatches and complementarity between primer and acceptor template regions were assessed. Template switch accuracy was addressed by examining provirus structures, and efficiency was measured using a competitive titer assay. The results demonstrated that limited mismatch extension occurred readily during both minus and plus strand transfer. A strong bias for correct targeting to the U3/R junction and against use of alternate regions of homology was observed during minus strand transfer. Transfer to the U3/R junction was as accurate with five bases of complementarity as it was with an intact R, and as few as 3nt targeted transfer to a limited extent. In contrast, 12 base recombinogenic acceptors were utilized poorly and no accurate switch was observed when recombination acceptors retained only five bases of complementarity. These findings confirm that murine leukemia virus replicative and recombinogenic template switches differ in homology requirements, and support the notion that factors other than primer-template complementarity may contribute to strong stop acceptor template recognition.
Collapse
|
10
|
Chen Y, Balakrishnan M, Roques BP, Fay PJ, Bambara RA. Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription. J Biol Chem 2003; 278:8006-17. [PMID: 12499370 DOI: 10.1074/jbc.m210959200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus minus strand strong stop transfer (minus strand transfer) requires reverse transcriptase-associated RNase H, R sequence homology, and viral nucleocapsid protein. The minus strand transfer mechanism in human immunodeficiency virus-1 was examined in vitro with purified protein and substrates. Blocking donor RNA 5'-end cleavage inhibited transfers when template homology was 19 nucleotides (nt) or less. Cleavage of the donor 5'-end occurred prior to formation of transfer products. This suggests that when template homology is short, transfer occurs through a primer terminus switch-initiated mechanism, which requires cleavage of the donor 5' terminus. On templates with 26-nt and longer homology, transfer occurred before cleavage of the donor 5' terminus. Transfer was unaffected when donor 5'-end cleavages were blocked but was reduced when internal cleavages within the donor were restricted. Based on the overall data, we conclude that in human immunodeficiency virus-1, which contains a 97-nt R sequence, minus strand transfer occurs through an acceptor invasion-initiated mechanism. Transfer is initiated at internal regions of the homologous R sequence without requiring cleavage at the donor 5'-end. The acceptor invades at gaps created by reverse transcriptase-RNase H in the donor-cDNA hybrid. The fragmented donor is eventually strand-displaced by the acceptor, completing the transfer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
11
|
Julias JG, Ferris AL, Boyer PL, Hughes SH. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 2001; 75:6537-46. [PMID: 11413321 PMCID: PMC114377 DOI: 10.1128/jvi.75.14.6537-6546.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amount of excess polymerase and RNase H activity in human immunodeficiency virus type 1 virions was measured by using vectors that undergo a single round of replication. Vectors containing wild-type reverse transcriptase (RT), vectors encoding the D110E mutation to inactivate polymerase, and vectors encoding mutations D443A and E478Q to inactivate RNase H were constructed. 293 cells were cotransfected with different proportions of plasmids encoding these vectors to generate phenotypically mixed virions. The resulting viruses were used to infect human osteosarcoma cells, and the relative infectivity of the viruses was determined by measuring transduction of the murine cell surface marker CD24, which is encoded by the vectors. The results indicated that there is an excess of both polymerase and RNase H activities in virions. Viral replication was reduced to 42% of wild-type levels in virions with where half of the RT molecules were predicted to be catalytically active but dropped to 3% of wild-type levels when 25% of the RT molecules were active. However, reducing RNase H activity had a lesser effect on viral replication. As expected, based on previous work with murine leukemia virus, there was relatively inefficient virus replication when the RNase H and polymerase activities were encoded on separate vectors (D110E plus E478Q and D110E plus D443A). To determine how virus replication failed when polymerase and RNase H activities were reduced, reverse transcription intermediates were measured in vector-infected cells by using quantitative real-time PCR. The results indicated that using the D11OE mutation to reduce the amount of active polymerase reduced the number of reverse transcripts that were initiated and also reduced the amounts of products from the late stages of reverse transcription. If the E478Q mutation was used to reduce RNase H activity, the number of reverse transcripts that were initiated was reduced; there was also a strong effect on minus-strand transfer.
Collapse
Affiliation(s)
- J G Julias
- HIV Drug Resistance Program, NCI-Frederick, Building 539, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
12
|
Shen N, Jetté L, Liang C, Wainberg MA, Laughrea M. Impact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging. J Virol 2000; 74:5729-35. [PMID: 10823883 PMCID: PMC112063 DOI: 10.1128/jvi.74.12.5729-5735.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kissing-loop domain (KLD) encompasses a stem-loop, named kissing-loop or dimerization initiation site (DIS) hairpin (nucleotides [nt] 248 to 270 in the human immunodeficiency virus type 1 strains HIV-1(Lai) and HIV-1(Hxb2)), seated on top of a 12-nt stem-internal loop called stem-loop B (nt 243 to 247 and 271 to 277). Destroying stem-loop B reduced genome dimerization by approximately 50% and proviral DNA synthesis by approximately 85% and left unchanged the dissociation temperature of dimeric genomic RNA. The most affected step of reverse transcription was plus-strand DNA transfer, which was reduced by approximately 80%. Deleting nt 241 to 256 or 200 to 256 did not reduce genome dimerization significantly more than the destruction of stem-loop B or the DIS hairpin. We conclude that the KLD is nonmodular: mutations in stem-loop B and in the DIS hairpin have similar effects on genome dimerization, reverse transcription, and encapsidation and are also "nonadditive"; i.e., a larger deletion spanning both of these structures has the same effects on genome dimerization and encapsidation as if stem-loop B strongly impacted DIS hairpin function and vice versa. A C258G transversion in the palindrome of the kissing-loop reduced genome dimerization by approximately 50% and viral infectivity by approximately 1.4 log. Two mutations, CGCG261-->UUAA261 (creating a weaker palindrome) and a Delta241-256 suppressor mutation, were each able to reduce genome dimerization but leave genome packaging unaffected.
Collapse
MESH Headings
- Animals
- Base Pairing/genetics
- Binding Sites
- Capsid/genetics
- Capsid Proteins
- Cell Line
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Dimerization
- Gene Products, gag/genetics
- Genes, Suppressor/genetics
- Genome, Viral
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Models, Biological
- Mutation/genetics
- Nucleic Acid Conformation
- Peptide Fragments/genetics
- Proviruses/genetics
- RNA Stability
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Temperature
- Transcription, Genetic
- Viral Proteins
- Virus Assembly
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- N Shen
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
13
|
Klarmann GJ, Yu H, Chen X, Dougherty JP, Preston BD. Discontinuous plus-strand DNA synthesis in human immunodeficiency virus type 1-infected cells and in a partially reconstituted cell-free system. J Virol 1997; 71:9259-69. [PMID: 9371584 PMCID: PMC230228 DOI: 10.1128/jvi.71.12.9259-9269.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication requires conversion of viral RNA to double-stranded DNA. To better understand the molecular mechanisms of this process, we examined viral DNA synthesis in a simple cell-free system that uses the activities of HIV-1 reverse transcriptase to convert regions of single-stranded HIV-1 RNA to double-stranded DNA in a single incubation. This system recapitulated several of the required intermediate steps of viral DNA synthesis: RNA-templated minus-strand polymerization, preferential plus-strand initiation at the central and 3' HIV-1 polypurine tracts, and DNA-templated plus-strand polymerization. Secondary sites of plus-strand initiation were also observed at low frequency both in the cell-free system and in cultured virus. Direct comparison of viral and cell-free products revealed differences in the precision and selectivity of plus-strand initiation, suggesting that the cell-free system lacks one or more essential replication components. These studies provide clues about mechanisms of plus-strand initiation and serve as a starting point for the development of more complex multicomponent cell-free systems.
Collapse
Affiliation(s)
- G J Klarmann
- Department of Biochemistry, Eccles Institute of Human Genetics and the Huntsman Cancer Institute, University of Utah, Salt Lake City 84112-5330, USA
| | | | | | | | | |
Collapse
|
14
|
Burnett BP, McHenry CS. Posttranscriptional modification of retroviral primers is required for late stages of DNA replication. Proc Natl Acad Sci U S A 1997; 94:7210-5. [PMID: 9207070 PMCID: PMC23794 DOI: 10.1073/pnas.94.14.7210] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During reverse transcription of retroviral RNA, synthesis of (-) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5' long terminal repeat. For (+) strand synthesis using a (-) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3' terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (-) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.
Collapse
Affiliation(s)
- B P Burnett
- Department of Biochemistry, Biophysics, and Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, 4200 East 9th Avenue, B121, Denver, CO 80262, USA
| | | |
Collapse
|
15
|
Blain SW, Goff SP. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J Virol 1995; 69:4440-52. [PMID: 7539510 PMCID: PMC189186 DOI: 10.1128/jvi.69.7.4440-4452.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To determine the various roles of RNase H in reverse transcription, we generated a panel of mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase based on sequence alignments and the crystal structures of Escherichia coli and human immunodeficiency virus type 1 RNases H (S. W. Blain and S. P. Goff, J. Biol. Chem. 268:23585-23592, 1993). These mutations were introduced into a full-length provirus, and the resulting genomes were tested for infectivity by transient transfection assays or after generation of stable producer lines. Several of the mutant viruses replicated normally, some showed significant delays in infectivity, and others were noninfectious. Virions were collected, and the products of the endogenous reverse transcription reaction were examined to determine which steps might be affected by these mutations. Some mutants left their minus-strand strong-stop DNA in RNA-DNA hybrid form, in a manner similar to that of RNase H null mutants. Some mutants showed increased polymerase pausing. Others were impaired in first-strand translocation, independently of their wild-type ability to degrade genomic RNA, suggesting a new role for RNase H in strand transfer. DNA products synthesized in vivo by the wild-type and mutant viruses were also examined. Whereas wild-type virus did not accumulate detectable levels of minus-strand strong-stop DNA, several mutants were blocked in translocation and did accumulate this intermediate. These results suggest that in vivo wild-type virus normally translocates minus-strand strong-stop DNA efficiently.
Collapse
Affiliation(s)
- S W Blain
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
16
|
Zhang H, Zhang Y, Spicer T, Henrard D, Poiesz BJ. Nascent human immunodeficiency virus type 1 reverse transcription occurs within an enveloped particle. J Virol 1995; 69:3675-82. [PMID: 7745716 PMCID: PMC189083 DOI: 10.1128/jvi.69.6.3675-3682.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although a small amount of viral DNA has been shown to be enclosed within human immunodeficiency virus type 1 (HIV-1) virions, the majority of full-length viral DNA is formed after this virus infects target cells. Hence, we undertook investigations to identify the physical characteristics of the HIV-1 replication unit during the early events of infection. In these studies, nascent viral DNA synthesis was found to occur between 15 and 30 min after purified, DNase-treated HIV-1 virions were added to HUT 78 cells. At 1 h postinfection, a large amount of strong-stop viral DNA and some first-strand viral DNA had been synthesized. Several lines of evidence, including purification, nuclease digestion, and immunoprecipitation, indicated that these nascent viral DNAs were located within particles containing components such as reverse transcriptase and p24gag and gp120env proteins and having physical characteristics similar to those of intact virions.
Collapse
Affiliation(s)
- H Zhang
- Department of Medicine, State University of New York Health Science Center at Syracuse 13210, USA
| | | | | | | | | |
Collapse
|
17
|
Schwartz JR, Duesberg S, Duesberg PH. DNA recombination is sufficient for retroviral transduction. Proc Natl Acad Sci U S A 1995; 92:2460-4. [PMID: 7708665 PMCID: PMC42237 DOI: 10.1073/pnas.92.7.2460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oncogenic retroviruses carry coding sequences that are transduced from cellular protooncogenes. Natural transduction involves two nonhomologous recombinations and is thus extremely rare. Since transduction has never been reproduced experimentally, its mechanism has been studied in terms of two hypotheses: (i) the DNA model, which postulates two DNA recombinations, and (ii) the RNA model, which postulates a 5' DNA recombination and a 3' RNA recombination occurring during reverse transcription of viral and protooncogene RNA. Here we use two viral DNA constructs to test the prediction of the DNA model that the 3' DNA recombination is achieved by conventional integration of a retroviral DNA 3' of the chromosomal protooncogene coding region. For the DNA model to be viable, such recombinant viruses must be infectious without the purportedly essential polypurine tract (ppt) that precedes the 3' long terminal repeat (LTR) of all retroviruses. Our constructs consist of a ras coding region from Harvey sarcoma virus which is naturally linked at the 5' end to a retroviral LTR and artificially linked at the 3' end either directly (construct NdN) or by a cellular sequence (construct SU) to the 5' LTR of a retrovirus. Both constructs lack the ppt, and the LTR of NdN even lacks 30 nucleotides at the 5' end. Both constructs proved to be infectious, producing viruses at titers of 10(5) focus-forming units per ml. Sequence analysis proved that both viruses were colinear with input DNAs and that NdN virus lacked a ppt and the 5' 30 nucleotides of the LTR. The results indicate that DNA recombination is sufficient for retroviral transduction and that neither the ppt nor the complete LTR is essential for retrovirus replication. DNA recombination explains the following observations by others that cannot be reconciled with the RNA model: (i) experimental transduction is independent of the packaging efficiency of viral RNA, and (ii) experimental transduction may invert sequences with respect to others, as expected for DNA recombination during transfection.
Collapse
Affiliation(s)
- J R Schwartz
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA
| | | | | |
Collapse
|
18
|
Zhang H, Bagasra O, Niikura M, Poiesz BJ, Pomerantz RJ. Intravirion reverse transcripts in the peripheral blood plasma on human immunodeficiency virus type 1-infected individuals. J Virol 1994; 68:7591-7. [PMID: 7933148 PMCID: PMC237208 DOI: 10.1128/jvi.68.11.7591-7597.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Variable levels of viral DNA have been demonstrated within human immunodeficiency virus type 1 (HIV-1) virions purified from cell cultures. In the present studies, it is demonstrated that DNase-resistant viral DNA is associated with HIV-1 virions purified from the peripheral blood plasma of both symptomatic and asymptomatic HIV-1-infected individuals. The differences in viral DNA copy numbers, detected by quantitative PCR in various regions of the HIV-1 genome, indicated that the intravirion HIV-1 DNA is frequently, but perhaps not totally, the result of partial reverse transcription. These in vivo data suggest that it may be valuable to further investigate the impact of virion-associated viral DNA upon the efficiency of intra- and interhost HIV-1 transmission modes.
Collapse
Affiliation(s)
- H Zhang
- Dorrance H. Hamilton Laboratories, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
19
|
O'Brien WA, Namazi A, Kalhor H, Mao SH, Zack JA, Chen IS. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J Virol 1994; 68:1258-63. [PMID: 7507180 PMCID: PMC236573 DOI: 10.1128/jvi.68.2.1258-1263.1994] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human immunodeficiency virus type 1 infection of mononuclear phagocytes has been implicated in disease manifestations, but postentry viral replication events in these cells have not been well characterized. Productive infection of activated T cells is associated with cell proliferation and accumulation of full-length viral DNA within 6 h. In infected, nondividing quiescent peripheral blood lymphocytes, reverse transcription is aborted prior to full-length viral DNA formation. For nondividing, cultured mononuclear phagocytes, we now report a third pattern of reverse transcription with relatively slow kinetics, in which full-length viral DNA did not accumulate until 36 to 48 h. The reverse transcription rate in mononuclear phagocytes could be accelerated by addition of exogenous nucleotide precursors, but still not to the rate seen in activated T cells. These results indicate that substrate limitations in mononuclear phagocytes slow but do not arrest human immunodeficiency virus type 1 reverse transcription.
Collapse
Affiliation(s)
- W A O'Brien
- Department of Medicine, Veterans Affairs Medical Center, West Los Angeles, California 90073
| | | | | | | | | | | |
Collapse
|
20
|
Dunn MM, Olsen JC, Swanstrom R. Characterization of unintegrated retroviral DNA with long terminal repeat-associated cell-derived inserts. J Virol 1992; 66:5735-43. [PMID: 1382140 PMCID: PMC241448 DOI: 10.1128/jvi.66.10.5735-5743.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used a replication-competent shuttle vector based on the genome of Rous sarcoma virus to characterize genomic rearrangements that occur during retrovirus replication. The strategy involved cloning circular DNA that was generated during an acute infection. While analyzing a class of retroviral DNA clones that are greater than full length, we found several clones which had acquired nonviral inserts in positions adjacent to the long terminal repeats (LTRs). There appear to be two distinct mechanisms leading to the incorporation of cellular sequences into these clones. Three of the molecules contain a cell-derived insert at the circle junction site between two LTR units. Two of these molecules appear to be the results of abortive integration attempts, because of which, in each case, one of the LTRs is missing 2 bases at its junction with the cell-derived insert. In the third clone, pNO220, the cellular sequences are flanked by an inappropriately placed copy of the tRNA primer-binding site on one side and a partial copy of the U3 sequence as part of the LTR on the other side. A fourth molecule we characterized, pMD96, has a single LTR with a U5-bounded deletion of viral sequences spanning gag and pol, with cell-derived sequences inserted at the site of the deletion; its origin may be related mechanistically to pNO220. Sequence analysis indicates that all of the cellular inserts were derived from the cell line used for the acute infection rather than from sequences carried into the cell as part of the virus particle. Northern (RNA) analysis of cellular RNA demonstrated that the cell-derived sequences of two clones, pNO220 and pMD96, were expressed as polyadenylated RNA in uninfected cells. One mechanism for the joining of viral and cellular sequences suggested by the structures of pNO220 and pMD96 is recombination occurring during viral DNA synthesis, with cellular RNA serving as the template for the acquisition of cellular sequences.
Collapse
Affiliation(s)
- M M Dunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
21
|
Tanese N, Telesnitsky A, Goff SP. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J Virol 1991; 65:4387-97. [PMID: 1712862 PMCID: PMC248878 DOI: 10.1128/jvi.65.8.4387-4397.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reverse transcriptase enzymes of retroviruses are multifunctional proteins containing both DNA polymerase activity and a nuclease activity, termed RNase H, specific for RNA in RNA-DNA hybrid form. To determine the role of RNase H activity in retroviral replication, we constructed a series of mutant genomes of Moloney murine leukemia virus that encoded reverse transcriptase enzymes that were specifically altered to retain polymerase function but lack RNase H activity. The mutant genomes were all replication defective. Analysis of in vitro reverse transcription reactions carried out by mutant virions showed that minus-strand strong-stop DNA was formed but did not efficiently translocate to the 3' end of the genome; rather, the DNA was stably retained in RNA-DNA hybrid form. Plus-strand strong-stop DNA was not detected. These results suggest that RNase H normally promotes strong-stop translocation, perhaps by exposing single-stranded DNA sequences for base pairing. Four new DNA species were also detected among the reaction products. Analysis of these DNAs suggested that they were minus-strand DNAs formed from VL30 RNAs encoded by the mouse genome. We suggest that reverse transcriptase can initiate DNA synthesis at any one of four alternate tRNA primer-binding sites near the 5' ends of VL30 RNAs.
Collapse
Affiliation(s)
- N Tanese
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
22
|
Charneau P, Clavel F. A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J Virol 1991; 65:2415-21. [PMID: 2016765 PMCID: PMC240594 DOI: 10.1128/jvi.65.5.2415-2421.1991] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure of unintegrated human immunodeficiency virus type 1 (HIV-1) DNA from acutely infected human lymphoid cells was analyzed by nuclease S1 cleavage. We observed a unique, discrete single-stranded gap in unintegrated linear DNA molecules, located near the center of the genome. Oligonucleotide primer extension experiments determined that the downstream limit of this gap coincides with the last nucleotide of a central copy of the polypurine tract found in all sequenced lentivirus genomes. Other retroviruses have only one copy of the polypurine tract at the 5' boundary of the 3' long terminal repeat, which has been shown to determine initiation of retroviral DNA plus-strand synthesis. We conclude from our observations that the central repeat of the polypurine tract can create an additional site for plus-strand synthesis initiation in lentiviruses. The central single-stranded gap was not found in circular DNA molecules, the vast majority of them carrying only one long terminal repeat. This finding suggests that the generation of such circular molecules is associated with early DNA ligation events.
Collapse
Affiliation(s)
- P Charneau
- Unité d'Oncologie Virale, Département SIDA et Rétrovirus, Institut Pasteur, Paris, France
| | | |
Collapse
|
23
|
Abstract
Recombination occurs at a high rate in retroviral replication, and its observation requires a virion containing two different RNA molecules (heterodimeric particles). Analysis of retroviral recombinants formed after a single round of replication revealed that (i) the nonselected markers changed more frequently than expected from the rate of recombination of selected markers; (ii) the transfer of the initially synthesized minus strand strong stop DNA was either intramolecular or intermolecular; (iii) the transfer of the first synthesized plus strand strong stop DNA was always intramolecular; and (iv) there was a strong correlation between the type of transfer of the minus strand strong stop DNA and the number of template switches observed. These data suggest that retroviral recombination is ordered and occurs during the synthesis of both minus and plus strand DNA.
Collapse
Affiliation(s)
- W S Hu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706
| | | |
Collapse
|
24
|
Olsen JC, Bova-Hill C, Grandgenett DP, Quinn TP, Manfredi JP, Swanstrom R. Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J Virol 1990; 64:5475-84. [PMID: 2170682 PMCID: PMC248599 DOI: 10.1128/jvi.64.11.5475-5484.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used a replication-competent retrovirus shuttle vector based on a DNA clone of the Schmidt-Ruppin A strain of Rous sarcoma virus to characterize rearrangements in circular viral DNA. In this system, circular molecules of viral DNA present after acute infection of cultured cells were cloned as plasmids directly into bacteria. The use of a replication-competent shuttle vector permitted convenient isolation of a large number of viral DNA clones; in this study, over 1,000 clones were analyzed. The circular DNA molecules could be placed into a limited number of categories. Approximately one-third of the rescued molecules had deletions in which one boundary was very near the edge of a long terminal repeat (LTR) unit. Subtle differences in the patterns of deletions in circular DNAs with one versus two copies of the LTR sequence were observed, and differences between deletions emanating from the right and left boundaries of the LTR were seen. A virus with a missense mutation in the region of the pol gene responsible for integration and exhibiting a temperature sensitivity phenotype for replication had a marked decrease in the number of rescued molecules with LTR-associated deletions when infection was performed at the nonpermissive temperature. This result suggests that determinants in the pol gene, possibly in the integration protein, play a role in the generation of LTR-associated deletions. Sequences in a second region of the genome, probably within the viral gag gene, were also found to affect the types of circular viral DNA molecules present after infection. Sequences in this region from different strains of avian sarcoma-leukosis viruses influenced the fraction of circular molecules with LTR-associated deletions, as well as the relative proportion of circular molecules with either one or two copies of the LTR. Thus, the profile of rearrangements in unintegrated viral DNA is complex and dependent upon the nature of sequences in the gag and pol regions.
Collapse
Affiliation(s)
- J C Olsen
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
25
|
Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 1990; 9:1551-60. [PMID: 2184033 PMCID: PMC551849 DOI: 10.1002/j.1460-2075.1990.tb08274.x] [Citation(s) in RCA: 564] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During progression of the Acquired Immune Deficiency Syndrome (AIDS), the human immunodeficiency virus type 1 (HIV-1) is harbored in CD4+ T cells, which act as the primary reservoir for the virus. In vitro, HIV-1 requires activated T cells for a productive infection; however, in vivo, the number of circulating T cells in the activated state that are potential targets for HIV-1 infection is low. We have investigated the ability of HIV-1 to infect resting T cells, and the consequences of such an infection. T cell activation was not required for HIV-1 infection; however, viral DNA was unable to integrate in resting T cells and was maintained extrachromosomally. Subsequent T cell activation allowed integration of extrachromosomal forms and led to a productive viral life cycle. Extrachromosomal forms of viral DNA were found to persist for several weeks after infection of resting T cells and, following T cell activation, these forms maintained their ability to integrate and act as a template for infectious virus. Several lines of evidence, including temporal analysis of HIV-1 replication and analysis of an HIV-1 integrase deletion mutant, indicated that extra-chromosomal HIV-1 DNA genomes were transcriptionally active. These results are compatible with a model whereby HIV-1 can persist in a non-productive extra-chromosomal state in resting T cells until subsequent antigen-induced or mitogen-induced T cell activation, virus integration and release. Thus agents that induce T cell activation may control the rate of HIV-1 replication and spread during AIDS progression.
Collapse
Affiliation(s)
- M Stevenson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68105
| | | | | | | |
Collapse
|
26
|
Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61:213-22. [PMID: 2331748 DOI: 10.1016/0092-8674(90)90802-l] [Citation(s) in RCA: 1266] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Productive infection of human T lymphocytes by HIV-1 is dependent upon proliferation of the infected cell. Nonproliferating quiescent T cells can be infected by HIV-1 and harbor the virus in an inactive state until subsequent mitogenic stimulation. We use a modification of the polymerase chain reaction method, which is both sensitive and quantitative, to demonstrate that HIV-1 DNA synthesis is initiated in infected quiescent T cells at levels comparable with those of activated T cells. However, unlike that of activated T cells, the viral genome is not completely reverse transcribed in quiescent cells. Although this viral DNA structure can persist in quiescent cells as a latent form, it is labile. We discuss the lability of this HIV-1 DNA structure in relation to a "self-restricting persistent infection" by HIV-1 and propose that this may explain the low percentage of infected cells in the circulation of AIDS patients.
Collapse
Affiliation(s)
- J A Zack
- Department of Microbiology and Immunology, UCLA School of Medicine
| | | | | | | | | | | |
Collapse
|
27
|
Rattray AJ, Champoux JJ. Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H. J Mol Biol 1989; 208:445-56. [PMID: 2477553 DOI: 10.1016/0022-2836(89)90508-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reverse transcriptase-associated RNase H activity is responsible for producing the plus-strand RNA primer during reverse transcription. The major plus-strand initiation site is located within a highly conserved polypurine tract (PPT), and initiation of DNA replication at this site is necessary for proper formation of the viral long terminal repeats (LTRs). We present here a compilation of PPT sequences from an evolutionarily diverse group of retroviruses and retrotransposons, which reveals that there is a high degree of sequence conservation at this site. Furthermore, we found previously that secondary plus-strand origins, identified in vitro, also show strong similarity to the PPT. Taken together, these data suggest that RNase H recognizes a specific sequence at the PPT as a signal to cleave the RNA at a precise location, producing a primer for the initiation of plus-DNA strands. We have analyzed the RNase H recognition sequence by producing a large number of single and double mutations within the PPT. Our findings suggest that no single residue in the +5 to -6 region (where the cleavage occurs between -1 and +1) is essential; mutations at these positions introduced heterogeneity at the cleavage site, but cleavage is still predominantly at the correct location. Furthermore, base-pairing is not required at the +1 position of the RNase H cleavage site, but a mismatched base-pair at the -1 position causes imprecision in the cleavage reaction. Interestingly, the A residue at position -7 seems to be critical in positioning the RNase H enzyme for correct cleavage. The preference of the enzyme for cleaving between G and A residues may play a minor role in determining the specificity.
Collapse
Affiliation(s)
- A J Rattray
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
28
|
Bowerman B, Brown PO, Bishop JM, Varmus HE. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 1989; 3:469-78. [PMID: 2721960 DOI: 10.1101/gad.3.4.469] [Citation(s) in RCA: 298] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The integration of viral DNA into the host genome is an essential step in the retrovirus life cycle. To understand this process better, we have examined the native state of viral DNA in cells acutely infected by murine leukemia virus (MLV), using both a physical assay for viral DNA and a functional assay for integration activity (Brown et al. 1987). The viral DNA and integration activity copurify during velocity sedimentation, gel filtration, and density equilibrium centrifugation, indicating that viral DNA is in a large (approximately 160S) nucleoprotein complex that includes all functions required for integration activity in vitro. Analysis by immunoprecipitation shows that the viral capsid protein is part of the active nucleoprotein complex, but recognition of the complex by only a subset of anti-capsid sera implies that the protein is constrained conformationally. The viral DNA within this structure is accessible to nucleases; the effects of nucleases on the integrity of the complex suggest that the integration-competent particle is derived from and similar to the core of extracellular virions.
Collapse
Affiliation(s)
- B Bowerman
- Department of Biochemistry and Biophysics; University of California, San Francisco 94143
| | | | | | | |
Collapse
|
29
|
Petcu DJ, Aldrich CE, Coates L, Taylor JM, Mason WS. Suramin inhibitsin vitro infection by duck hepatitis B virus, rous sarcoma virus, and hepatitis delta virus. Virology 1988. [DOI: 10.1016/0042-6822(88)90099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Lien JM, Petcu DJ, Aldrich CE, Mason WS. Initiation and termination of duck hepatitis B virus DNA synthesis during virus maturation. J Virol 1987; 61:3832-40. [PMID: 3682060 PMCID: PMC256000 DOI: 10.1128/jvi.61.12.3832-3840.1987] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We characterized a number of important features of the structure of the cohesive overlap region of the DNA genome of duck hepatitis B virus. The 5'-terminal nucleotide of minus-strand DNA was localized to nucleotide 2537, a G residue within the 12-base repeat sequence DR1. This G residue was shown to be the site of a covalent linkage to a protein, consistent with speculation that this protein is the primer of minus-strand synthesis, which occurs by reverse transcription. The 3' terminus of the minus strand was heterogeneous, being mapped to nucleotides 2530 and 2531, indicating that the minus strand is terminally redundant by seven or eight bases and ends at the putative 5' end of the transcribed RNA template (pregenome) for reverse transcription. We previously demonstrated that the presumptive RNA primer of plus-strand synthesis remains attached to plus-strand DNA during virus maturation; moreover, the sequence of this primer suggested an origin from the 5' end of the pregenome (J.-M. Lien, C. E. Aldrich, and W. S. Mason, J. Virol. 57:229-236, 1986). We show here that over 75% of plus-strand primers are capped, further supporting the idea that these primers are uniquely derived from the 5' end of the pregenome. Finally, we found that seemingly mature duck hepatitis B virus genomes are incomplete by at least 12 bases, in that the 12-base repeat sequence DR2 is not copied into plus-strand DNA during virus maturation. Since DR2 in virion DNA is duplexed with the RNA primer of plus-strand synthesis, it is possible that the failure to make complete plus strands is due to an inability of the viral DNA polymerase to carry out a displacement of the bound RNA primer.
Collapse
Affiliation(s)
- J M Lien
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | | | |
Collapse
|
31
|
Olsen JC, Furman P, Fyfe JA, Swanstrom R. 3'-Azido-3'-deoxythymidine inhibits the replication of avian leukosis virus. J Virol 1987; 61:2800-6. [PMID: 2441079 PMCID: PMC255789 DOI: 10.1128/jvi.61.9.2800-2806.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the ability of the thymidine analog 3'-azido-3'-deoxythymidine (BWA509U) to inhibit the replication of the retrovirus avian leukosis virus. Inhibition was measured with two different assays: inhibition of a single round of virus replication and inhibition of virus spread through a cell culture. With both assays, we detected inhibition of virus growth, although inhibition of a single round of virus replication required a 40-fold higher drug concentration than did inhibition of virus spread. We also detected variations in the concentrations of drug needed to inhibit virus replication in different cell types. Higher concentrations of drug were needed to inhibit virus replication in chicken embryo fibroblasts than in the continuous quail cell line QT6. Viral DNA synthesis in infected cells was shown to be inhibited in the presence of the drug. The triphosphate form of the analog acted as a competitive inhibitor of purified viral reverse transcriptase, with a Ki of 0.09 +/- 0.003 microM, and was incorporated as a chain terminator during reverse transcription of the natural viral RNA substrate in vitro.
Collapse
|
32
|
Rattray AJ, Champoux JJ. The role of Moloney murine leukemia virus RNase H activity in the formation of plus-strand primers. J Virol 1987; 61:2843-51. [PMID: 3039172 PMCID: PMC255801 DOI: 10.1128/jvi.61.9.2843-2851.1987] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
On the basis of earlier studies with both detergent-disrupted virions (the endogenous reaction) and an in vitro reconstructed reaction, the RNase H activity associated with Moloney murine leukemia virus reverse transcriptase has been implicated in the generation of plus-strand RNA primers during reverse transcription. Here we used an oligonucleotide extension assay to show that the RNA primers remaining bound to the plus DNA strands initiated at the normal origin in the in vitro reaction are heterogeneous in length. This result indicates that, although a precise cleavage generates the 3' end of the priming RNA, RNase H exhibits less specificity at other break sites. During the endogenous reaction, a kinetic analysis of the synthesis of plus strands corresponding to different regions of the genome suggested that additional sites for the initiation of plus-strand DNA existed upstream of the normal origin. Direct analysis of fragments produced in the endogenous reaction, as well as in the in vitro reaction, confirmed the existence of upstream plus-strand initiation sites. Several of these sites were mapped to the nucleotide level by the oligonucleotide extension method. A comparison of the nucleotide sequences surrounding the upstream initiation sites with the sequence at the normal plus-strand origin revealed common features, which suggests a mechanism for plus-strand priming based on sequence recognition by the RNase H/reverse transcriptase protein. Although primer removal by RNase H is highly efficient for DNA fragments initiated at the normal origin, the RNA primers were inefficiently removed from the fragments initiated at the upstream sites. This result suggests that primer removal, like primer generation, involves sequence recognition by the enzyme.
Collapse
|
33
|
Abstract
Murine leukemia viruses (MuLVs) are retroviruses which induce a broad spectrum of hematopoietic malignancies. In contrast to the acutely transforming retroviruses, MuLVs do not contain transduced cellular genes, or oncogenes. Nonetheless, MuLVs can cause leukemias quickly (4 to 6 weeks) and efficiently (up to 100% incidence) in susceptible strains of mice. The molecular basis of MuLV-induced leukemia is not clear. However, the contribution of individual viral genes to leukemogenesis can be assayed by creating novel viruses in vitro using recombinant DNA techniques. These genetically engineered viruses are tested in vivo for their ability to cause leukemia. Leukemogenic MuLVs possess genetic sequences which are not found in nonleukemogenic viruses. These sequences control the histologic type, incidence, and latency of disease induced by individual MuL Vs.
Collapse
|
34
|
Maule AJ, Thomas CM. Evidence from cauliflower mosaic virus virion DNA for additional discontinuities in the plus strand. Nucleic Acids Res 1985; 13:7359-73. [PMID: 2414738 PMCID: PMC322049 DOI: 10.1093/nar/13.20.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two-dimensional electrophoresis of cauliflower mosaic virus (CaMV) virion DNA and analysis of Southern blots using (+) strand-specific probes to the 5' termini of the beta (5.4 Kb) and alpha (2.6 Kb) strands, revealed the presence of molecules in addition to those predicted from the known structure of CaMV DNA. The presence of 8 Kb molecules of (+) sense after denaturation suggested that a small proportion of circular molecules have only a single discontinuity in the (+) strand. Other molecules, probably 5' coterminal with the beta strand but smaller than 5.4 Kb, indicated that a minority of the circular full length CaMV DNA contain additional gaps in the (+) strand. Consequently, molecules equivalent to the remainder of the beta strand could be identified using a single strand probe for a region towards the 3'-end of the beta strand. Computer analysis of the nucleotide sequence of CaMV DNA in the region of the proposed additional discontinuities revealed regions displaying some homology with the major (+) strand priming sites at the 5' ends of the beta and alpha strands. It is our contention that the additional (+) strand molecules of beta specificity are a consequence of minor (+) strand priming sites.
Collapse
|
35
|
Olsen JC, Watson KF. RNase H-mediated release of the retrovirus RNA polyadenylate tail during reverse transcription. J Virol 1985; 53:324-9. [PMID: 2578196 PMCID: PMC255046 DOI: 10.1128/jvi.53.1.324-329.1985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By examining enzymatic reactions in vitro, we found that an early event during reverse transcription of the avian myeloblastosis virus RNA genome is the release of the 3' polyadenylate tail from the viral RNA template. By using specially constructed molecules containing minus-strand, strong-stop DNA and the 3' end of the viral RNA genome, we found that the reverse transcriptase-associated RNase H is responsible for the endonucleolytic release of polyadenylate.
Collapse
|
36
|
Abstract
We previously reported that in the endogenous reaction of Rous sarcoma virus disrupted by melittin, plus-strand DNA initiates on a small oligonucleotide primer and that this initiation can be reconstructed in vitro in reactions containing purified minus-strand DNA as template, viral RNA as a source of primer, and reverse transcriptase (Smith et al., J. Virol. 49:200-204, 1984). Further studies on the specificity of initiation in the endogenous reaction have shown the following. (i) The primer was 12 nucleotides in length. Its sequence began with a 5' pyrimidine, followed by 11 purines, ending with rGrA-3'. This sequence was in agreement with the known plus-strand RNA sequence immediately upstream from the initiation site. Thus, the primer began one nucleotide 5' to the so-called polypurine tract that has been found on all retrovirus genomes. (ii) The transition point between RNA primer and DNA product was precisely located. It was before the end of the polypurine tract. Thus the polypurine tract, although essential for virus replication and probably a flag for the priming event, did not define the limits of the RNA primer. After primer removal, the DNA had a 5' phosphate, consistent with generation by the viral RNase H activity. The priming specificity in reconstructed reactions was also examined further, with the following observations. (i) When the source of RNA primer was prehybridized to the template viral DNA, the generation, utilization, and subsequent removal of primer were essentially the same as those observed in the endogenous reaction. In the absence of deliberate prehybridization, some specificity was lost. There were than additional locations for the 5' end of the primer as well as the transition point between RNA primer and DNA. (ii) Purine-rich oligoribonucleotides created by RNase A digestion of viral RNA could prime strong-stop plus DNA, but again with the loss of specificity relative to that in the endogenous reaction. (iii) The 5' end of the minus-strand DNA template was not required for initiation of strong-stop plus DNA. Therefore, the specificity of initiation did not depend upon an intramolecular interaction requiring the two inverted repeat sequences that flank the long terminal repeat.
Collapse
|
37
|
Resnick R, Omer CA, Faras AJ. Involvement of retrovirus reverse transcriptase-associated RNase H in the initiation of strong-stop (+) DNA synthesis and the generation of the long terminal repeat. J Virol 1984; 51:813-21. [PMID: 6206236 PMCID: PMC255849 DOI: 10.1128/jvi.51.3.813-821.1984] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reconstructed enzymatic reactions containing purified reverse transcriptase and defined analog substrates which mimic those purported to be natural substances for reverse transcription in vivo were employed to delineate the mechanism of strong-stop (+) DNA synthesis. Our analysis of this system has indicated that strong-stop (+) DNA synthesis is initiated after the introduction of a nick in the viral RNA genome between a polypurine sequence and an inverted repeat that represents the end of the long terminal repeat. Since inhibitors of the reverse transcriptase-associated RNase H activity prevent the introduction of the nick and the synthesis of strong-stop (+) DNA synthesis, it appears that this particular reverse transcriptase-associated enzymatic activity is responsible for the initiation of strong-stop (+) DNA. Our data also indicated that the RNase H activity creates a second nick in the viral RNA genome 11 nucleotides upstream from the strong-stop (+) DNA initiation site since the strong-stop (+) DNA synthesized in these reactions is covalently linked to an oligoribonucleotide 11 residues in length. Nucleotide sequence analysis of the oligoribonucleotide primer molecule indicated that a single homogenous oligomer was associated with strong-stop (+) DNA exhibiting the sequence rArGrGrGrArGrGrGrGrGrA. The oligoribonucleotide primer can be removed from strong-stop (+) DNA by the purified reverse transcriptase, which creates a nick at the junction between the primer and strong-stop (+) DNA. These data demonstrate that the initiation of strong-stop (+) DNA synthesis is mediated by RNase H and that the site of initiation is exactly at the end of the long terminal repeat, providing evidence for yet another function of this reverse transcriptase-associated enzymatic activity in the synthesis of retrovirus DNA.
Collapse
|
38
|
Molnar-Kimber KL, Summers JW, Mason WS. Mapping of the cohesive overlap of duck hepatitis B virus DNA and of the site of initiation of reverse transcription. J Virol 1984; 51:181-91. [PMID: 6328037 PMCID: PMC254416 DOI: 10.1128/jvi.51.1.181-191.1984] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The hepatitis B-like viruses have a approximately 3.2 kilobase, partially double-stranded DNA genome that is held in a circular conformation by a cohesive overlap between the 5' ends of the two strands. In addition, a protein is covalently bound to the 5' end of the minus strand of virion DNA. The sequence of the cohesive overlap region and its location relative to open reading frames and to the initiation site for minus-strand DNA synthesis, which occurs by reverse transcription of viral RNA, were investigated in duck hepatitis B virus. The 5' ends of virion DNA were mapped by restriction endonuclease analysis of labeled virion DNA, S1 nuclease digestion, and primer extension, using avian myeloblastosis virus DNA polymerase. The cohesive overlap region was shown to be 69 +/- 4 base pairs in length. It contained a 10-base pair inverted repeat in approximately the middle and a 12-base pair direct repeat near each end. The apparent initiation site of reverse transcription was determined by partial sequence analysis of dideoxynucleotide-truncated minus-strand DNA intermediates and comparison of their lengths with the length of a known DNA sequence. It mapped within two to four nucleotides of the 5' end of the minus strand of virion DNA. The results are consistent with the interpretation that the 5' end of the minus strand of virion DNA is the origin of reverse transcription and that the protein covalently bound to virion DNA is the primer of reverse transcription.
Collapse
|
39
|
Finston WI, Champoux JJ. RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro. J Virol 1984; 51:26-33. [PMID: 6202882 PMCID: PMC254394 DOI: 10.1128/jvi.51.1.26-33.1984] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A 190-base-pair DNA-RNA hybrid containing the Moloney murine leukemia virus origin of plus-strand DNA synthesis was constructed and used as a source of template-primer for the reverse transcriptase in vitro. Synthesis was shown to initiate precisely at the known plus-strand origin. The observation that some of the origin fragments retained ribonucleotide residues on their 5' ends suggests that the primer for chain initiation is an RNA molecule left behind by RNase H during the degradation of the RNA moiety of the DNA-RNA hybrid. If the RNase H is responsible for creating the correct primer terminus, then it must possess a specific endonucleolytic activity capable of recognizing the sequence in the RNA where plus strands are initiated. The 16-base RNase A-resistant fragment which spans the plus-strand origin can also serve as a source of the specific plus-strand primer RNA. Evidence is presented that some of the plus-strand origin fragments synthesized in the endogenous reaction contain 5' ribonucleotides, suggesting that specific RNA primers for plus-strand initiation may be generated during reverse transcription in vivo as well.
Collapse
|
40
|
Omer CA, Resnick R, Faras AJ. Evidence for involvement of an RNA primer in initiation of strong-stop plus DNA synthesis during reverse transcription in vitro. J Virol 1984; 50:465-70. [PMID: 6200608 PMCID: PMC255649 DOI: 10.1128/jvi.50.2.465-470.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Employing enzymatic reactions in vitro, we have identified the presence of oligoribonucleotides at the 5' end of strong-stop plus [(+)] DNA. Similar results were obtained whether the strong-stop (+) DNA was synthesized by preparations of detergent-disrupted avian sarcoma virus or reconstructed reactions containing purified reverse transcriptase and a template that mimics the purported natural template for strong-stop (+) DNA synthesis. The latter reactions provide a system to delineate more precisely the discrete requirements necessary for the initiation and synthesis of this species of (+) DNA.
Collapse
|
41
|
Smith JK, Cywinski A, Taylor JM. Initiation of plus-strand DNA synthesis during reverse transcription of an avian retrovirus genome. J Virol 1984; 49:200-4. [PMID: 6197536 PMCID: PMC255442 DOI: 10.1128/jvi.49.1.200-204.1984] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two in vitro approaches were used to investigate the priming of strong-stop plus DNA by Rous sarcoma virus. This 340-base DNA species is the first major plus-strand DNA product seen in both infected cells and in endogenous reactions of disrupted virions. In the first approach, we set up a reconstructed system in which strong-stop plus DNA was synthesized by reverse transcriptase from a high-molecular-weight minus-strand viral DNA template. This synthesis was shown to be strictly dependent on the addition of primers to the reaction mixture. The addition of high-molecular-weight RNA from both viral and cellular sources, as well as oligodeoxyguanylate, gave specific synthesis of strong-stop plus DNA, whereas the addition of oligodeoxycytidylate-oligodeoxyadenylate and viral 4S RNA did not. In the second approach, strong-stop plus DNA synthesized in melittin-permeabilized virions was examined on a high-resolution polyacrylamide gel. This DNA was shown to have ca. 11 to 13 ribonucleotides at its 5' end. These results indicate that strong-stop plus DNA is initiated on a preformed RNA primer.
Collapse
|
42
|
Abstract
The unintegrated linear DNA synthesized in cells infected by Rous sarcoma virus is a predominantly double-stranded structure in which most of the minus-strand DNA, complementary to the viral RNA genome, is genome sized, whereas the plus-strand DNA is present as subgenomic fragments. We previously reported the application of benzoylated naphthoylated DEAE-cellulose chromatography to demonstrate that of the linear viral DNA species synthesized in quail embryo fibroblasts infected with Rous sarcoma virus greater than 99.5% contain single-stranded regions and these regions are predominantly composed of plus-strand DNA sequences (T. W. Hsu and J. M. Taylor, J. Virol. 44:47-53, 1982). We now present the following additional findings. (i) There were on the average 3.5 single-stranded regions per linear viral DNA, and these single-stranded regions could occur at many locations. (ii) With a probe to the long terminal repeat, we detected, in addition to a heterogeneous size distribution of subgenomic plus-strand DNA species, at least three prominent discrete size classes. Each of these discrete species had its own specific initiation site, but all had the same termination site. Such species were analogous to those reported by Kung et al. (J. Virol. 37: 127-138, 1981). (iii) These discrete size classes of plus-strand DNA were present not only on the major size class of linear DNA but also on a heterogeneous of slower-sedimenting species, which we have called immature linears. Our interpretation is that we have thus detected several additional sites for the initiation of plus-strand DNA. (iv) The 340-base plus-strand strong-stop DNA was only found associated with the immature linears. (v) From a size and hybridization comparison of these discrete size classes of plus-strand DNA with minus-strand DNA species, as synthesized in the endogenous reaction of melittin-disrupted virions, it was found that the putative additional initiation sites for plus-strand DNA synthesis corresponded to many of the pause sites in the synthesis of minus-strand DNA.
Collapse
|
43
|
Panganiban AT, Temin HM. The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 1983; 306:155-60. [PMID: 6316141 DOI: 10.1038/306155a0] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deletion of specific nucleotides at either end of the long terminal repeat of the avian retrovirus, spleen necrosis virus, results in replication-competent but integration-defective virus. This result supports two conclusions: (1) the 5-base pair terminal inverted repeats and three to seven adjacent nucleotides are required for integration; (2) integration of retrovirus DNA is not required for retrovirus gene expression.
Collapse
|
44
|
Aboud M, Dank-Nudel A, Shurtz R, Salzberg S. Evidence for a cytoplasmic factor regulating murine leukemia virus DNA synthesis and its preliminary characterization. Arch Virol 1983; 75:191-200. [PMID: 6188443 DOI: 10.1007/bf01315273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Postmitochondrial cytoplasmic extracts, prepared from uninfected NIH/3T3 cells as well as from chronically or exogenously infected with murine leukemia virus (MLV), were found to stimulate the endogenous reaction of purified MLV reverse transcriptase. No such stimulation was observed with the exogenous reaction of this enzyme, using poly (rA) oligo (dT) as an exogenous template-primer. While the stimulatory capacity of extracts from uninfected and chronically infected cells was comparable, that of the exogenously infected cells was much more powerful in this respect. The stimulatory activity could be destroyed by trypsin, indicating that it was excerted by a protein. In uninfected and chronically infected cells this protein was found to be of a short functional life time under conditions blocking continuous protein synthesis. However the mRNA coding for this factor was found in these cells to be stable. On the other hand, the increased stimulatory activity, observed in extract of exogenously infected cells, was independent on protein synthesis and therefore was attributed to a protein apparently introduced into the cells by the penetrating virions. Experiments with monospecific antibodies against MLV proteins suggested that p30 is an important accessory for reverse transcriptase activity and that the cytoplasmic stimulatory factor might be also related to p 30.
Collapse
|
45
|
Kashmiri SV, Mehdi R, Ferrer JF. Detection, purification, and characterization of two species of covalently closed circular proviral DNA molecules of bovine leukemia virus. J Virol 1983; 45:1172-6. [PMID: 6300454 PMCID: PMC256529 DOI: 10.1128/jvi.45.3.1172-1176.1983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cocultivation of uninfected and bovine leukemia virus-producing bat cells yielded, in addition to the unintegrated linear DNA duplex, DNA molecules that migrated as 4.4- and 4.8-kilobase-pair DNA fragments in gel electrophoresis. These DNA molecules were purified by acid-phenol extraction and cleaved with restriction endonucleases EcoRI, and HindIII, which have one recognition site each on the bovine leukemia virus proviral DNA. Such cleavage generated DNA molecules of approximately 10.0 and 9.4 kilobase pairs, thus indicating the existence of two species of covalently closed circular molecules of bovine leukemia virus proviral DNA.
Collapse
|
46
|
VARMUS HAROLDE. Retroviruses. Mob Genet Elements 1983. [DOI: 10.1016/b978-0-12-638680-6.50014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
47
|
Hughes SH. Synthesis, integration, and transcription of the retroviral provirus. Curr Top Microbiol Immunol 1983; 103:23-49. [PMID: 6189672 DOI: 10.1007/978-3-642-68943-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Kim JP, Kaplan HS, Fry KE. Characterization of an infective molecular clone of the B-tropic, ecotropic BL/Ka(B) murine retrovirus genome. J Virol 1982; 44:217-25. [PMID: 6292485 PMCID: PMC256255 DOI: 10.1128/jvi.44.1.217-225.1982] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Using molecular cloning techniques, we amplified the unintegrated, linear proviral DNA of the BL/Ka(B) virus, a non-leukemogenic retrovirus of mouse strain C57BL/Ka. Two independent clones in lambda phage vector 607 and one subclone in pBR322 were infective when transfected into mouse fibroblasts. Analysis of the progeny virus revealed biological properties and a restriction map identical to those of the parental viral shock. Comparison of the restriction map with the maps of other ecotropic murine viruses reveals many similarities. Particularly interesting is the comparison of the N-tropic Akv virus and the B-tropic BL/Ka(B) virus. The long terminal repeats of the two viruses are virtually identical, as are 22 of 23 restriction sites located outside of the region which spans from 1.8 to 3.8 kilobases from the left end of the genome. Within this region, however, only three of nine sites examined are shared. This suggests that the BL/Ka(B) virus was derived from an endogenous N-tropic virus closely related to Akv by recombinational events which altered the sequence in the last half of the gag gene and the first third of the pol gene. This change is probably responsible for the observed difference in the Fv-1 tropism of the two viruses.
Collapse
|
49
|
Omer CA, Faras AJ. Mechanism of release of the avian rotavirus tRNATrp primer molecule from viral DNA by ribonuclease H during reverse transcription. Cell 1982; 30:797-805. [PMID: 6183006 DOI: 10.1016/0092-8674(82)90284-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Employing enzymatic reactions containing reverse transcriptase and appropriately defined substrates, we have demonstrated that the tRNATrp primer molecule required for the initiation of DNA synthesis is cleaved from viral DNA by an enzymatic activity associated with the reverse transcriptase molecule. Since the alpha subunit of reverse transcriptase facilitates release of the tRNATrp primer from viral DNA and this activity is inhibited by a known inhibitor of reverse-transcriptase-associated RNAase H, it appears that the RNAase H activity, rather than the DNA endonuclease activity, is involved in this reaction. The cleavage site for RNAase H-mediated removal of the tRNATrp primer from viral DNA is located at or near the tRNATrp-viral DNA junction, and transcription of most, if not all, of the tRNATrp-binding site into (+) polarity DNA occurs before RNAase-H-mediated cleavage takes place. These studies indicate that an additional function can be ascribed to the reverse-transcriptase-associated RNAase H activity, which in this instance acts like an endonuclease, not requiring the unblocked termini of an RNA-DNA hybrid molecule for its activity.
Collapse
|
50
|
Abstract
Using chromatography on benzoylated naphthoylated DEAE-cellulose, we found that greater than 99.5% of the unintegrated linear viral DNA species detected in quail embryo cells infected with Rous sarcoma virus contained single-stranded regions, even at 16 h after infection. These regions were distributed across the genome and, on average, were primarily of plus-strand DNA. Within most of the linear viral DNA species, the minus strand was interpreted as being of genome size with two copies of the large terminal redundancy, LTR. In contrast, the plus strands in the linear viral DNA species were exclusively subgenomic.
Collapse
|